EXERCISES OF CHAPTER 7

Question 1. A is an $n \times n$ matrix. Which of the following must be true?
a If all the eigenvalues of A are 1 , then A is similar to the diagonal matrix.
b If all the eigenvalues of A are 1 and A is symmetric, then A is similar to the diagonal matrix.
c If all the eigenvalues of A are distinct, then the corresponding eigenvectors form a basis for \mathbb{R}^{n}.
d If all the eigenvalues of A are distinct, then the corresponding eigenvectors form an orthonormal basis for \mathbb{R}^{n}.
e If all the eigenvalues of A are distinct and A is symmetric, then the corresponding eigenvectors is an orthogonal set.

Question 2. Suppose A is a symmetric 2×2 matrix with two distinct eigenvalues λ_{1}, λ_{2}. Which of the following statements MUST be true?
(i) A is similar to $\left[\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \lambda_{1}\end{array}\right]$.
(ii) A is diagonalizable.
(iii) If v_{1} is an eigenvector with respect to λ_{1} and v_{2} is an eigenvector with respect to λ_{2}, then $\left\{v_{1}, v_{2}\right\}$ is a basis of \mathbb{R}^{2}.
(iii) If v_{1} is an eigenvector with respect to λ_{1} and v_{2} is an eigenvector with respect to λ_{2}, then $\left\{v_{1}, v_{2}\right\}$ is an orthonormal of \mathbb{R}^{2}.

Question 3. Find a matrix P such that $P^{-1} A P$ is a diagonal matrix, where

$$
A=\left[\begin{array}{ccc}
4 & 1 & -1 \\
2 & 5 & -2 \\
1 & 1 & 2
\end{array}\right]
$$

