EXERCISES OF CHAPTER 5

Question 1. For what value of k is (1, 2, -1) orthogonal to $(k^3, k^2, 1)$.

Question 2. Suppose the vector v = (a, b, c, d) is orthogonal to (1, 0, -1, 1), (1, -1, 0, -1) and (0, 1, 0, 2). Then which of one of a, b, c, d must always be zero:

A. a
B. b
C. c
D. d

E. None of them.

Question 3. Let W be the subspace of \mathbb{R}^3 spanned by (1, 2, 1), (0, k, 1), (2, 4, k). For what value of k, is the dimension of W^{\perp} nonzero?

Question 4. Consider the subspace W of \mathbb{R}^4 spanned by (1, 1, 1, 1), (0, 0, 3, 1), (-1, -1, 2, 0), (1, 1, 4, 2). What is the dimension of W^{\perp} ?

Question 5. Let W denote the vector space spanned by the vectors

$$u_1 = \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix}$$

and let $v = \begin{bmatrix} 2\\1\\3\\6 \end{bmatrix}$. Find the distance from v to W.

Question 6. Let $S = \{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 . Assume that we are given an inner product (\cdot, \cdot) on \mathbb{R}^3 such that the matrix of this inner product with respect to the standard basis S is

$$C = \begin{bmatrix} 3 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Under this inner product, what is the angle between e_1 and e_2 ?