EXERCISES OF CHAPTER 4

Question 1. Which of the following vectors in \mathbb{R}^{3} is a linear combination of

$$
v_{1}=\left[\begin{array}{lll}
4 & 2 & -3
\end{array}\right], \quad v_{2}=\left[\begin{array}{lll}
2 & 1 & -2
\end{array}\right], \quad v_{3}=\left[\begin{array}{lll}
-2 & -1 & 4
\end{array}\right] ?
$$

A. $\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$
B. $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
C. $\left[\begin{array}{lll}-2 & 2 & 3\end{array}\right]$
D. $\left[\begin{array}{lll}6 & 3 & 7\end{array}\right]$
E. None of the above.

Question 2. Let P_{3} be the set of all polynomials of degree 3 or less. Which of the following subsets are subspaces of P_{3} ? (Here all subsets are assumed to have the usual standard addition and scalar multiplication)
(i) all polynomials $p(x)$ such that $p(1) \neq 0$.
(ii) all polynomials $p(x)$ such that $p(x)=p(-x)$.
(iii) all polynomials $p(x)$ such that $p(1)=p(0)$.
A. (i) and (ii)
B. (ii) only.
C. (ii) and (iii)
D. (i) and (iii)
E. All of the above are vector spaces.

Question 3. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
2 & 4 & 6 & 2 \\
-1 & -2 & -3 & -1
\end{array}\right]
$$

What is the dimension of null space of A ?

Question 4. What is the dimension of the subspace of R^{4} spanned by $\{(1,2,3,4),(4,3,2,1),(2,0,0,2),(2,4,4,2)\} ?$

Question 5. For which values of the constant k, do the vectors $(2,1,3 k, 4)$, $(0, k-1,4,-8),(0,0,2,1),(0,0, k, 4)$ form a basis for \mathbb{R}^{4} ?

Question 6. Find the value of k such that $(5,6 k,-2,2)$ is in the span of $\{(0,2,2,1),(-1,0,2,1),(2,2,0,3)\} ?$

Question 7. Determine all values of k so that $\left\{k-k x^{2}, 3+k x, 2+x+k x^{2}\right\}$ is a basis for P_{2}, the vector space of all polynomials of degree ≤ 2.

Question 8.What is the dimension of the vector space of all 4×4 skewsymmetric matrices with real entries?

Question 9. Find all value(s) of k, such that the rowspace of A is \mathbb{R}^{3}, where

$$
A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & 1 & k \\
2 & 0 & 1 \\
0 & 1 & k
\end{array}\right]
$$

