EXAMPLES OF SECTION 7.1

Question 1. Find the eigenvalues and eigenvectors of the following matrices:
(a)

$$
A=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] .
$$

(b)

$$
B=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]
$$

Solutions.

a. Start with the characteristic polynomial

$$
\operatorname{det}\left[\begin{array}{cc}
\lambda-3 & 2 \\
-2 & \lambda+2
\end{array}\right]=(\lambda-3)(2+\lambda)+4=0,
$$

whose solutions are the eigenvalues

$$
\lambda_{1}=2, \lambda_{2}=-1 .
$$

Let us find the corresponding eigenvectors.

$$
\underline{\lambda_{1}=2}:
$$

$$
\left[\begin{array}{cc}
\lambda_{1}-3 & 2 \\
-2 & \lambda_{1}+2
\end{array}\right]=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 4
\end{array}\right]
$$

hence we want to solve

$$
\left[\begin{array}{ll}
-1 & 2 \\
-2 & 4
\end{array}\right] v_{1}=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We find

$$
v_{1}=s\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

As we saw in class, we can drop the free variable s and write

$$
v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

$$
\underline{\lambda_{2}=-1}:
$$

$$
\left[\begin{array}{cc}
\lambda_{2}-3 & 2 \\
-2 & \lambda_{2}+2
\end{array}\right]=\left[\begin{array}{cc}
-4 & 2 \\
-2 & 1
\end{array}\right],
$$

hence we want to solve

$$
\left[\begin{array}{ll}
-4 & 2 \\
-2 & 1
\end{array}\right] v_{2}=\left[\begin{array}{ll}
-4 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We find

$$
v_{2}=s\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Again, we drop the free variable s, obtaining

$$
v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Summarizing, we have the following eigenvalues and eigenvectors:

$$
\lambda_{1}=2, v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \lambda_{2}=-1, v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

b. Start with the characteristic polynomial

$$
\operatorname{det}\left[\begin{array}{ccc}
\lambda-1 & -1 & -2 \\
-1 & \lambda-2 & -1 \\
-2 & -1 & \lambda-1
\end{array}\right]=(\lambda-1)((2-\lambda)(1-\lambda)-1)+(1-\lambda-2)-2(1-2(2-\lambda))=0 .
$$

Multiplying both sides by -1 and rearranging, we obtain

$$
\begin{gathered}
(2-\lambda)(1-\lambda)^{2}-1+\lambda+1+\lambda-6+4 \lambda=(2-\lambda)(1-\lambda)^{2}-6(1-\lambda) \\
=(1-\lambda)((2-\lambda)(1-\lambda)-6)=0 .
\end{gathered}
$$

The eigenvalues are now easily found to be

$$
\lambda_{1}=4, \lambda_{2}=-1, \lambda_{3}=1
$$

Let us find the corresponding eigenvectors.
$\underline{\lambda_{1}=4:}$

$$
\left[\begin{array}{ccc}
\lambda_{1}-1 & -1 & -2 \\
-1 & \lambda_{1}-2 & -1 \\
-2 & -1 & \lambda_{1}-1
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & -2 \\
-1 & 2 & -1 \\
-2 & -1 & 3
\end{array}\right],
$$

so we need to solve

$$
\left[\begin{array}{ccc}
3 & -1 & -2 \\
-1 & 2 & -1 \\
-2 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Solving the system and ignoring the free variable as before we obtain

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Repeating the process for $\lambda_{2}=-1, \lambda_{3}=1$ we find, respectively

$$
v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

Summarizing, we have the following eigenvalues with corresponding eigenvectors

$$
\lambda_{1}=4, v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \lambda_{2}=-1, v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \lambda_{3}=1, v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

