EXAMPLES OF SECTION 1.4, 1.5

Example 1. Assume that A, B are $m \times n$ matrices and C is $n \times p$. Prove that (A + B)C = AC + BC.

Proof. Let $(A + B)C = D = [d_{ij}]$. Then

$$d_{ij} = \sum_{k=1}^{n} (A+B)_{ik} c_{kj} = \sum_{k=1}^{n} (a_{ik} + b_{ik}) c_{kj}$$
$$= \sum_{k=1}^{n} a_{ik} c_{kj} + \sum_{k=1}^{n} b_{ik} c_{kj} = (AC)_{ij} + (BC)_{ij}$$
$$= (AC + BC)_{ij}.$$

By the definition of matrix equality, this implies (A+B)C = AC + BC. \Box

Example 2. Prove that the product of any two upper(lower) triangular matrices is again a(n) upper(lower) triangular matrix.

Remark 3. For any $n \times n$ matrix A, A is upper triangular if and only if

$$a_{ij} = 0$$
, for all $i > j$,

and A is lower triangular if and only if

 $a_{ij} = 0$, for all i < j.

Proof. (of Example 2) We will prove this assertion for upper triangular matrices only. The proof for lower triangular case is exactly the same.

Suppose that $A_{n \times n}, B_{n \times n}$ are both upper triangular. Let $AB = C = [c_{ij}]$. Then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

We consider only c_{ij} with

$$i > j. \tag{1}$$

Case I: k > j

In this case, $b_{kj} = 0$. So $a_{ik}b_{kj} = 0$.

Case II: $k \leq j$.

In this case, by (1)

$$i > j \ge k$$
,
which implies $a_{ik} = 0$. Thus $a_{ik}b_{kj} = 0$.

In both cases, we obtain

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = 0, \text{ for } i > j.$$

We thus infer from Remark 3 that ${\cal C}$ is upper triangular.