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Data as points in R”
Assume that we have a collection of data

X11 X21
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in R".

Figure: A collection data in R"”
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Data as points in R”

Without loss of generality, we may assume that the mean of this collection of data

0
. 1z 0
X:;;X,-: E

0

Otherwise, we just translate these data to have 0 mean by looking at
S={X1— X, Xo =X, , Xp — X}.

Figure: A collection data in R"
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Variance of Data
Question 1: How can we determine a subspace that S is close to?

Some examples: http://setosa.io/ev/principal-component-analysis/
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Variance of Data

Question 1: How can we determine a subspace that S is close to?
Some examples: http://setosa.io/ev/principal-component-analysis/
Question 2: How to determine the direction representing the largest variance of S7

Recall if v € R" is a unit vector, then the orthogonal projection of X; on the
direction given by v, i.e. span{v}, is

Proj, X; = (X;,v)v = ¢v,

that is, ¢; is the coordinate of X; in the direction of v.

Figure: Orthogonal projection
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Variance of Data

Answer: the direction representing the largest variance of S is given by the unit
vector v that can maximize

m

m
E 2= E (X;,v)2  among all unit vector v,
i—1

i=1

or equivalently to maximize

m m
E Ci2 = E (X, v)2 among all unit vector v.
i=1 i=1
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Optimization Problem

Question 3: How to find such v to this optimization problem?

Let .
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Optimization Problem

Question 3: How to find such v to this optimization problem?

Let

XlT

X7 X1 X122 - Xip

2
Amxn = . =

X,Z,' Xml  Xm2 Xmn
Recall (X;,v) = X;"v. So

XlTV (Xl, V) C1

XTV (X2, V) C2

AV = 2 = ) =
XTv (Xm, v) Cm
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Optimization Problem

Question 3: How to find such v to this optimization problem?

Let
XlT
X7 X1 X122 - Xip
2
Am><n - . -
X,Z,' Xml Xm2 °°  Xmn
Recall (X;,v) = X;"v. So
XlTV (Xl, V) (o}
X v (X2, v) G
Av= 2 =TT =]
anv (Xm, v) Cm
Therefore,
Z = (Av,Av) =vTATAv=vT C v
—~—
i=1 =ATA
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Optimization Problem

C is an n x n symmetric matrix (consider why), and thus is diagonalizable.
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Optimization Problem

C is an n x n symmetric matrix (consider why), and thus is diagonalizable.

Assume that C has eigenvalues
A1 > X > = A,
Moreover, C has an orthonormal basis of eigenvectors

Vi, Vo, Vp such that Cv; = \;v;.
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Optimization Problem

C is an n x n symmetric matrix (consider why), and thus is diagonalizable.
Assume that C has eigenvalues
A1 > X > = A,
Moreover, C has an orthonormal basis of eigenvectors
Vi, Vo, Vp such that Cv; = \;v;.

In particular,
V,-TCV,' = )\,'V,-TV,' = )\,'HV,'||2 = )\,'.
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Optimization Problem

C is an n x n symmetric matrix (consider why), and thus is diagonalizable.
Assume that C has eigenvalues
AL> X > 2> A
Moreover, C has an orthonormal basis of eigenvectors
Vi, Vo, Vp such that Cv; = \;v;.

In particular,
V,-TCV,' = )\,'V,-TV,' = )\,'HV,'”2 = )\,'.

Claim: vy represents the direction of the largest variance of S.
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Optimization Problem

Proof.
If u=ajvi +ayv---+ a,v, is a unit vector in R”, i.e.
1=|u?=a2+a2+ -+ a2, (consider why?)

then

UTCU = (81V1 +avy -+ a,,v,,)T ()\131V1 + Xoasvp - - - + )\ganvn)

ul Cu

:/\13§+>\Qa§+~~/\na,2,
§A13§+>\13§+-~-)\13,2,
=M(a2+a5+---+a%)

=il

=\

Yuanzhen Shao PCA 8 /13



Optimization Problem

Thus,
v; = the direction of the largest variance of S.
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Optimization Problem

Thus,
v; = the direction of the largest variance of S.

Similarly, we can show that
@ v, = the direction of the largest variance of S in span{v; }*
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Optimization Problem
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Optimization Problem

Thus,
v; = the direction of the largest variance of S.
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Optimization Problem

Thus,
v; = the direction of the largest variance of S.
Similarly, we can show that
@ v, = the direction of the largest variance of S in span{v; }*

@ v3 = the direction of the largest variance of S in span{vy, vo}+
@ etc.

In the end, we can just drop the directions corresponding to very small eigenvalues
of C.
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PCA in digital images: an example by Vaclav Hlava¢

@ Let us consider a 321 x 261 image.

1

@ Such an image can be considered as a vector in R" with
n =321 x 261 = 83781.
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PCA in digital images: an example by Vaclav Hlava¢

@ Using PCA method, we can determine a four-dimensional subspace W in R”
such that all 32 images are close to W.
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PCA in digital images: an example by Vaclav Hlava¢

@ Using PCA method, we can determine a four-dimensional subspace W in R”
such that all 32 images are close to W.

@ We can find four basis vectors for W, which can be displayed as images:
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PCA in digital images: an example by Vaclav Hlava¢

@ Using PCA method, we can determine a four-dimensional subspace W in R”

such that all 32 images are close to W.
@ We can find four basis vectors for W, which can be displayed as images:

@ We can reconstruct all 32 images by using linear combinations of these four

basis images, e.g.

where g; = 0.078, g» = 0.062, g3 = —0.182, g4 = 0.179.
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