## THE PROOFS FOR SOME FACT IN SECTION 7.3

Question 1. Suppose that $A$ is an $n \times n$ symmetric matrix, and $\lambda_{1}, \lambda_{2}$ are two distinct eigenvalues of $A$. Assume that $v_{1}$ and $v_{2}$ are the corresponding eigenvectors of $\lambda_{1}$ and $\lambda_{2}$, respectively. Then $\left(v_{1}, v_{2}\right)=0$.

Proof.

$$
\begin{aligned}
\lambda_{1}\left(v_{1}, v_{2}\right) & =\left(\lambda_{1} v_{1}, v_{2}\right)=\left(A v_{1}, v_{2}\right) \\
& =\left(A v_{1}\right)^{T} v_{2}=v_{1}^{T} A^{T} v_{2} .
\end{aligned}
$$

Since $A$ symmetric, we have $A^{T}=A$. So the last equality becomes

$$
v_{1}^{T} A v_{2}=v_{1}^{T}\left(A v_{2}\right)=\left(v_{1}, A v_{2}\right)=\left(v_{1}, \lambda_{2} v_{2}\right)=\lambda_{2}\left(v_{1}, v_{2}\right) .
$$

Combing these two equalities, we infer that

$$
\left(\lambda_{1}-\lambda_{2}\right)\left(v_{1}, v_{2}\right)=0
$$

But $\lambda_{1}, \lambda_{2}$ are two distinct eigenvalues, so $\lambda_{1}-\lambda_{2} \neq 0$, which implies

$$
\left(v_{1}, v_{2}\right)=0 .
$$

