Principal Component Analysis

Yuanzhen Shao

MA 26500

Data as points in \mathbb{R}^{n}
Assume that we have a collection of data

$$
S=\left\{X_{1}=\left[\begin{array}{c}
x_{11} \\
x_{12} \\
\vdots \\
x_{1 n}
\end{array}\right], X_{2}=\left[\begin{array}{c}
x_{21} \\
x_{22} \\
\vdots \\
x_{2 n}
\end{array}\right], \cdots, X_{m}=\left[\begin{array}{c}
x_{m 1} \\
x_{m 2} \\
\vdots \\
x_{m n}
\end{array}\right]\right\}
$$

in \mathbb{R}^{n}.

Figure: A collection data in \mathbb{R}^{n}

Data as points in \mathbb{R}^{n}

Without loss of generality, we may assume that the mean of this collection of data

$$
\bar{X}=\frac{1}{m} \sum_{i=1}^{m} X_{i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

Otherwise, we just translate these data to have 0 mean by looking at

$$
\bar{S}=\left\{X_{1}-\bar{X}, X_{2}-\bar{X}, \cdots, X_{m}-\bar{X}\right\} .
$$

Figure: A collection data in \mathbb{R}^{n}

Variance of Data
Question 1: How can we determine a subspace that S is close to?
Some examples: http://setosa.io/ev/principal-component-analysis/

Variance of Data
Question 1: How can we determine a subspace that S is close to?
Some examples: http://setosa.io/ev/principal-component-analysis/
Question 2: How to determine the direction representing the largest variance of S ?

Variance of Data

Question 1: How can we determine a subspace that S is close to?
Some examples: http://setosa.io/ev/principal-component-analysis/
Question 2: How to determine the direction representing the largest variance of S ?
Recall if $v \in \mathbb{R}^{n}$ is a unit vector, then the orthogonal projection of X_{i} on the direction given by v, i.e. $\operatorname{span}\{v\}$, is

$$
\operatorname{Proj}_{v} X_{i}=\left(X_{i}, v\right) v=c_{i} v,
$$

that is, c_{i} is the coordinate of X_{i} in the direction of v.

Figure: Orthogonal projection

Variance of Data

Answer: the direction representing the largest variance of S is given by the unit vector v that can maximize

$$
\sqrt{\sum_{i=1}^{m} c_{i}^{2}}=\sqrt{\sum_{i=1}^{m}\left(X_{i}, v\right)^{2}} \quad \text { among all unit vector } v
$$

or equivalently to maximize

$$
\sum_{i=1}^{m} c_{i}^{2}=\sum_{i=1}^{m}\left(X_{i}, v\right)^{2} \quad \text { among all unit vector } v .
$$

Optimization Problem

Question 3: How to find such v to this optimization problem?
Let

$$
A_{m \times n}=\left[\begin{array}{c}
X_{1}^{T} \\
X_{2}^{T} \\
\vdots \\
X_{m}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right]
$$

Optimization Problem

Question 3: How to find such v to this optimization problem?
Let

$$
A_{m \times n}=\left[\begin{array}{c}
X_{1}^{T} \\
X_{2}^{T} \\
\vdots \\
X_{m}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right]
$$

Recall $\left(X_{i}, v\right)=X_{i}^{\top} v$. So

$$
A v=\left[\begin{array}{c}
X_{1}^{T} v \\
X_{2}^{T} v \\
\vdots \\
X_{m}^{T} v
\end{array}\right]=\left[\begin{array}{c}
\left(X_{1}, v\right) \\
\left(X_{2}, v\right) \\
\vdots \\
\left(X_{m}, v\right)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right] .
$$

Optimization Problem

Question 3: How to find such v to this optimization problem?
Let

$$
A_{m \times n}=\left[\begin{array}{c}
X_{1}^{T} \\
X_{2}^{T} \\
\vdots \\
X_{m}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right]
$$

Recall $\left(X_{i}, v\right)=X_{i}^{\top} v$. So

$$
A v=\left[\begin{array}{c}
X_{1}^{T} v \\
X_{2}^{T} v \\
\vdots \\
X_{m}^{T} v
\end{array}\right]=\left[\begin{array}{c}
\left(X_{1}, v\right) \\
\left(X_{2}, v\right) \\
\vdots \\
\left(X_{m}, v\right)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right] .
$$

Therefore,

$$
\sum_{i=1}^{m} c_{i}^{2}=(A v, A v)=v^{T} A^{T} A v=v^{T} \underbrace{C}_{=A^{\top} A} v
$$

Optimization Problem

C is an $n \times n$ symmetric matrix (consider why), and thus is diagonalizable.

