EXAMPLES OF SECTIONS 6.1

Question 1. T is a linear transformation from \mathbb{P}_{2} to $\mathbb{P}_{2}, \mathbb{P}_{2}$ is the space of all polynomials of degree no more than 2 , and

$$
T\left(x^{2}-1\right)=x^{2}+x-3, \quad T(2 x)=4 x, \quad T(3 x+2)=2 x+6 .
$$

Find $T(1), T(x)$, and $T\left(x^{2}\right)$.
Question 2. Let $I=[a, b]$. Prove that $T: C(I) \rightarrow \mathbb{R}: f \mapsto \int_{a}^{b} f(x) d x$ is a liner transformation.

Solutions.

1. We identify T as a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} by the map

$$
a x^{2}+b x+c \mapsto\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] .
$$

By the given conditions, we have

$$
T(1,0,-1)=(1,1,-3), \quad T(0,2,0)=(0,4,0), \quad T(0,3,2)=(0,2,6) .
$$

We immediately have

$$
T(0,1,0)=\frac{1}{2} T(0,2,0)=(0,2,0) .
$$

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right]
$$

Solving

$$
A \vec{x}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],
$$

we get $\vec{x}=\left[\begin{array}{c}0 \\ -\frac{3}{4} \\ \frac{1}{2}\end{array}\right]$. Therefore,

$$
T(0,0,1)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 4 & 2 \\
-3 & 0 & 6
\end{array}\right]\left[\begin{array}{c}
0 \\
-\frac{3}{4} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right] .
$$

Finally,

$$
T(1,0,0)=T(1,0,-1)+T(0,0,1)=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Now we restore this result back to the space \mathbb{P}_{2} and obtain

$$
T(1)=-2 x+3, \quad T(X)=2 x, \quad T\left(x^{2}\right)=x^{2}-x .
$$

2. We verify two steps in one.

$$
\begin{aligned}
T\left(c_{1} f_{1}+c_{2} f_{2}\right) & =\int_{a}^{b}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right) d x=c_{1} \int_{a}^{b} f_{1}(x) d x+c_{2} \int_{a}^{b} f_{2}(x) d x \\
& =c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right) .
\end{aligned}
$$

