EXAMPLES OF SECTIONS 7.2

Question 1. Transfor the given DE into an equivalent system of first order DEs:

$$
t^{3} x^{\prime \prime \prime}-2 t^{2} x^{\prime \prime}+3 t x^{\prime}+5 x=\ln t
$$

Question 2. Write the system of question 1 in matrix form.
Question 3. Consider the system

$$
\vec{x}^{\prime}=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right] \vec{x} .
$$

Determine whether the vectors

$$
\vec{x}_{1}=\left[\begin{array}{c}
e^{3 t} \\
-e^{3 t}
\end{array}\right]
$$

and

$$
\vec{x}_{2}=\left[\begin{array}{c}
e^{2 t} \\
-2 e^{2 t}
\end{array}\right]
$$

are solutions of the system. What can you say about the general solution?

SOLUTIONS.

1. Let $x_{1}=x, x_{2}=x_{1}^{\prime}=x^{\prime}, x_{3}=x_{2}^{\prime}=x^{\prime \prime}$, hence

$$
x_{3}^{\prime}=x^{\prime \prime \prime}=\frac{-5 x-3 t x^{\prime}+2 t^{2} x^{\prime \prime}+\ln t}{t^{3}}
$$

or

$$
x_{3}^{\prime}=-\frac{5}{t^{3}} x_{1}-\frac{3}{t^{2}} x_{2}+\frac{2}{t} x_{3}+\frac{\ln t}{t^{3}} .
$$

Therefore

$$
\begin{cases}x_{1}^{\prime}= & x_{2} \\ x_{2}^{\prime}= & x_{3} \\ x_{3}^{\prime}= & -\frac{5}{t^{3}} x_{1}-\frac{3}{t^{2}} x_{2}+\frac{2}{t} x_{3}+\frac{\ln t}{t^{3}}\end{cases}
$$

2. We readily see that if

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and

$$
\vec{b}=\left[\begin{array}{c}
0 \\
0 \\
\frac{\ln t}{t^{3}}
\end{array}\right]
$$

then

$$
\vec{x}^{\prime}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{5}{t^{3}} & -\frac{3}{t^{2}} & \frac{2}{t}
\end{array}\right] \vec{x}+\vec{b}
$$

3. First compute

$$
\vec{x}_{1}^{\prime}=\left[\begin{array}{c}
\left(e^{3 t}\right)^{\prime} \\
\left(-e^{3 t}\right)^{\prime}
\end{array}\right]=\left[\begin{array}{c}
3 e^{3 t} \\
-3 e^{3 t}
\end{array}\right] .
$$

But

$$
\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right] \vec{x}_{1}=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
e^{3 t} \\
-e^{3 t}
\end{array}\right]=\left[\begin{array}{c}
4 e^{3 t}-e^{3 t} \\
-2 e^{3 t}-e^{3 t}
\end{array}\right]=\left[\begin{array}{c}
3 e^{3 t} \\
-3 e^{3 t}
\end{array}\right]
$$

so that

$$
\vec{x}_{1}^{\prime}=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right] \vec{x}_{1}
$$

and \vec{x}_{1} is a solution.
Let us verify that \vec{x}_{2} is a solution in a different way. Write

$$
\vec{x}_{2}=\left[\begin{array}{c}
e^{2 t} \\
-2 e^{2 t}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] e^{2 t} .
$$

Taking the derivative we have

$$
\vec{x}_{2}^{\prime}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\left(e^{2 t}\right)^{\prime}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] 2 e^{2 t}=\left[\begin{array}{c}
2 \\
-4
\end{array}\right] e^{2 t} .
$$

Now compute

$$
\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right] \vec{x}_{2}=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right] e^{2 t}=\left[\begin{array}{c}
4-2 \\
-2-2
\end{array}\right] e^{2 t}=\left[\begin{array}{c}
2 \\
-4
\end{array}\right] e^{2 t},
$$

so that

$$
\vec{x}_{2}^{\prime}=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right] \vec{x}_{2}
$$

and \vec{x}_{2} is a solution.
Let us verify now that x_{1} and x_{2} are linearly independent. Their Wronskian is

$$
W(t)=\operatorname{det}\left[\begin{array}{cc}
e^{3 t} & e^{2 t} \\
-e^{3 t} & -2 e^{2 t}
\end{array}\right]=e^{3 t}\left(-2 e^{2 t}\right)-e^{2 t}\left(-e^{3 t}\right)=-e^{5 t} \neq 0,
$$

hence the solutions are linearly independent. Since the system is 2×2, it admits at most two linearly independent solutions. We conclude that the general solution is

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2} .
$$

