EXAMPLES OF SECTIONS 3.1

Question 1. Suppose that A is an $n \times n$ matrix. Show that if there exists a matrix B such that $B A=I_{n}$, then $A B=I_{n}$.

SOLUTIONS.

1. First note that $B A=I_{n}$ implies that B is also an $n \times n$ matrix. Taking determinant on both sides of $B A=I_{n}$ yields

$$
|B||A|=|B A|=\left|I_{n}\right|=1 \Longrightarrow|A| \neq 0 .
$$

Recall that in class, we proved that this implies A is invertible. Thus there exists A^{-1} such that $A^{-1} A=A A^{-1}=I_{n}$. Now applying a similar argument we saw in Section 1.5, we have

$$
A^{-1}=I_{n} A^{-1}=B A A^{-1}=B I_{n}=B .
$$

Hence $A B=A A^{-1}=I_{n}$.

