PROOF FOR MATRIX OF INNER PRODUCT

Suppose that (\cdot, \cdot) is an inner product in \mathbb{R}^{n}.
We first compute the expression for the product of three matrices. Let $u=\left[u_{i}\right], v=\left[v_{j}\right]$ be two n-column vectors and $C=\left[c_{i j}\right]$ be an $n \times n$ matrix. Then

$$
\begin{aligned}
u^{T} C v & =\left(u^{T} C\right) v=\left[\sum_{i=1}^{n} u_{i} C_{i 1}, \sum_{i=1}^{n} u_{i} C_{i 2}, \cdots, \sum_{i=1}^{n} u_{i} C_{i n}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} C_{i j} v_{j} .
\end{aligned}
$$

Now we take an arbitrary basis $S=\left\{s_{1}, \cdots, s_{n}\right\}$ for \mathbb{R}^{n}. Write any two vector u, v as linear combinations of S :

$$
\begin{aligned}
& u=u_{1} s_{1}+\cdots+u_{n} s_{n} \\
& v=v_{1} s_{1}+\cdots v_{n} s_{n} .
\end{aligned}
$$

Let $C=\left[c_{i j}\right]_{n \times n}$ with $c_{i j}=\left(a_{i}, a_{j}\right)$. Then

$$
\begin{aligned}
(u, v) & =\left(u_{1} s_{1}+\cdots+u_{n} s_{n}, v\right)=\sum_{i=1}^{n} u_{i}\left(s_{i}, v\right) \\
& =\sum_{i=1}^{n} u_{i}\left(s_{i}, v_{1} s_{1}+\cdots v_{n} s_{n}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i}\left(s_{i}, s_{j}\right) v_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} c_{i j} v_{j} \\
& =\left[u_{1}, \cdots, u_{n}\right] C\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] .
\end{aligned}
$$

This matrix $C=\left[\left(v_{i}, v_{j}\right)\right]$ is called the matrix of inner product (\cdot, \cdot) with respect to the basis $S=\left\{s_{1}, \cdots, s_{n}\right\}$.

Remark 0.1.
(i) The matrix $C=\left[\left(v_{i}, v_{j}\right)\right]$ is symmetric. Moreover, it satisfies $u^{T} C u \geq$ 0 for any vector $u \in \mathbb{R}^{n}$, and $u^{T} C u=0$ only if $u=0$. Such a matrix is called positive definite.
(ii) If $S=\left\{s_{1}, \cdots, s_{n}\right\}$ is an orthonormal basis, then $C=I_{n}$.

