PROOF FOR SKEW-SYMMETRIC MATRICES

Example 1. Suppose $A_{n \times n} = [a_{ij}]$ is a skew symmetric matrix. Prove that $a_{ii} = 0$ for $i = 1, 2, \dots, n$ and $a_{ij} = -a_{ji}$ for $i \neq j$.

Solution. We denote the (i, j)-th entry of A^T by a_{ij}^T . We have shown in class that

$$a_{ij}^T = a_{ji}.$$

Together with $A^T = -A$, this yields

$$a_{ij} = a_{ji}^T = -a_{ji}$$

for all $i, j = 1, 2, \dots, n$. The second equality comes from the definition of $A^T = -A$. When i = j, in particular, we have

$$a_{ii} = -a_{ii} \Longrightarrow a_{ii} = 0.$$

◀