MA26500: EXAM II

March 31, 2016

Instructor: Yuanzhen Shao

NAME: _____

Section Number: _____

Class Time:_____

PUID:_____

- (1) No calculators are allowed.
- (2) No portable electronic devices.
- (3) There are 10 problems. Each problem is worth 10 points.
- (4) The score is accumulative and the maximum is 100.

- **1.** The subspace of \mathbb{R}^3 spanned by $\{(1, -1, 0), (1, -2, 1), (1, 4, 1), (1, -6, 1)\}$ has dimension
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

2.	If the vector	$\begin{bmatrix} 2\\1\\a\end{bmatrix}$	is in t	he colu	nn sp	ace of	$\begin{bmatrix} 3\\2\\4 \end{bmatrix}$	$\begin{bmatrix} 6\\5\\7 \end{bmatrix},$	then a	u =
	A. 3									
	B. 2									
	C. 1									
	D. 0									

E. There is no such value of a.

- **3.** Let W be the subspace of \mathbb{R}^4 spanned by the vectors $(1, 0, 0, 0), (k, 0, 2, 8), (k, 1, 1, 1), (-k, 1, k, k^2)$. Determine all values of the constant k such that the dimension of W^{\perp} is 0.
 - A. no value of k
 - B. $k \neq 1, 3$
 - C. $k \neq 1, 2$
 - D. k = 1, 3
 - E. k = 1, 2

4. Which of the following sets of vectors in $M_{2\times 2}$ are linearly independent?

$$\begin{array}{lll} (i) & \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right\} \\ (ii) & \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, & \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right\} \\ (iii) & \left\{ \begin{bmatrix} 1 & 2 \\ 1 & -4 \end{bmatrix}, & \begin{bmatrix} 0 & 1 \\ -1 & 4 \end{bmatrix}, & \begin{bmatrix} 2 & 5 \\ 1 & -4 \end{bmatrix} \right\} \\ (iv) & \left\{ \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, & \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix}, & \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} \right\} \\ A. & (i), (ii), (iii) \\ B. & (ii), (iii), (iv) \\ C. & (i), (iii), (iv) \\ D. & (i), (ii), (iv) \end{array}$$

E. None of the above.

- **5.** A is a real 3×3 matrix and $N(A) = \{0\}$. Consider the following statements:
 - (i) $|A| \neq 0$
 - (ii) $\operatorname{rank} A = 3$
 - (iii) the column space of A is \mathbb{R}^3
 - (iv) A^{-1} exists

which of these statements \mathbf{must} be true

- A. only (i) and (iv)
- B. only (ii) and (iii)
- C. only (i) and (ii)
- D. None of them have to be true.
- E. All of them have to be true.

- 6. Let v_1, v_2, v_3, v_4 be an **orthogonal basis** of \mathbb{R}^4 with the standard inner product. Let $W = \text{span}\{v_1, v_2\}$ and let u be a vector in the orthogonal complement of W. Then which of the following need NOT be true?
 - A. $v_1, v_2, v_3 + u, v_4 + u$ is a basis of \mathbb{R}^4 .
 - B. $v_1 + u$, $v_2 + u$, v_3 , v_4 is a basis of \mathbb{R}^4 .
 - C. $v_1 + v_3$ is orthogonal to $v_2 + v_4$.
 - D. $v_1 + v_2$ is orthogonal to $v_3 + v_4 + u$.
 - E. $\operatorname{proj}_W(v_1 + v_2 + u) = \operatorname{proj}_W(v_1 + v_2 + v_3 + v_4).$

7. Let
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 be the linear transformation for which

$$T(\begin{bmatrix} 1\\1 \end{bmatrix}) = \begin{bmatrix} 1\\-2 \end{bmatrix}, \quad T(\begin{bmatrix} -1\\1 \end{bmatrix}) = \begin{bmatrix} 2\\3 \end{bmatrix}.$$
Then $T(\begin{bmatrix} 1\\-5 \end{bmatrix}) =$
A. $\begin{bmatrix} -8\\-5 \end{bmatrix}$
B. $\begin{bmatrix} 8\\5 \end{bmatrix}$
C. $\begin{bmatrix} -8\\5 \end{bmatrix}$
D. $\begin{bmatrix} 8\\-5 \end{bmatrix}$
E. $\begin{bmatrix} -5\\-8 \end{bmatrix}$

8. Suppose that W = the plane x + 2y - 3z = 0. Which of the following is a basis for W^{\perp} ?

A.
$$\begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$$

D.
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

E.
$$\begin{bmatrix} 2\\1\\4 \end{bmatrix}$$

9. Let W denote the vector space spanned by the vectors

$$u_1 = \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix}$$

and let $v = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$. Find the distance from v to W. A. 0 B. 1 C. 2 D. $\sqrt{2}$ E. 4

- 10. Which of the following set is NOT a basis of \mathbb{R}^3 ?
 - A. {(1,0,0), (0,2,0), (0,0,3)}
 - B. $\{(1, -1, 0), (2, -1, 0), (3, 0, -1)\}$
 - C. {(1, -2, 0), (0, 2, -3), (-1, 0, 3)}
 - D. {(1,1,0), (2,1,0), (3,0,1)}
 - E. $\{(0,2,0), (1,2,3), (0,0,3)\}$