1. What is the determinant of the following matrix?

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}$$
A. 0
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}$$
C. 55
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -7 \\ 0 & -1 & -2 & -7 \\ 0 & -1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 7 \\ 0 & 4 & -4 \\ 0 & -4 & -36 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 6 \\ 0 & -4 & -36 \end{bmatrix}$$

2. If det
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 4$$
, then det
$$\begin{bmatrix} a_1 & a_2 & 4a_3 - 2a_2 \\ b_1 & b_2 & 4b_3 - 2b_2 \\ \frac{1}{2}c_1 & \frac{1}{2}c_2 & 2c_3 - c_2 \end{bmatrix} =$$

D. 2
E. 1 =
$$\frac{1}{2}$$
 | $\frac{1}{2}$ | $\frac{1$

(i) If $A^T = -A$, then det A must be zero.

(ii) If $A^2 = A$, then A must be the identity matrix or the zero matrix.

(iii) If det $A \neq 0$, then the homogeneous system $A\mathbf{x} = \mathbf{0}$ only has the trivial solution.

4. Which of the following vectors in R_3 is a linear combination of

$$v_1 = \begin{bmatrix} 4 & 2 & -3 \end{bmatrix}, v_2 = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}, v_3 = \begin{bmatrix} -2 & -1 & 4 \end{bmatrix}$$
?

$$\begin{array}{cccc} C. & \begin{bmatrix} -2 & 2 & 3 \end{bmatrix} \end{array}$$

$$\begin{bmatrix} 4 & 2 & -2 & | & \times \\ 2 & 1 & -1 & | & \times \\ -3 & -2 & 4 & | & 2 \end{bmatrix} \sim \begin{bmatrix} -3 & -2 & 4 & | & \times \\ 2 & 1 & -1 & | & \times \\ 4 & 2 & -2 & | & \times \end{bmatrix}$$

- 5. Which of the following sets of 2×2 matrices are vector spaces? (Here \oplus and o are the usual addition and scalar multiplication of matrices.)
 - (i) {all matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that a+b=3c-d.}
 - (ii) {all 2×2 matrices A such that $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.}
 - (iii) {all 2×2 matrices A such that $A\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is consistent.}

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$AX = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $BX = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$A \times = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $B \times = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $C.$ (ii) and $D.$ (i) only are consistent $E.$ All of the first $A + B \times A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ in $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ in $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ i

$$A. \hspace{0.2cm} (i) \hspace{0.1cm} and \hspace{0.1cm} (ii)$$

$${\rm C.}~{\rm (ii)}~{\rm and}~{\rm (iii)}$$

(ii)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

- Let P_3 be the set of all polynomials of degree 3 or less. Which of the following subsets are subspaces of P_3 ? (Here \oplus and \odot are the standard addition and scalar multiplication.)
 - (i) {all polynomials p(x) such that $p(1) \neq 0$ }
 - (ii) {all polynomials p(x) such that p(x) = p(-x).}
 - (iii) {all polynomials p(x) with p(0) = p(1).}

- 7. Let $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & t \\ 2 & 0 & 1 \\ 0 & 1 & t \end{bmatrix}$. Choose a value of t so that the null space of A has dimension 0.

 - rank A = 2 for all t

 =) multiply of A = 1A. 0 B. 1
 - C. -1D. 2
 - $\overline{(E.)}$ No such value of t exists.
- 8. Let A be a 3×5 matrix with rank 3. Which of the following statements is
 - A. A consistent linear system $A\mathbf{x} = \mathbf{b}$ must have a unique solution. Can not be unique.

 B. The null space of A has dimension 3. multiply of A = 2C. The columns of A form a basis for the column space of A. columns are linearly defined.

 The system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^3 .

 - $(\overline{\mathbf{D}})$. The system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^3 .
 - rans of A one L.I. E. The rows of A form a linearly dependent set.
- 9. Choose a value of a so that the vector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is orthogonal to the vector

$$\begin{bmatrix} a \\ 1 \\ a^3 \end{bmatrix}$$
.

- A. 1 B. 2
- **(℃)** 3
- D. 4
- E. None of the above

- - a (a'-9) = 0

10. Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. Then $\begin{bmatrix} 1 \\ -i \end{bmatrix}$

- A. is an eigenvector with eigenvalue 1.
- B. is an eigenvector with eigenvalue -1.
- C. is an eigenvector with eigenvalue i.
- \dot{D} is an eigenvector with eigenvalue -i.
- E. is not an eigenvector.

