EXAMPLES OF SECTION 6.9

Example 1. Find a general solution to the following differential equation.

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

given that $y_{1}(t)=t$ is a solution.
Solution. We look for solutions of the form $y_{2}(t)=v(t) y_{1}(t)=t v(t)$. Plugging y_{2} into the differential equation yields

$$
\begin{equation*}
t^{2}\left[2 v^{\prime}+t v^{\prime \prime}\right]+2 t\left[v+t v^{\prime}\right]-2[t v]=0 \tag{1}
\end{equation*}
$$

Here we have used the following fact

$$
(u v)^{\prime \prime}=u^{\prime \prime}+2 u^{\prime} v^{\prime}+v^{\prime \prime}
$$

Now because y_{1} is a solution to the original differential equation, we just ignore all the terms in (1) containing v. This gives

$$
\begin{equation*}
t^{3} v^{\prime \prime}+4 t^{2} v^{\prime}=0 \tag{2}
\end{equation*}
$$

Let $w=v^{\prime}$. (2) becomes

$$
t^{3} w^{\prime}+4 t^{2} w=0
$$

This is a separation of variables kind of equation. Solving it, we obtain

$$
w=c_{2} t^{-4}
$$

Integrating this results gives

$$
v=c_{2} t^{-3}+c_{1}
$$

which yields

$$
y_{2}(t)=c_{1} t+c_{2} t^{-2}
$$

