EXAMPLES OF SECTIONS 7.2

Question 1. Find the general for the system

$$
\vec{x}^{\prime}=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right] \vec{x} .
$$

SOLUTIONS.

1. Let

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]
$$

First compute

$$
\operatorname{det}\left(A-\lambda I_{2}\right)=\operatorname{det}\left[\begin{array}{cc}
4-\lambda & 1 \\
-2 & 1-\lambda
\end{array}\right]=\lambda^{2}-5 \lambda+6=(\lambda-3)(\lambda-2)
$$

So the eigenvalues of A is $\lambda_{1}=3, \lambda_{2}=2$. Now we can compute the corresponding eigenvectors are

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

Thus

$$
\vec{x}_{1}=\left[\begin{array}{c}
e^{3 t} \\
-e^{3 t}
\end{array}\right]
$$

and

$$
\vec{x}_{2}=\left[\begin{array}{c}
e^{2 t} \\
-2 e^{2 t}
\end{array}\right]
$$

are solutions of the system.
Let us verify now that x_{1} and x_{2} are linearly independent. Their Wronskian is

$$
W(t)=\operatorname{det}\left[\begin{array}{cc}
e^{3 t} & e^{2 t} \\
-e^{3 t} & -2 e^{2 t}
\end{array}\right]=e^{3 t}\left(-2 e^{2 t}\right)-e^{2 t}\left(-e^{3 t}\right)=-e^{5 t} \neq 0
$$

hence the solutions are linearly independent. Since the system is 2×2, it admits exactly two linearly independent solutions. We conclude that the general solution is

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2} .
$$

