1. The general solution of the following differential equation

$$
4 x^{3} e^{-y} d x=\left(x^{4}+2\right) d y
$$

is
A. $y=C-2 \ln \left(x^{4}+2\right)$
B. $x^{4}=C e^{y}-2$
C. $\ln \left(x^{4}+2\right)=C e^{y}$
D. $\ln \left(x^{4}+2 e^{y}\right)=C$
E. $\ln \left(x^{4}+2\right)=e^{y}+C$
2. Suppose that $y=y(x)$ is a solution of

$$
(4 x+y) d x+\left(x+e^{-y}\right) d y=0, \quad y(0)=0
$$

Then y satisfies
A. $5 x^{2}=x e^{y}+x y=0$
B. $\left(x+e^{y}\right)(4 x+y)=0$
C. $2 x^{2}+x y-y e^{-y}=0$
D. $(4 x+y)^{2}+\left(x+e^{-y}\right)^{2}=1$
E. $2 x^{2}+x y-e^{-y}=-1$
3. A tank contains 200 liters of liquid. Initially, the tank contains pure water. At time $t=0$, brine containing $3 \mathrm{~g} / \mathrm{L}$ of salt begins to pour into the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$, and the well stirred mixture is allowed to drain away at the same rate. How many minutes must elapse before there are 100 grams of salt in the tank?
A. $100 \ln \frac{6}{5}$
B. $600-600 e^{-1}$
C. $600-e^{-1}$
D. $600+600 e$
E. $-100 \ln (400)$
4. The rank of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 5 & 7 \\
3 & 1 & 0 \\
-1 & 5 & 8 \\
2 & 4 & 5
\end{array}\right]
$$

is
A. 0
B. 1
C. 2
D. 3
E. 4
5. If $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & 2\end{array}\right]$, then the sum of the entries in the third row of A^{-1} is
A. -2
B. -1
C. 0
D. 1
E. 2
6. The general solution to $t y^{\prime}-y=t^{2} e^{-t}$ is
A. $y=-e^{-t}+C$
B. $y=-t e-t$
C. $y=-C e^{-t}+t$
D. $y=-t e^{-t}+C t$
E. $y=t e^{-t}+t$
7. Let A be an invertible matrix with the inverse

$$
A^{-1}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]
$$

Which of the following statement is NOT always true?
(i) For arbitrary 2×2 matrices B and C. If $A B=A C$, then $B=C$.
(ii) A^{T} is invertible.
(iii) For arbitrary 2×2 matrices B and C. If $B A=C A$, then $B=C$.
(iv) $\operatorname{rank}(A)=2$
(v) A is symmetric.
A. (i) and (iii)
B. (ii) and (v)
C. (i), (ii), (iii) and (v)
D. (i), (iii) and (v)
E. None of the above.
8. For two $n \times n$ matrices A and B, how many of the following statements are true.
(a) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(b) $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
(c) For $k \neq 0, \operatorname{det}(k A)=k \operatorname{det}(A)$.
(d) $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$
(e) If $A=P B P^{-1}$ for an invertible matrix P, then $\operatorname{det}(A)=\operatorname{det}(B)$.
A. 1
B. 2
C. 3
D. 4
E. 5
9. For what α, the system of linear equations

$$
\begin{cases}2 x+5 y+(3 \alpha) z+4 w & =0 \\ (\alpha-1) y+4 z-3 w & =0 \\ 2 z+w & =0 \\ (\alpha) z+4 w & =0\end{cases}
$$

has non-trivial solutions?
A. $\alpha=0,2$
B. $\alpha=1,5$
C. $\alpha=-1,-5$
D. $\alpha=1,8$
E. $\alpha=0,1$
10. If $y=y(x)$ is the solution to

$$
y^{\prime}=\frac{3 y^{2}+x^{2}}{2 x y}, \quad y(1)=1
$$

then $y(2)=$?
A. $-2 \sqrt{3}$
B. 1
C. $2 \sqrt{2}$
D. $2 \sqrt{3}$
E. 0
11. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
2 & 1 & 1
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and

$$
A X=\left[\begin{array}{c}
-1 \\
2 \\
-4
\end{array}\right]
$$

What is x_{2} ?
A. 11
B. $20 / 3$
C. $5 / 4$
D. 1
E. 0

