MA26500: EXAM I

NAME: _____

1. A is an $m \times n$ matrix and b is an $m \times 1$ vector. The equation AX = b has infinitely many solutions. Consider the following statements:

- (i) $m \leq n$
- (ii) $n \leq m$
- (iii) rank(A) = n
- (iv) rank(A) < n
- (v) $\det(A) = 0$

Which must be true?

- A. only (i) and (v)
- (B.) only (iv)
- C. only (v)
- D. only (iii) and (v)
- E. None of the above.

(i) Counterexample.

$$\begin{cases} x + y = 1 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

(V) It m + n, we cannot define det (A)

- 2. Only one of the following is NOT always true. Which one is it?
 - A. The product of two 3×3 diagonal matrices is a diagonal matrix.
 - B. For any two $n \times n$ matrices $A, B, (A + B)^2 = A^2 + AB + BA + B^2$.
 - (C) For any two matrices A, B, if AB = 0 then either A = 0 or B = 0.
 - D. Product of two 3×3 upper triangular matrices is an upper triangular matrix.
 - E. The transpose of a symmetric matrix is symmetric.

For example: A=[0] B:[0]

3. If
$$A = \begin{bmatrix} 0 & 2 & -2 \\ 2 & 3 & 0 \\ 1 & 5 & -3 \end{bmatrix}$$
. What is the **sum** of the entries in the third row of A^{-1} ?

(A.)
$$-\frac{5}{2}$$

B.
$$\frac{5}{2}$$

C.
$$\frac{3}{2}$$

$$|A| = \begin{vmatrix} 0 & 2 & 0 \\ 2 & 3 & 3 \\ 1 & 5 & 2 \end{vmatrix} = -2$$

$$A_{13} = \begin{vmatrix} 2 & 3 \\ 1 & 5 \end{vmatrix} = 7$$

$$a_{31}^{-1} + a_{31}^{-1} + a_{33}^{-1} = \frac{7+2-4}{2} = -\frac{5}{2}$$

4. Which of the following are true?

(i) An $n \times n$ elementary matrix is always nonsingular.

(ii) If A is nonsingular and diagonal, then A^{-1} is also nonsingular and diagonal.

(iii) An $n \times n$ matrix is nonsingular if and only if its reduced row echelon form is I_n .

(iv) If A is symmetric, then adjA is also symmetric.

A. only (i) and (ii)

B. (i), (ii), (iii)

C. (i), (ii), (iv)

D. (ii), (iii), (iv)

(E.) (i), (ii), (iii), (iv)

(iv)
$$AA^{-1} = I_n \Rightarrow (A^{-1})^T A^T = I_n$$

$$A = \sum_{i=1}^{n} (A^{-i})^{T} A = \sum_{i=1}^{n} (A^{-i})^{T} = A^{-i}$$

5. Let A be an invertible matrix with the inverse

$$A^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}.$$

Which of the following statement is NOT always true?

- (i) For arbitrary 2×2 matrices B and C. If AB = AC, then B = C.
- (ii) A^T is invertible.
- (iii) For arbitrary 2×2 matrices B and C. If BA = CA, then B = C.
- (iv) rank(A)=2
- (v) A is symmetric.
- A. (i) and (iii)
- B. (ii) and (v)
- C. (i), (ii), (iii) and (v)
- D. (i), (iii) and (v)
- E. None of the above.

6. Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \\ -1 & -4 & 1 & -1 \\ 1 & 2 & 0 & -4 \end{bmatrix}$$

via the row echelon form method.

$$[A|I4] \sim \begin{bmatrix} -1 & 1 & 2 & -1 & | & + & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & | & -1 & 1 & 0 & 0 \\ 0 & -3 & 3 & -2 & | & 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & -3 & | & -1 & 0 & 0 & 1 \end{bmatrix}$$

7. For two $n \times n$ matrices A and B, how many of the following statements are true.

- (a) $\det(AB) = \det(A)\det(B)$
- (b) $\det(A) = \det(A^T)$
- (c) For $k \neq 0$, det(kA) = k det(A).
- (d) $\det(A^{-1}) = \det(A)^{-1}$
- (e) If $A = PBP^{-1}$ for an invertible matrix P, then det(A) = det(B).
- A. 1
- B. 2
- C. 3
- (D.)4
- E. 5

8. For what α , the system of linear equations

$$\begin{cases} 2x + 5y + (3\alpha)z + 4w &= 0\\ (\alpha - 1)y + 4z - 3w &= 0\\ 2z + w &= 0\\ (\alpha)z + 4w &= 0 \end{cases}$$

has non-trivial solutions?

