THE PROOFS FOR SOME FACT IN SECTION 5.6, 5.7

Question 1. Suppose that A is an $n \times n$ matrix, and the characteristic polynomial of A is

$$
p(\lambda)= \pm\left(\lambda-\lambda_{1}\right)^{m_{1}} \cdots\left(\lambda-\lambda_{r}\right)^{m_{r}},
$$

where λ_{i} are different eigenvalues with multiplicity m_{i}.
The space of eigenvectors corresponding to the eigenvalue λ_{i} is called the eigenspace of λ_{i}, denoted by E_{i}.

Assume that $\operatorname{dim} E_{i}=\operatorname{dim}\left(\right.$ Null space of $\left.\left(A-\lambda_{i} I_{n}\right)\right)=k_{i}$. Prove that

$$
1 \leq k_{i} \leq m_{i} .
$$

Proof. Since $\lambda_{i} I_{n}-A$ is singular, the fact that $1 \leq k_{i}$ is straightforward. We will prove $k_{i} \leq m_{i}$ by contradiction.

If assume, to the contrary, that $k_{i}>m_{i}$, then let $P=\left\{v_{1}, \cdots, v_{k_{i}}, v_{k_{i+1}}, \cdots, v_{n}\right\}$. Here $\left\{v_{1}, \cdots, v_{k_{i}}\right\}$ is a basis for $N\left(A-\lambda_{i} I_{n}\right)$, i.e, linearly independent eigenvectors with respect to λ_{i}, and $\left\{v_{1}, \cdots, v_{n}\right\}$ forms a basis for \mathbb{R}^{n}.

An easy computation shows that $A P=P D$, where D is of the form

$$
\left[\begin{array}{llll}
\lambda_{i} e_{1} & \cdots & \lambda_{i} e_{m_{i}} & B
\end{array}\right],
$$

where $e_{1}, \cdots e_{n}$ are the standard basis of \mathbb{R}^{n} and B is an $n \times\left(n-m_{i}\right)$ matrix. Therefore,

$$
P^{-1} A P=D .
$$

Using cofactor expansion, we can compute the characteristic polynomial of D. We can find that λ_{i} is a eigenvalue of D of multiplicity $k_{i}>m_{i}$. Now let us compute the set of eigenvalues for D.

$$
\left|D-\lambda I_{n}\right|=\left|P^{-1} A P-\lambda I_{n}\right|=\left|P^{-1} A P-\lambda P^{-1} I_{n} P\right|=\left|P^{-1}\right|\left|A-\lambda I_{n}\right||P|=\left|A-\lambda I_{n}\right|
$$

So D has exactly the same characteristic polynomial as A, and thus has the same set of eigenvalues as A (even the multiplicities are the same). So $k_{i}>m_{i}$ is impossible and a contradiction. Therefore, $k_{i} \leq m_{i}$.

Question 2. Assume that the conditions in Question 1 still hold true. More precisely, $\lambda_{1}, \cdots, \lambda_{r}$ are different eigenvalues of A and $\left\{v_{i}, \cdots, v_{i, k_{i}}\right\}$ is the basis for $E_{i}=$ Null space of $\left(A-\lambda_{i} I_{n}\right)$. Then

$$
\cup_{i=1}^{r}\left\{v_{i}, \cdots, v_{i, k_{i}}\right\} \quad \text { are linearly independent. }
$$

Proof. For simplicity, we assume that A has only two different eigenvalues λ_{1}, λ_{2}, and we will show that the eigenvectors v_{1}, v_{2} with respect to λ_{1}, λ_{2} are linearly independent.

If

$$
\begin{equation*}
a_{1} v_{1}+a_{2} v_{2}=0, \tag{1}
\end{equation*}
$$

multiplying both side by A

$$
0=a_{1} A v_{1}+a_{2} A v_{2}=a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{2} v_{2} .
$$

On the other hand, by multiplying both sides of (1) by λ_{1}, we have

$$
0=a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{1} v_{2} .
$$

Substract the above two equalities.

$$
0=a_{2}\left(\lambda_{1}-\lambda_{2}\right) v_{2} .
$$

Since $\lambda_{1} \neq \lambda_{2}$ and $v_{2} \neq 0$, we infer that

$$
a_{2}=0 .
$$

Similarly, we can conclude that

$$
a_{1}=0 .
$$

Thus v_{1}, v_{2} are linearly independent.

