EXAMPLES OF SECTIONS 4.3

Question 1. Consider the set V of all triples (x, y, z) such that x = 3. Is V a vector space?

Question 2. Find all the subspaces of \mathbb{R}^2 .

SOLUTIONS.

1. First notice that elements of V can be written as (3, y, z). In order for V to be a vector space, there must exist a zero element, i.e., an element $q = (q_1, q_2, q_3)$ such that $q \in V$ and q + u = u for every $u \in V$. But if $q \in V$ then it can be written as $q = (3, q_2, q_3)$, and it follows that

$$q + u = (3, q_2, q_3) + (3, u_2, u_3) = (6, q_2 + u_2, q_3 + u_3) \neq (3, u_2, u_3).$$

Therefore V it is not a vector space.

2. Assume that S is a subset of \mathbb{R}^2 .

Case 1: First notice that $S = \{(0,0)\}$ is a vector space.

Case 2: If there is a non-zero vector v in S, in order to be a subspace S should contain the straight line $\{tv : t \in \mathbb{R}\}$.

Subcase 2(a): If all vectors of \mathbb{R}^2 is, on the other hand, contained in $\{tv : t \in \mathbb{R}\}$, then $S = \{tv : t \in \mathbb{R}\}$ is a straight line through the origin.

Subcase 2(b): If there is another non-zero vector $u \in S$ with

$$u \notin \{tv : t \in \mathbb{R}\},\$$

then u, v are not parallel. In this case, span $\{u, v\} = \mathbb{R}^2$. But by the closedness under vector addition and scalar multiplication, in order to be a subspace, S will contain span $\{u, v\} = \mathbb{R}^2$, thus $S = \mathbb{R}^2$.

To sum up, all the subspaces of \mathbb{R}^2 are $\{(0,0)\}$, straight lines through the origin and \mathbb{R}^2 itself.

Remark 0.1. Via a similar argument, we can prove that

- (i) all the subspaces of \mathbb{R} are $\{(0,0)\}$ and \mathbb{R} itself.
- (ii) all the subspaces of \mathbb{R}^3 are $\{(0,0)\}$, straight lines through the origin, planes through the origin and \mathbb{R}^3 itself.