NAME: \qquad Section Number: \qquad

PUID: \qquad
(1) No calculators are allowed.
(2) No portable electronic devices.
(3) There are 10 problems. Each problem is worth 10 points.
(4) The score is accumulative and the maximum is 100 .

1. The subspace of \mathbb{R}^{3} spanned by $\{(1,-1,0),(1,-2,1),(1,4,1),(1,-6,1)\}$ has dimension
A. 0
B. 1
C. 2
D. 3
E. 4
2. If the vector $\left[\begin{array}{l}2 \\ 1 \\ a\end{array}\right]$ is in the column space of $\left[\begin{array}{ll}3 & 6 \\ 2 & 5 \\ 4 & 7\end{array}\right]$, then $a=$
A. 3
B. 2
C. 1
D. 0
E. There is no such value of a.
3. Let W be the subspace of \mathbb{R}^{4} spanned by the vectors $(1,0,0,0),(k, 0,2,8),(k, 1,1,1),\left(-k, 1, k, k^{2}\right)$. Determine all values of the constant k such that the dimension of W^{\perp} is 0 .
A. no value of k
B. $k \neq 1,3$
C. $k \neq 1,2$
D. $k=1,3$
E. $k=1,2$
4. Which of the following sets of vectors in $M_{2 \times 2}$ are linearly independent?
(i) $\left\{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right\}$
(ii) $\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right], \quad\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\right\}$
(iii) $\left\{\left[\begin{array}{cc}1 & 2 \\ 1 & -4\end{array}\right], \quad\left[\begin{array}{cc}0 & 1 \\ -1 & 4\end{array}\right], \quad\left[\begin{array}{cc}2 & 5 \\ 1 & -4\end{array}\right]\right\}$
(iv) $\left\{\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], \quad\left[\begin{array}{ll}2 & 0 \\ 1 & 4\end{array}\right], \quad\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right]\right\}$
A. (i), (ii), (iii)
B. (ii), (iii), (iv)
C. (i), (iii), (iv)
D. (i), (ii), (iv)
E. None of the above.
5. A is a real 3×3 matrix and $N(A)=\{0\}$. Consider the following statements:
(i) $|A| \neq 0$
(ii) $\operatorname{rank} A=3$
(iii) the column space of A is \mathbb{R}^{3}
(iv) A^{-1} exists
which of these statements must be true
A. only (i) and (iv)
B. only (ii) and (iii)
C. only (i) and (ii)
D. None of them have to be true.
E. All of them have to be true.
6. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be an orthogonal basis of \mathbb{R}^{4} with the standard inner product. Let $W=$ $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ and let u be a vector in the orthogonal complement of W. Then which of the following need NOT be true?
A. $v_{1}, v_{2}, v_{3}+u, v_{4}+u$ is a basis of \mathbb{R}^{4}.
B. $v_{1}+u, v_{2}+u, v_{3}, v_{4}$ is a basis of \mathbb{R}^{4}.
C. $v_{1}+v_{3}$ is orthogonal to $v_{2}+v_{4}$.
D. $v_{1}+v_{2}$ is orthogonal to $v_{3}+v_{4}+u$.
E. $\operatorname{proj}_{W}\left(v_{1}+v_{2}+u\right)=\operatorname{proj}_{W}\left(v_{1}+v_{2}+v_{3}+v_{4}\right)$.
7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation for which

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \quad T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Then $\left.T\left(\begin{array}{c}1 \\ -5\end{array}\right]\right)=$
A. $\left[\begin{array}{l}-8 \\ -5\end{array}\right]$
B. $\left[\begin{array}{l}8 \\ 5\end{array}\right]$
C. $\left[\begin{array}{c}-8 \\ 5\end{array}\right]$
D. $\left[\begin{array}{c}8 \\ -5\end{array}\right]$
E. $\left[\begin{array}{l}-5 \\ -8\end{array}\right]$
8. Suppose that $W=$ the plane $x+2 y-3 z=0$. Which of the following is a basis for W^{\perp} ?
A. $\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
B. $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]$
C. $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$
D. $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
E. $\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$
9. Let W denote the vector space spanned by the vectors

$$
u_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right]
$$

and let $v=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right]$. Find the distance from v to W.
A. 0
B. 1
C. 2
D. $\sqrt{2}$
E. 4
10. Which of the following set is NOT a basis of \mathbb{R}^{3} ?
A. $\{(1,0,0),(0,2,0),(0,0,3)\}$
B. $\{(1,-1,0),(2,-1,0),(3,0,-1)\}$
C. $\{(1,-2,0),(0,2,-3),(-1,0,3)\}$
D. $\{(1,1,0),(2,1,0),(3,0,1)\}$
E. $\{(0,2,0),(1,2,3),(0,0,3)\}$

