EXAMPLES OF SECTIONS 2.3

Question 1. Find the inverse of

$$
A=\left[\begin{array}{lll}
3 & 5 & 6 \\
2 & 4 & 3 \\
2 & 3 & 5
\end{array}\right]
$$

Question 2. Solve the system

$$
A \vec{x}=\vec{b},
$$

where A is the matrix of question 1 and

$$
\vec{b}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]
$$

by using the inverse of A.
Question 3. For what value(s) of k does

$$
\left\{\begin{array}{r}
x+y+3 z=0 \\
2 x+4 y+5 z=0 \\
x-y+k^{2} z=0
\end{array}\right.
$$

have infinitely many solutions?

SOLUTIONS.

1. Write

$$
\left[\begin{array}{lllllll}
3 & 5 & 6 & \vdots & 1 & 0 & 0 \\
2 & 4 & 3 & \vdots & 0 & 1 & 0 \\
2 & 3 & 5 & \vdots & 0 & 0 & 1
\end{array}\right]
$$

and apply Gauss-Jordan elimination.

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc}
3 & 5 & 6 & \vdots & 1 & 0 & 0 \\
2 & 4 & 3 & \vdots & 0 & 1 & 0 \\
2 & 3 & 5 & \vdots & 0 & 0 & 1
\end{array}\right] \stackrel{A_{21}(-1)}{\sim}\left[\begin{array}{ccccccc}
1 & 1 & 3 & \vdots & 1 & -1 & 0 \\
2 & 4 & 3 & \vdots & 0 & 1 & 0 \\
2 & 3 & 5 & \vdots & 0 & 0 & 1
\end{array}\right] \quad \underset{ }{A_{32}(-1)}} \\
& {\left[\begin{array}{ccccccc}
1 & 1 & 3 & \vdots & 1 & -1 & 0 \\
0 & 1 & -2 & \vdots & 0 & 1 & -1 \\
2 & 3 & 5 & \vdots & 0 & 0 & 1
\end{array}\right] \stackrel{A_{13}(-2)}{\sim}\left[\begin{array}{ccccccc}
1 & 1 & 3 & \vdots & 1 & -1 & 0 \\
0 & 1 & -2 & \vdots & 0 & 1 & -1 \\
0 & 1 & -1 & \vdots & -2 & 2 & 1
\end{array}\right]} \\
& \stackrel{A_{23}(-1)}{\sim}\left[\begin{array}{ccccccc}
1 & 1 & 3 & \vdots & 1 & -1 & 0 \\
0 & 1 & -2 & \vdots & 0 & 1 & -1 \\
0 & 0 & 1 & \vdots & -2 & 1 & 2
\end{array}\right] \begin{array}{c}
A_{32}(2) \\
A_{31}(-3)
\end{array} \\
& {\left[\begin{array}{ccccccc}
1 & 1 & 0 & \vdots & 7 & -4 & -6 \\
0 & 1 & 0 & \vdots & -4 & 3 & 3 \\
0 & 0 & 1 & \vdots & -2 & 1 & 2
\end{array}\right] \stackrel{A_{21}(-1)}{\sim}\left[\begin{array}{ccccccc}
1 & 0 & 0 & \vdots & 11 & -7 & -9 \\
0 & 1 & 0 & \vdots & -4 & 3 & 3 \\
0 & 0 & 1 & \vdots & -2 & 1 & 2
\end{array}\right]}
\end{aligned}
$$

So

$$
A^{-1}=\left[\begin{array}{ccc}
11 & -7 & -9 \\
-4 & 3 & 3 \\
-2 & 1 & 2
\end{array}\right] .
$$

2.

$$
\vec{x}=A^{-1} \vec{b}=\left[\begin{array}{ccc}
11 & -7 & -9 \\
-4 & 3 & 3 \\
-2 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-14 \\
6 \\
2
\end{array}\right] .
$$

3. The augmented matrix of the system is

$$
\left[\begin{array}{ccccc}
1 & 1 & 3 & \vdots & 0 \\
2 & 4 & 5 & \vdots & 0 \\
1 & -1 & k^{2} & \vdots & 0
\end{array}\right]
$$

Then

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
1 & 1 & 3 & \vdots & 0 \\
2 & 4 & 5 & \vdots & 0 \\
1 & -1 & k^{2} & \vdots & 0
\end{array}\right] } & \sim\left[\begin{array}{ccccc}
1 & 1 & 3 & \vdots & 0 \\
0 & 2 & -1 & \vdots & 0 \\
0 & -2 & k^{2}-3 & \vdots & 0
\end{array}\right] \\
& \sim\left[\begin{array}{ccccc}
1 & 1 & 3 & \vdots & 0 \\
0 & 2 & -1 & \vdots & 0 \\
0 & 0 & k^{2}-4 & \vdots & 0
\end{array}\right] .
\end{aligned}
$$

If $k^{2}-4=0$, then A is singular. There are infinitely many solutions in this case. If $k^{2}-4 \neq 0$, then $A \sim I_{3}$. In this case, we only have the trivial solution.

Therefore, this homogeneous linear system has infinitely many solutions if and only if $k=2$ or $k=-2$.

Remark 0.1. We can also use rank to analyze this problem. When $k^{2}-4=$ $0, \operatorname{rank}(A)<3$. Then there are infinitely many solutions. When $k^{2}-4 \neq 0$, $\operatorname{rank}(A)=3$. In this case, we only have the trivial solution.

