EXAMPLES OF SECTIONS 7.4

Question 1. Find the general solution of the given systems.
(a)

$$
\vec{x}^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \vec{x} .
$$

(b)

$$
\vec{x}^{\prime}=\left[\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right] \vec{x} .
$$

(c)

$$
\vec{x}^{\prime}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right] \vec{x} .
$$

(d)

$$
\vec{x}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 1 \\
-8 & -5 & -5
\end{array}\right] \vec{x} .
$$

(e)

$$
\vec{x}^{\prime}=\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right] \vec{x} .
$$

(f)

$$
\vec{x}^{\prime}=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right] \vec{x}
$$

SOLUTIONS.

Remark: To simplify the notation, we will not write an arrow on the top of the vectors.
1a. Start with the characteristic equation

$$
\operatorname{det}\left[\begin{array}{cc}
3-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right]=-(3-\lambda)(2+\lambda)+4=0
$$

whose solutions are the eigenvalues

$$
\lambda_{1}=2, \lambda_{2}=-1
$$

Let us find the corresponding eigenvectors.

$$
\underline{\lambda_{1}}=2:
$$

$$
\left[\begin{array}{cc}
3-\lambda_{1} & -2 \\
2 & -2-\lambda_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right],
$$

hence we want to solve

$$
\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right] v_{1}=\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We find

$$
v_{1}=a\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

As we saw in class, we can drop the free variable a and write

$$
v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

$\lambda_{2}=-1:$

$$
\left[\begin{array}{cc}
3-\lambda_{2} & -2 \\
2 & -2-\lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right]
$$

hence we want to solve

$$
\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right] v_{2}=\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We find

$$
v_{2}=a\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Again, we drop the free variable a, obtaining

$$
v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Summarizing, we have the following eigenvalues and eigenvectors:

$$
\lambda_{1}=2, v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \lambda_{2}=-1, v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Therefore the two linearly independent solutions are

$$
x_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{2 t}, \text { and } x_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{-t} .
$$

1b. Proceeding as in the previous problem, we find

$$
\lambda_{1}=-2, \lambda_{2}=-1
$$

and associated eigenvectors

$$
v_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Therefore the two linearly independent solutions are

$$
x_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] e^{-2 t}, \quad \text { and } x_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-t} .
$$

1c. Start with the characteristic equation

$$
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 1 & 2 \\
1 & 2-\lambda & 1 \\
2 & 1 & 1-\lambda
\end{array}\right]=(1-\lambda)((2-\lambda)(1-\lambda)-1)-(1-\lambda-2)+2(1-2(2-\lambda))=0
$$

Rearranging,

$$
\begin{gathered}
(2-\lambda)(1-\lambda)^{2}-1+\lambda+1+\lambda-6+4 \lambda=(2-\lambda)(1-\lambda)^{2}-6(1-\lambda) \\
=(1-\lambda)((2-\lambda)(1-\lambda)-6)=0 .
\end{gathered}
$$

The eigenvalues are now easily found to be

$$
\lambda_{1}=4, \lambda_{2}=-1, \lambda_{3}=1
$$

Let us find the corresponding eigenvectors.
$\underline{\lambda_{1}=4}$:

$$
\left[\begin{array}{ccc}
1-\lambda_{1} & 1 & 2 \\
1 & 2-\lambda_{1} & 1 \\
2 & 1 & 1-\lambda_{1}
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & -2 & 1 \\
2 & 1 & -3
\end{array}\right]
$$

so we need to solve

$$
\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & -2 & 1 \\
2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Solving the system and ignoring the free variable as before we obtain

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Repeating the process for $\lambda_{2}=-1, \lambda_{3}=1$ we find, respectively

$$
v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

Summarizing, we have the following eigenvalues with corresponding eigenvectors

$$
\begin{gathered}
\lambda_{1}=4, \lambda_{2}=-1, \lambda_{3}=1 \\
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
\end{gathered}
$$

The linearly independent solutions are

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{4 t}, x_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{-t}, x_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] e^{t} .
$$