11. Consider the following differential equation:
$$A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$

$$dy/dt = 5x + y$$

Which of the following is a solution:

A.
$$x = 3e^{3t} + 2e^{-2t}$$
 and $y = 2e^{3t} - 2e^{-2t}$

B.
$$x = 3e^{4t} + 2e^{-4t}$$
 and $y = 2e^{6t} - 3e^{-t}$.

(C.)
$$x = 2e^{6t} + 2e^{-4t}$$
 and $y = 2e^{6t} - 2e^{-4t}$.

D.
$$x = 3e^{3t} + 2e^{2t}$$
 and $y = 2e^{3t} - 2e^{2t}$.

E.
$$x = 8e^t + 4e^{-3t}$$
 and $y = 9e^t - 4e^{-3t}$

$$A = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$
 $P(\lambda) = \begin{bmatrix} \Lambda^{-1} & -5 \\ -5 & \lambda^{-1} \end{bmatrix} = \lambda^{2} - 2\lambda - 24 = (\lambda - 6)(\lambda + 4)$

$$\lambda_{1}=6$$
 $\lambda_{1}=6$
 λ_{1

B.
$$x = 3e^{4t} + 2e^{-4t}$$
 and $y = 2e^{6t} - 3e^{-t}$.

(C.) $x = 2e^{6t} + 2e^{-4t}$ and $y = 2e^{6t} - 2e^{-4t}$.

D. $x = 3e^{3t} + 2e^{2t}$ and $y = 2e^{3t} - 2e^{2t}$.

E. $x = 8e^{t} + 4e^{-3t}$ and $y = 9e^{t} - 4e^{-3t}$.

12. Suppose the vector $v = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ is orthogonal to $\begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \\ -1 \end{bmatrix}$ and Choose $b_1 = 2$

$$\begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$
. Then which of the following statement is always correct:

A.
$$a = 0, b = c = -d$$

B.
$$b = 0, a = b = -d$$

C.
$$c = a = 0, a = b = -c$$

$$\int D_{>} d = 0, a = b = c$$

E.
$$a = b = 0, c = 2d + 1$$

$$\begin{bmatrix} 1 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & -1 & 0 \\ 2 & -1 & -1 & 1 & 0 \end{bmatrix}$$

$$=) \begin{bmatrix} \frac{a}{b} \\ \frac{1}{c} \end{bmatrix} = \begin{bmatrix} \frac{1}{b} \\ \frac{1}{c} \end{bmatrix}$$

13. Let $C[-\pi,\pi]$ be the real vector space of continuous functions defined on $[-\pi,\pi]$. Define an inner product on $C[-\pi,\pi]$ by

$$\langle f,g
angle = \int_{-\pi}^{\pi} f(t)g(t)dt.$$

Then which of the following set of vectors are orthogonal?

- A. $1, t, t^2$
- B. $\sin^2 t$, 1, $\cos t$
- C. $1, e^t, e^{2t}$
- $(D) 1, t, t^2 \frac{\pi^2}{3},$
 - E. None of the above
- 14. Let A be an $n \times n$ matrix, which of the following statements is FALSE?
 - A. If A is a symmetric matrix, then A^T is also symmetric.
 - B. The product AA^T is always symmetric.
 - B. The product AA^T is always symmetric.

 (C) If A is skew symmetric, then A^3 is symmetric.

 (D) If A is symmetric, then $A + A^2$ is symmetric.

 (A) $A = A^T = A^T$
- 15. A and B are $n \times n$ invertible matrices, which of the following statements is FALSE?
 - A. $(A^2)^{-1} = (A^{-1})^2$
 - B. $(A^{-1})^T = (A^T)^{-1}$.
 - C. $(AB^{-1})^{-1} = BA^{-1}$.
 - $\widehat{D}) (A + B^{-1})^{-1} = A^{-1} + B.$
 - E. $(aA)^{-1} = \frac{1}{a}A^{-1}$ for any nonzero real number a.

 $(A + B^{-1})$ might not be invertible. Counterexample: $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

$$\begin{cases} x + 2y + 3z = a \\ 2x - y + z = b \\ 3x + y + 4z = c \end{cases}$$

Under which condition will this system be consistent?

