THE PROOFS FOR PROPERTY (5) OF MATRIX MULTIPLICATION IN SECTION 1.3

Question 1. Prove $(A B)^{T}=B^{T} A^{T}$. Here A is an $m \times n$ matrix and B is of size $n \times p$.

Proof. Let $C=\left[c_{i j}\right]=(A B)^{T}$. Then

$$
c_{i j}=(A B)_{j i}=\sum_{k=1}^{n} a_{j k} b_{k i}=\sum_{k=1}^{n} a_{k j}^{T} b_{i k}^{T}=\sum_{k=1}^{n} b_{i k}^{T} a_{k j}^{T}=\left(B^{T} A^{T}\right)_{i j},
$$

where $(A B)_{j i}$ denotes the (i, j)-th entry of $A B,\left(B^{T} A^{T}\right)_{i j}$ is (i, j)-th entry of $\left(B^{T} A^{T}\right) . a_{i j}^{T}$ and $b_{i j}^{T}$ stand for the (i, j)-th entry of A^{T} and B^{T} respectively. We have used the fact

$$
a_{i j}=a_{j i}^{T}
$$

in the above equality.

