PROOF FOR SKEW-SYMMETRIC MATRICES

Example 1. Suppose $A_{n \times n}=\left[a_{i j}\right]$ is a skew symmetric matrix. Prove that $a_{i i}=0$ for $i=1,2, \cdots, n$ and $a_{i j}=-a_{j i}$ for $i \neq j$.

Solution. We denote the (i, j)-th entry of A^{T} by $a_{i j}^{T}$. We have shown in class that

$$
a_{i j}^{T}=a_{j i} .
$$

Together with $A^{T}=-A$, this yields

$$
a_{i j}=a_{j i}^{T}=-a_{j i}
$$

for all $i, j=1,2, \cdots, n$. The second equality comes from the definition of $A^{T}=-A$. When $i=j$, in particular, we have

$$
a_{i i}=-a_{i i} \Longrightarrow a_{i i}=0
$$

