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Data as points in Rn

Assume that we have a collection of data

S = {X1 =


x11
x12

...
x1n

 ,X2 =


x21
x22

...
x2n

 , · · · ,Xm =


xm1

xm2

...
xmn

}
in Rn.

Figure: A collection data in Rn
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Data as points in Rn

Without loss of generality, we may assume that the mean of this collection of data

X̄ =
1

m

m∑
i=1

Xi =


0
0
...
0

 .
Otherwise, we just translate these data to have 0 mean by looking at

S̄ = {X1 − X̄ ,X2 − X̄ , · · · ,Xm − X̄}.

Figure: A collection data in Rn
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Variance of Data

Question 1: How can we determine a subspace that S is close to?

Some examples: http://setosa.io/ev/principal-component-analysis/

Question 2: How to determine the direction representing the largest variance of S?

Recall if v ∈ Rn is a unit vector, then the orthogonal projection of Xi on the
direction given by v , i.e. span{v}, is

ProjVXi = (Xi , v)v = civ ,

that is, ci is the coordinate of Xi in the direction of v .

Figure: Orthogonal projection
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Variance of Data

Answer: the direction representing the largest variance of S is given by the unit
vector v that can maximize√√√√ m∑

i=1

c2i =

√√√√ m∑
i=1

(Xi , v)2 among all unit vector v ,

or equivalently to maximize

m∑
i=1

c2i =
m∑
i=1

(Xi , v)2 among all unit vector v .

Yuanzhen Shao PCA 5 / 13



Optimization Problem

Question 3: How to find such v to this optimization problem?

Let

Am×n =


XT
1

XT
2
...

XT
m

 =

x11 x12 · · · x1n
...

...
...

...
xm1 xm2 · · · xmn



Recall (Xi , v) = XT
i v . So

Av =


XT
1 v

XT
2 v
...

XT
m v

 =


(X1, v)
(X2, v)

...
(Xm, v)

 =


c1
c2
...
cm

 .
Therefore,

m∑
i=1

c2i = (Av ,Av) = vTATAv = vT C︸︷︷︸
=ATA

v
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Optimization Problem

C is an n × n symmetric matrix (consider why), and thus is diagonalizable.

Assume that C has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn.

Moreover, C has an orthonormal basis of eigenvectors

v1, v2, · · · vn such that Cvi = λivi .

In particular,
vT
i Cvi = λiv

T
i vi = λi‖vi‖2 = λi .

Claim: v1 represents the direction of the largest variance of S .
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Optimization Problem

Proof.
If u = a1v1 + a2v2 · · ·+ anvn is a unit vector in Rn, i.e.

1 = ‖u‖2 = a21 + a22 + · · ·+ a2n, (consider why?)

then

uTCu = (a1v1 + a2v2 · · ·+ anvn)T︸ ︷︷ ︸
uT

(λ1a1v1 + λ2a2v2 · · ·+ λ2anvn)︸ ︷︷ ︸
Cu

= λ1a
2
1 + λ2a

2
2 + · · ·λna2n

≤ λ1a21 + λ1a
2
2 + · · ·λ1a2n

= λ1 (a21 + a22 + · · ·+ a2n)︸ ︷︷ ︸
=1

= λ1.
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Optimization Problem

Thus,
v1 = the direction of the largest variance of S .

Similarly, we can show that

v2 = the direction of the largest variance of S in span{v1}⊥

v3 = the direction of the largest variance of S in span{v1, v2}⊥

etc.

In the end, we can just drop the directions corresponding to very small eigenvalues
of C .
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PCA in digital images: an example by Václav Hlaváč

Let us consider a 321× 261 image.

Such an image can be considered as a vector in Rn with
n = 321× 261 = 83781.
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What if we have 32 instances of images?
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PCA in digital images: an example by Václav Hlaváč

Using PCA method, we can determine a four-dimensional subspace W in Rn

such that all 32 images are close to W .

We can find four basis vectors for W , which can be displayed as images:

We can reconstruct all 32 images by using linear combinations of these four
basis images, e.g.

where q1 = 0.078, q2 = 0.062, q3 = −0.182, q4 = 0.179.
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Reconstruction fidelity, 4 components
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