1d. We proceed as in the previous problem, finding

$$
\lambda_{1}=-2, \lambda_{2}=-1, \lambda_{3}=0 .
$$

with corresponding eigenvectors

$$
v_{1}=\left[\begin{array}{c}
-2 \\
-1 \\
7
\end{array}\right], v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right], v_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] .
$$

Hence

$$
x_{1}=\left[\begin{array}{c}
-2 \\
-1 \\
7
\end{array}\right] e^{-2 t}, x_{2}=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right] e^{-t}, x_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] .
$$

Notice that $e^{\lambda t}$ does not appear in x_{3} because the corresponding eigenvalue is zero, so that $e^{\lambda t}=e^{0 t}=1$.
1e. The characteristic equation is

$$
\operatorname{det}\left[\begin{array}{cc}
-3-\lambda & -2 \\
9 & 3-\lambda
\end{array}\right]=-9+\lambda^{2}+18=\lambda^{2}+9=0
$$

whose solutions are

$$
\lambda_{1}=3 i, \lambda_{2}=-3 i .
$$

Recall that we saw in class that in the complex root case, the first root already gives two linearly independent solutions, so it is enough to consider $\lambda_{1}=3 i$. We want to solve

$$
\left[\begin{array}{cc}
-3-3 i & -2 \\
9 & 3-3 i
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Proceeding as before and ignoring the free variable we find

$$
v=\left[\begin{array}{c}
-2 \\
3+3 i
\end{array}\right]
$$

This gives

$$
x=\left[\begin{array}{c}
-2 \\
3+3 i
\end{array}\right] e^{3 i t} .
$$

Next, we separate the real and imaginary parts,

$$
\begin{aligned}
x & =\left[\begin{array}{c}
-2 e^{3 i t} \\
(3+3 i) e^{3 i t}
\end{array}\right]=\left[\begin{array}{c}
-2 \cos (3 t)-2 i \sin (3 t) \\
(3+3 i)(\cos (3 t)+i \sin (3 t))
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \cos (3 t)-2 i \sin (3 t) \\
3 \cos (3 t)-\sin (3 t)+i(3 \cos (3 t)+-3 \sin (3 t))
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \cos (3 t) \\
3 \cos (3 t)-3 \sin (3 t)
\end{array}\right]+i\left[\begin{array}{c}
-2 \sin (3 t) \\
3 \sin (3 t)+3 \cos (3 t)
\end{array}\right] .
\end{aligned}
$$

Hence the two linearly independent solutions are

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{c}
-2 \cos (3 t) \\
3 \cos (3 t)-3 \sin (3 t)
\end{array}\right], \\
& x_{2}=\left[\begin{array}{c}
-2 \sin (3 t) \\
3 \sin (3 t)+3 \cos (3 t)
\end{array}\right] .
\end{aligned}
$$

1f. As before, we look for solutions of the characteristic equation

$$
\operatorname{det}\left[\begin{array}{ccc}
5-\lambda & 5 & 2 \\
-6 & -6-\lambda & -5 \\
6 & 6 & 5-\lambda
\end{array}\right]=0
$$

The solutions are

$$
\lambda_{1}=0, \lambda_{2}=2 \pm 3 i \Rightarrow \lambda_{1}=0, \lambda_{2}=2+3 i .
$$

where as in the previous problem we can pick only one of the two complext roots. The eigenvectors are

$$
\begin{gathered}
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \\
v_{2}=\left[\begin{array}{c}
1+i \\
-2 \\
2
\end{array}\right] .
\end{gathered}
$$

The solution corresponding to $\lambda_{1}=0$ then becomes,

$$
x_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

while the two solutions obtained from $\lambda_{2}=2+3 i$ are

$$
\begin{aligned}
& x_{2}=\left[\begin{array}{c}
\cos (3 t)-\sin (3 t) \\
-2 \cos (3 t) \\
2 \cos (3 t)
\end{array}\right] e^{2 t}, \\
& x_{3}=\left[\begin{array}{c}
\cos (3 t)+\sin (3 t) \\
-2 \sin (3 t) \\
2 \sin (3 t)
\end{array}\right] e^{2 t} .
\end{aligned}
$$

