EXAMPLES OF SECTION 6.7

Example 1. Find a general solution to the following differential equation.

$$
2 y^{\prime \prime}+18 y=18 \tan (3 t)
$$

Solution. Diving both sides by 2, the differential equation that we will actually be solving is

$$
y^{\prime \prime}+9 y=9 \tan (3 t) .
$$

The general solution to the corresponding homogeneous equation is

$$
y_{c}(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t) .
$$

So, we have

$$
y_{1}=\cos (3 t), \quad y_{2}=\sin (3 t)
$$

Now we seek a solution of the form

$$
y=u_{1} y_{1}+u_{2} y_{2} .
$$

The Wronskian of these two functions is

$$
W\left(y_{1}, y_{2}\right)(t)=\operatorname{det}\left[\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right]=3 .
$$

We find out u_{1} and u_{2} :

$$
\begin{aligned}
u_{1} & =-\int \frac{9 \sin (3 t) \tan (3 t)}{3} d t=-3 \int \frac{\sin ^{2}(3 t)}{\cos (3 t)} d t=-3 \int \frac{1-\cos ^{2}(3 t)}{\cos (3 t)} d t \\
& =3 \int[\cos (3 t)-\sec (3 t)] d t=\sin (3 t)-\ln |\sec (3 t)+\tan (3 t)|
\end{aligned}
$$

Similarly, we find

$$
u_{2}=-\cos (3 t) .
$$

Therefore, A particular solution is given by

$$
\begin{aligned}
y_{p} & =\cos (3 t)[\sin (3 t)-\ln |\sec (3 t)+\tan (3 t)|]-\sin (3 t) \cos (3 t) \\
& =-\cos (3 t) \ln |\sec (3 t)+\tan (3 t)| .
\end{aligned}
$$

The general solution is

$$
y=C_{1} \cos (3 t)+C_{2} \sin (3 t)-\cos (3 t) \ln |\sec (3 t)+\tan (3 t)| .
$$

Example 2. Find a general solution to the following differential equation.

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t^{2}+1} .
$$

Solution. The general solution to the corresponding homogeneous equation is

$$
y_{c}(t)=C_{1} e^{t}+C_{2} t e^{t} .
$$

So, we have

$$
y_{1}=e^{t}, \quad y_{2}=t e^{t} .
$$

Now we seek a solution of the form

$$
y=u_{1} y_{1}+u_{2} y_{2} .
$$

The Wronskian of these two functions is

$$
W\left(y_{1}, y_{2}\right)(t)=\operatorname{det}\left[\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & (1+t) e^{t}
\end{array}\right]=e^{2 t} .
$$

Let's find the Green function:

$$
K(t, s)=e^{-2 t} \operatorname{det}\left[\begin{array}{cc}
e^{s} & e^{t} \\
s e^{s} & t e^{t}
\end{array}\right]=(t-s) e^{t-s} .
$$

A particular solution is now given by
$y_{p}=\int K(t, s) F(s) d s=\int(t-s) e^{t-s} \frac{e^{s}}{s^{2}+1} d s=e^{t} \int \frac{t-s}{s^{2}+1} d s=t e^{t} \tan ^{-1} t-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)$.
The general solution is

$$
y=C_{1} e^{t}+C_{2} t e^{t}+t e^{t} \tan ^{-1} t-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right) .
$$

