EXERCISES OF CHAPTER 5

Question 1. For what value of k is $(1,2,-1)$ orthogonal to $\left(k^{3}, k^{2}, 1\right)$.

Question 2. Suppose the vector $v=(a, b, c, d)$ is orthogonal to $(1,0,-1,1)$, $(1,-1,0,-1)$ and $(0,1,0,2)$. Then which of one of a, b, c, d must always be zero:
A. a
B. b
C. c
D. d
E. None of them.

Question 3. Let W be the subspace of \mathbb{R}^{3} spanned by $(1,2,1),(0, k, 1),(2,4, k)$. For what value of k, is the dimension of W^{\perp} nonzero?

Question 4. Consider the subspace W of \mathbb{R}^{4} spanned by $(1,1,1,1),(0,0,3,1)$, $(-1,-1,2,0),(1,1,4,2)$. What is the dimension of W^{\perp} ?

Question 5. Let W denote the vector space spanned by the vectors

$$
u_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right]
$$

and let $v=\left[\begin{array}{l}2 \\ 1 \\ 3 \\ 6\end{array}\right]$. Find the distance from v to W.

Question 6. Let $S=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis for \mathbb{R}^{3}. Assume that we are given an inner product (\cdot, \cdot) on \mathbb{R}^{3} such that the matrix of this inner product with respect to the standard basis S is

$$
C=\left[\begin{array}{lll}
3 & 3 & 0 \\
3 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

Under this inner product, what is the angle between e_{1} and e_{2} ?

