PROOF FOR MATRIX OF INNER PRODUCT

Suppose that (-,-) is an inner product in R™.

We first compute the expression for the product of three matrices. Let
u = [u;], v = [vj] be two n-column vectors and C' = [¢;;] be an n x n matrix.
Then
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Now we take an arbitrary basis S = {s1,---,s,} for R”. Write any two
vector u, v as linear combinations of S:
U =uUr81 + -+ upsp
V=10181 + UnSn.
Let C = [Cij]nxn with Cij = (ai,aj). Then
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This matrix C = [(v;,v;)] is called the matrix of inner product (-,-) with
respect to the basis S = {s1, - ,sp}.

Remark 0.1.



PROOF FOR MATRIX OF INNER PRODUCT

The matriz C = [(v;,v;)] is symmetric. Moreover, it satisfies ul Cu >
0 for any vector u € R™, and u" Cu = 0 only if u = 0. Such a matriz

is called positive definite.

If S ={s1,--- ,sn} is an orthonormal basis, then C = I,,.