Optimization Problem

C is an $n \times n$ symmetric matrix (consider why), and thus is diagonalizable.
Assume that C has eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Moreover, C has an orthonormal basis of eigenvectors

$$
v_{1}, v_{2}, \cdots v_{n} \quad \text { such that } C v_{i}=\lambda_{i} v_{i} .
$$

Optimization Problem

C is an $n \times n$ symmetric matrix (consider why), and thus is diagonalizable.
Assume that C has eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Moreover, C has an orthonormal basis of eigenvectors

$$
v_{1}, v_{2}, \cdots v_{n} \quad \text { such that } C v_{i}=\lambda_{i} v_{i} .
$$

In particular,

$$
v_{i}^{\top} C v_{i}=\lambda_{i} v_{i}^{\top} v_{i}=\lambda_{i}\left\|v_{i}\right\|^{2}=\lambda_{i} .
$$

Optimization Problem

C is an $n \times n$ symmetric matrix (consider why), and thus is diagonalizable.
Assume that C has eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Moreover, C has an orthonormal basis of eigenvectors

$$
v_{1}, v_{2}, \cdots v_{n} \quad \text { such that } C v_{i}=\lambda_{i} v_{i}
$$

In particular,

$$
v_{i}^{\top} C v_{i}=\lambda_{i} v_{i}^{\top} v_{i}=\lambda_{i}\left\|v_{i}\right\|^{2}=\lambda_{i} .
$$

Claim: v_{1} represents the direction of the largest variance of S.

Optimization Problem

Proof.

If $u=a_{1} v_{1}+a_{2} v_{2} \cdots+a_{n} v_{n}$ is a unit vector in \mathbb{R}^{n}, i.e.

$$
1=\|u\|^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}, \quad \text { (consider why?) }
$$

then

$$
\begin{aligned}
u^{T} C u & =\underbrace{\left(a_{1} v_{1}+a_{2} v_{2} \cdots+a_{n} v_{n}\right)^{T}}_{u^{T}} \underbrace{\left(\lambda_{1} a_{1} v_{1}+\lambda_{2} a_{2} v_{2} \cdots+\lambda_{2} a_{n} v_{n}\right)}_{C u} \\
& =\lambda_{1} a_{1}^{2}+\lambda_{2} a_{2}^{2}+\cdots \lambda_{n} a_{n}^{2} \\
& \leq \lambda_{1} a_{1}^{2}+\lambda_{1} a_{2}^{2}+\cdots \lambda_{1} a_{n}^{2} \\
& =\lambda_{1} \underbrace{\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)}_{=1} \\
& =\lambda_{1} .
\end{aligned}
$$

Optimization Problem

Thus,

$$
v_{1}=\text { the direction of the largest variance of } S .
$$

Optimization Problem

Thus,

$$
v_{1}=\text { the direction of the largest variance of } S .
$$

Similarly, we can show that

- $v_{2}=$ the direction of the largest variance of S in $\operatorname{span}\left\{v_{1}\right\}^{\perp}$

Optimization Problem

Thus,

$$
v_{1}=\text { the direction of the largest variance of } S .
$$

Similarly, we can show that

- $v_{2}=$ the direction of the largest variance of S in $\operatorname{span}\left\{v_{1}\right\}^{\perp}$
- $v_{3}=$ the direction of the largest variance of S in $\operatorname{span}\left\{v_{1}, v_{2}\right\}^{\perp}$

Optimization Problem

Thus,

$$
v_{1}=\text { the direction of the largest variance of } S .
$$

Similarly, we can show that

- $v_{2}=$ the direction of the largest variance of S in $\operatorname{span}\left\{v_{1}\right\}^{\perp}$
- $v_{3}=$ the direction of the largest variance of S in $\operatorname{span}\left\{v_{1}, v_{2}\right\}^{\perp}$
- etc.

Optimization Problem

Thus,

$$
v_{1}=\text { the direction of the largest variance of } S \text {. }
$$

Similarly, we can show that

- $v_{2}=$ the direction of the largest variance of S in $\operatorname{span}\left\{v_{1}\right\}^{\perp}$
- $v_{3}=$ the direction of the largest variance of S in $\operatorname{span}\left\{v_{1}, v_{2}\right\}^{\perp}$
- etc.

In the end, we can just drop the directions corresponding to very small eigenvalues of C.

PCA in digital images: an example by Václav Hlaváč

- Let us consider a 321×261 image.

- Such an image can be considered as a vector in \mathbb{R}^{n} with $n=321 \times 261=83781$.

What if we have 32 instances of images?

PCA in digital images: an example by Václav Hlaváč

- Using PCA method, we can determine a four-dimensional subspace W in \mathbb{R}^{n} such that all 32 images are close to W.

PCA in digital images: an example by Václav Hlaváč

- Using PCA method, we can determine a four-dimensional subspace W in \mathbb{R}^{n} such that all 32 images are close to W.
- We can find four basis vectors for W, which can be displayed as images:

PCA in digital images: an example by Václav Hlaváč

- Using PCA method, we can determine a four-dimensional subspace W in \mathbb{R}^{n} such that all 32 images are close to W.
- We can find four basis vectors for W, which can be displayed as images:

- We can reconstruct all 32 images by using linear combinations of these four basis images, e.g.

where $q_{1}=0.078, q_{2}=0.062, q_{3}=-0.182, q_{4}=0.179$.

Reconstruction fidelity, 4 components

References

围 Václav Hlaváč，Principal Component Analysis Application to images
䡒 http：／／setosa．io／ev／principal－component－analysis／
葍 http：／／www．visiondummy．com／2014／04／ geometric－interpretation－covariance－matrix／