A.
$$\alpha = 0, 2$$

B.
$$\alpha = 1,5$$

C.
$$\alpha = -1, -5$$

$$(\widehat{D})$$
 $\alpha = 1,8$

E.
$$\alpha = 0, 1$$

$$\begin{bmatrix} 2 & 5 & 3d & 4 \\ 0 & d-1 & 4 & -3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & d & 4 \end{bmatrix} \sim \begin{bmatrix} 2 & 5 & 3d & 4 \\ 0 & d-1 & 4 & -3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 4-\frac{d}{2} \end{bmatrix} = B$$

9. Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

and

$$AX = \begin{bmatrix} -1 \\ 2 \\ -4 \end{bmatrix}$$

What is x_2 ?

A. 11

B. 20/3

C. 5/4

D. 1

E. 0

$$|A| = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -4 \end{vmatrix} = 3$$

$$X_{2} = \begin{vmatrix} 1 & -1 & 3 \\ 2 & 2 & 2 \\ 2 & -4 & 1 \end{vmatrix} = \frac{28}{3}$$

10. Which of the following sets are vector space?

- W_1 = polynomials $P(t) = at^3 + bt^2 + ct + d$ satisfying a b + c = d with usual addition and scalar multiplication.
- $-W_2$ = degree ≤ 5 polynomials P(t) satisfying P(2)=0 with usual addition and scalar multiplication.
- W_3 = vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in \mathbb{R}^3 satisfying x+y=0 with usual addition and scalar multiplication.
- W_4 = all solutions of the linear system Ax = 0 for A an $m \times n$ matrix with usual addition and scalar multiplication.
- $-W_5=3\times3$ upper triangular matrices with usual addition and scalar multiplication.
- A. W_1, W_2, W_3, W_3
- B. W_1, W_2, W_4, W_5
- C. W_2, W_3, W_4, W_5
- D. W_1, W_3, W_4, W_5
- $(E.) W_1, W_2, W_3, W_4, W_5$

11. Determine which one of the following expressions is the general solution to the homogeneous system of equations

$$\begin{cases} x_1 + 5x_2 + 4x_3 + 3x_4 + 2x_5 &= 0 \\ x_1 + 6x_2 + 6x_3 + 6x_4 + 6x_5 &= 0 \\ x_1 + 7x_2 + 8x_3 + 10x_4 + 12x_5 &= 0 \\ x_1 + 6x_2 + 6x_3 + 7x_4 + 8x_5 &= 0 \end{cases}$$

A.
$$s \begin{bmatrix} 1 \\ 0 \\ -6 \\ 0 \\ 6 \end{bmatrix}$$

B.
$$s \begin{bmatrix} 6 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -6 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$

$$C. \quad s \begin{bmatrix} 0 \\ -1 \\ -1 \\ 0 \\ 6 \end{bmatrix}$$

$$\text{D.} \quad s \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ -4 \\ -1 \\ 7 \\ 0 \end{bmatrix}$$

E.
$$s \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ -4 \\ -1 \\ 7 \\ 0 \end{bmatrix} + r \begin{bmatrix} 1 \\ -3 \\ -1 \\ 5 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 5 & 4 & 3 & 2 \\ 1 & 6 & 6 & 6 \\ 1 & 7 & 8 & 10 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -6 & 0 & 6 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

thee variables

Set
$$X_3 = S$$

 $X_5 = t$
=)
$$X_1 = 6S - 6t$$

$$X_4 = -2S + 2t$$

$$X_4 = -2t$$

$$\begin{bmatrix} X_1 \\ \vdots \\ X_S \end{bmatrix} = \begin{bmatrix} bs - bt \\ -2s + 2t \\ s \\ -2t \\ t \end{bmatrix} = S \begin{bmatrix} -6 \\ -2 \\ \vdots \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -6 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$