1. The general solution of the following differential equation

$$4x^3e^{-y}dx = (x^4 + 2)dy$$

is

- A. $y = C 2\ln(x^4 + 2)$
- B. $x^4 = Ce^y 2$
- C. $\ln(x^4 + 2) = Ce^y$
- D. $\ln(x^4 + 2e^y) = C$
- E. $\ln(x^4 + 2) = e^y + C$

2. Suppose that y = y(x) is a solution of

$$(4x+y)dx + (x+e^{-y})dy = 0, \quad y(0) = 0.$$

Then y satisfies

- A. $5x^2 = xe^y + xy = 0$
- B. $(x + e^y)(4x + y) = 0$
- C. $2x^2 + xy ye^{-y} = 0$
- D. $(4x+y)^2 + (x+e^{-y})^2 = 1$
- E. $2x^2 + xy e^{-y} = -1$

- **3.** A tank contains 200 liters of liquid. Initially, the tank contains pure water. At time t = 0, brine containing 3 g/L of salt begins to pour into the tank at a rate of 2 L/min, and the well stirred mixture is allowed to drain away at the same rate. How many minutes must elapse before there are 100 grams of salt in the tank?
 - A. $100 \ln \frac{6}{5}$
 - B. $600 600e^{-1}$
 - C. $600 e^{-1}$
 - D. 600 + 600e
 - E. $-100 \ln(400)$

4. The rank of the matrix

$$A = \begin{bmatrix} 1 & 5 & 7 \\ 3 & 1 & 0 \\ -1 & 5 & 8 \\ 2 & 4 & 5 \end{bmatrix}$$

is

- A. 0
- B. 1
- C. 2
- D. 3

E. 4

5. If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$
, then the sum of the entries in the third row of A^{-1} is
A. -2
B. -1
C. 0
D. 1
E. 2

- **6.** The general solution to $ty' y = t^2 e^{-t}$ is
 - A. $y = -e^{-t} + C$
 - B. y = -te t
 - C. $y = -Ce^{-t} + t$
 - D. $y = -te^{-t} + Ct$
 - E. $y = te^{-t} + t$

7. Let A be an invertible matrix with the inverse

$$A^{-1} = \begin{bmatrix} 1 & 2\\ 2 & 3 \end{bmatrix}.$$

Which of the following statement is NOT always true?

- (i) For arbitrary 2×2 matrices B and C. If AB = AC, then B = C.
- (ii) A^T is invertible.
- (iii) For arbitrary 2×2 matrices B and C. If BA = CA, then B = C.
- (iv) $\operatorname{rank}(A) = 2$
- (v) A is symmetric.
- A. (i) and (iii)
- B. (ii) and (v)
- C. (i), (ii), (iii) and (v)
- D. (i), (iii) and (v) $\left(v \right)$
- E. None of the above.

- 8. For two $n \times n$ matrices A and B, how many of the following statements are true.
 - (a) det(AB) = det(A) det(B)
 - (b) $\det(A) = \det(A^T)$
 - (c) For $k \neq 0$, $\det(kA) = k \det(A)$.
 - (d) $\det(A^{-1}) = \det(A)^{-1}$
 - (e) If $A = PBP^{-1}$ for an invertible matrix P, then det(A) = det(B).
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

9. For what α , the system of linear equations

$$\begin{cases} 2x + 5y + (3\alpha)z + 4w &= 0\\ (\alpha - 1)y + 4z - 3w &= 0\\ 2z + w &= 0\\ (\alpha)z + 4w &= 0 \end{cases}$$

has non-trivial solutions?

- A. $\alpha = 0, 2$
- B. $\alpha = 1, 5$
- C. $\alpha = -1, -5$
- D. $\alpha = 1, 8$
- E. $\alpha = 0, 1$

10. If y = y(x) is the solution to

$$y' = \frac{3y^2 + x^2}{2xy}, \quad y(1) = 1,$$

then y(2) = ?

- A. $-2\sqrt{3}$
- B. 1
- C. $2\sqrt{2}$
- D. $2\sqrt{3}$
- E. 0

11. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

and

$$AX = \begin{bmatrix} -1\\2\\-4 \end{bmatrix}$$

What is x_2 ?

- A. 11
- B. 20/3
- C. 5/4
- D. 1
- E. 0