EXERCISES OF CHAPTER 7

Question 1. A is an $n \times n$ matrix. Which of the following must be true?

- a If all the eigenvalues of A are 1, then A is similar to the diagonal matrix.
- b If all the eigenvalues of A are 1 and A is symmetric, then A is similar to the diagonal matrix.
- c If all the eigenvalues of A are distinct, then the corresponding eigenvectors form a basis for \mathbb{R}^n .
- d If all the eigenvalues of A are distinct, then the corresponding eigenvectors form an orthonormal basis for \mathbb{R}^n .
- e If all the eigenvalues of A are distinct and A is symmetric, then the corresponding eigenvectors is an orthogonal set.

Question 2. Suppose A is a symmetric 2×2 matrix with two distinct eigenvalues λ_1, λ_2 . Which of the following statements MUST be true?

- (i) A is similar to $\begin{bmatrix} \lambda_2 & 0 \\ 0 & \lambda_1 \end{bmatrix}$.
- (ii) A is diagonalizable.
- (iii) If v_1 is an eigenvector with respect to λ_1 and v_2 is an eigenvector with respect to λ_2 , then $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 .
- (iii) If v_1 is an eigenvector with respect to λ_1 and v_2 is an eigenvector with respect to λ_2 , then $\{v_1, v_2\}$ is an orthonormal of \mathbb{R}^2 .

Question 3. Find a matrix P such that $P^{-1}AP$ is a diagonal matrix, where

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}.$$