MATRICES AND VECTOR SPACES REVIEW

Suppose that A is an $n \times n$ matrix. Then the followings are equivalent:

- A is invertible.
- There is an $n \times n$ matrix B such that $BA = I_n$.
- There is an $n \times n$ matrix B such that $AB = I_n$.
- A^T is invertible.
- $\operatorname{rank}(A) = \operatorname{n=dim}(\operatorname{colspace}(A)) = \operatorname{dim}(\operatorname{rowspace}(A)).$
- Ax = 0 has only trivial solution.
- The null space of A is $\{0\}$.
- For any b in \mathbb{R}^n , Ax = b has a unique solution.
- \bullet ref(A) is an upper triangular matrix with identical 1 on the main diagonal.
- $\operatorname{rref}(A)=I_n$.
- The columns of A are linearly independent.
- The rows of A are linearly independent.
- The columns of A form a spanning set of \mathbb{R}^n .
- The rows of A form a spanning set of \mathbb{R}^n .
- The columns of A form a basis for \mathbb{R}^n .
- The rows of A form a basis for \mathbb{R}^n .
- $\operatorname{colspace}(A) = \operatorname{rowspace}(A) = \mathbb{R}^n$.
- If $\{v_1, \dots, v_n\}$ is a basis (viewed as column vectors) for \mathbb{R}^n , then $\{Av_1, \dots, Av_n\}$ is again a basis for \mathbb{R}^n .
- $\det A \neq 0$.
- All eigenvalues of A are nonzero.

Suppose that A is an $m \times n$ matrix, not necessarily square. Then the followings are true.

• $\operatorname{rank}(A) \leq \min\{m, n\}.$

- If m < n, then
 - -Ax = 0 must have non-trivial solution;
 - the null space of A is non-trivial.
- If m > n, then
 - -Ax = b is not consistent for all b in \mathbb{R}^m ;
 - the columns of A cannot be a spanning set of \mathbb{R}^m ;
 - colspace(A) $\neq \mathbb{R}^m$.
- If rank(A) = m, then
 - $-m \leq n$
 - -Ax = b must have at least one solution;
 - rowspace(A) has dimension m;
 - the rows of A are linearly independent;
 - $-\operatorname{colspace}(A)$ has dimension m;
 - the null space of A has dimension n-m.
- If rank(A) = n, then
 - $-n \leq m$
 - -Ax = b either has no solution or only one solution;
 - rowspace(A) has dimension n;
 - $-\operatorname{colspace}(A)$ has dimension n;
 - the columns of A are linearly independent;
 - the null space of A has dimension 0;