A.
$$a = c - 2b$$
(B) $a = c - b$.
C. $b = a + c$.
D. $b = a - 2c$.
E. $c = 2a + b$.

Which of the following statements is FALSE?

- 17. Which of the following statements is FALSE
 - A. The rows of any invertible $n \times n$ matrix span \mathbb{R}^n .
 - B. The rows of any orthogonal $n \times n$ matrix span \mathbb{R}^n .
 - C. The rows of any elementary $n \times n$ matrix span \mathbb{R}^n .
 - The rows of any symmetric $n \times n$ matrix span \mathbb{R}^n .
 - E. The rows of any nonsingular $n \times n$ matrix span \mathbb{R}^n .

orthogonal, elementary matrices are investible. but syn matrices might NOT. A=[00]

18. Let
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$
. Which of the following collections of vectors is linearly independent?

- A. The rows of the matrix A.
- The rows of the matrix A^T .
- The rows of the matrix $A \cdot A^T$.
- The first three rows of A.
- E. None of the above.

rank A = 3 columns of A one 2. I.

C. AAT is 4x4. But rank AAT < 3 So raw of AAT are likeay clep.

D.
$$\begin{vmatrix} 3 & 3 & 4 \\ 4 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 0 & -1 & -2 \\ 0 & -3 & -6 \end{vmatrix} = 0$$
 =) first 3 rows of A one likewy olep.

- 19. In this problem, A is a 5×8 matrix. Find the TRUE statement.
 - A. If rref(A) has five leading 1's then the columns of A are linearly independent.
 - (B.) If the number of leading 1's of rref(A) equals three, then one can pick three columns of A that span the column space of A.
 - C. If columns 1,3 and 8 of rref(A) have no leading 1 then A must have five linearly independent rows.
 - D. If columns 1, 3, 4, 5 and 8 of rref(A) are exactly the ones that have no leading 1 then there are five linearly independent rows in A.
 - E. None of the above.
- 20. What are the eigenvalues of the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$?

C.
$$\pm 1, 2$$
.

$$(\hat{D}) \pm 1, 2, 3.$$

$$P(\lambda) = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ -2 & \lambda - 1 & 0 \\ 0 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 1) (\lambda - 1) \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1) (\lambda - 2)$$
is NOT diagonalizable?

21. Which of the following matrices is NOT diagonalizable?

A.
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

$$\begin{array}{ccc}
\text{D.} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} & \lambda_1 = \lambda_1 = \lambda_2
\end{array}$$

$$E. \quad \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

$$\lambda_1 = \lambda_1 = 2$$

- 22. For an $n \times n$ real matrix A, which of the following statements are true?
 - i) If $A^T = A$, then all eigenvalues of A are real. A sym =) all eigenvalue of A are real ii) If A is an orthogonal matrix, then the columns of A form an orthonormal

 - iii) If all eigenvalues of A are equal to 1, then A is similar to the identity
 - Counterexample: A = []
 - A. i) only.
 - B. ii) only.
 - (C) i) and ii) only .
 - D. i), ii), iii).
 - E. None of the above.
- 23. Assume A and B are $n \times n$ symmetric matrices. Which of the following statements are always true?
 - $(A^2)^{\dagger} = A^{\dagger}A^{\dagger} = (A^{\dagger})^2 = A^2$ (i) A^2 is symmetric.
 - (ii) AB is symmetric.
 - (iii) ABA is symmetric. $(ABA)^7 = A^7B^7A^7 = ABA$.
 - A. none of these
 - B. (i) only
 - C. (ii) only
 - (D) (i) and (iii) only.
 - E. (i), (ii) and (iii)

(ii) Counterexample:
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

- 24. Let $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 3 & 5 \\ 0 & 4 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$. Compute the (2,3)-entry
 - A. 4
 - B. 8
 - C. 26
 - D. 52
 - E. 104

25. Let W denote the vector space spanned by the vectors

$$\mathbf{u}_1 = \left[egin{array}{c} 1 \ 0 \ 1 \ 2 \end{array}
ight], \; \mathbf{u}_2 = \left[egin{array}{c} 0 \ 1 \ 1 \ 2 \end{array}
ight],$$

and let $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$. Find the distance from \mathbf{v} to W.

- A. 0
- B. 1

- V is orthogonal to up & Ur

 =) distance of v to W = 11 v 11 = 2