
CHAPTER 4 REVIEW

1. Finite dimensional vector spaces

Any finite dimensional vector space can be identified as a Euclidean space.

Example 1.1. Mm×n(R) = Mmn(R), the space of all real valued m × n
matrix, can be identified as Rmn. Every matrix a11 · · · a1n

...
...

...
am1 · · · amn


is mapped to the column vector[

a11 · · · a1n a21 · · · a2n · · · am1 · · · amn
]T

.

Question: How to find a basis for Mm×n(R)?
Answer: {Mij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} forms a basis for Mm×n(R), where
Mij is the m× n matrix with 1 in the (i, j)-entry and 0 elsewhere.

Example 1.2. Sn(R), the space of all real valued symmetric n× n matrix,
can be identified as R

n(n+1)
2 , thus has dimension n(n+1)

2 (Consider why?).
Consider how to find a basis for Sn(R). Recall any symmetric matrix is
symmetric with respect to the main diagonal.

Example 1.3. Pn, the space of all polynomials of degree no more than n,
can be identified as Rn+1. Every polynomial

anxn + an−1xn−1 + · · · a1x + a0

is mapped to the column vector[
a0 · · · an

]T
.

Question: How to find a basis for Pn?
Answer: {tn, tn−1, · · · , t, 1} forms a basis for Pn.

Example 1.4. More generally, any n-dimensional vector space V can be
identified as Rn. Since V is n-dimensional, we can find a a basis {v1, · · · , vn}.
For every v in V , we can find a unique linear combination

v = c1v1 + · · ·+ cnvn.
1
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(Consider why this linear combination is unique). Then the vector v is
mapped to the column vector [

c1 · · · cn
]T

.

This column vector is called the coordinates of v with respect to the basis
{v1, · · · , vn}.

2. Infinitely dimensional vector spaces

There does exist infinitely dimensional vector space. A vector space is of
infinite dimension if it has a basis containing infinitely many vectors.

Example 2.1. P := the set of all polynomials is an infinite dimensional
vector space. {1, x, x2, · · · } is a basis of P . This space can be recognized as
R∞.

Example 2.2. Let I be an interval or the real line R.
Cn(I) = {f : I → R : f n times differentiable,

f, f ′, · · · , f (n) are all continuous.}
is an infinite dimensional vector space. Indeed, there is a basis of Cn(I)
containing {1, x, x2, · · · }, and thus has infinitely many elements.

3. Subspaces

A subspace S is a subset of a vector space V , which is a vector space itself
if equipped with the vector addition and scalar multiplication of V .

Example 3.1. State all the subspaces of R3.

Solution. Subspaces of R3 are R3 itself and all the planes and lines passing
through the origin. J

Remark 3.2. A subset S of a vector space V is a subspace if and only if S
is closed under the same vector addition and scalar multiplication.

Remark 3.3. If 0V is not in S, then S is not a subspace.

Example 3.4. The null space of an m × n matrix A, that is, the set of
solutions to the homogeneous linear system

Ax = 0, (1)
is a subspace of Rn. The dimension of this subspace is n− rank(A).
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Example 3.5. The null space of an m × n matrix A, that is, the set of
solutions to the nonhomogeneous linear system

Ax = b 6= 0, (2)

is never a subspace of Rn.

Example 3.6. The set of all the polynomial ax2 +bx+c satisfying a+b = c
forms a subspace of P2. The dimension of this subspace is 2.(Consider why?)

4. Linear dependence and independence

Proposition 4.1. A set of vectors S = {v1, · · · , vn} is linearly dependent if
and only if some vk can be expressed as a linear combination of the other
vectors in S.

Summary: How to determine whether a given set {v1, · · · , vn} in Rm is
linearly independent or not?

• If m < n, not linearly independent. (Consider why?)

• If m ≥ n, let A =
[
v1 · · · vn

]
• If rank(A) = n, that is, the number of columns of A, then {v1, · · · , vn}

is linearly independent. Otherwise, not.

Remark 4.2. When m = n, A is a square matrix. In this case, the last
step can be replaced by computing the determinant of A. More precisely, if
det(A) 6= 0, then {v1, · · · , vn} is linearly independent. Otherwise, not.

Summary: How to find a linearly independent subset out of a given subset
{v1, · · · , vn} in Rm?

• Let A =
[
v1 · · · vn

]
• A linearly independent subset of {v1, · · · , vn} consists of the columns

containing the leading 1’s in ref(A).

5. Spanning set

Summary: How to determine whether a given set {v1, · · · , vn} is a spanning
set of Rm?

• If m > n, not a spanning set. (Consider why?)
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• Let
A =

[
v1 · · · vn

]
.

• If rank(A) = the number of rows of A, or equivalently, there is
no bottom zero row in ref(A), then {v1, · · · , vn} is a spanning set.
Otherwise, not.

Remark 5.1. When m = n, A is a square matrix. In this case, the last
step can be replaced by computing the determinant of A. More precisely, if
det(A) 6= 0, then {v1, · · · , vn} is spanning set. Otherwise, not.

Example 5.2. Find a spanning set for the plane
x + 2y − 3z = 0

in R3.

Solution. This plane actually gives a homogeneous linear system
x + 2y − 3z = 0.

Solving it, we obtain the general expression for the solutionsx
y
z

 = s

−2
1
0

+ t

3
0
1

 .

Then {

−2
1
0

 ,

3
0
1

} is a spanning set of the plane x + 2y − 3z = 0. J

Remark 5.3. In the above example, the set {

−2
1
0

 ,

3
0
1

} is a spanning set

of the plane x + 2y − 3z = 0. But the matrix

A =

−2 3
1 0
0 1


has rank 2, which is smaller than 3. This seems to be a contradiction.
However, in this example, the vector space is not the whole R3, but just a
subspace x + 2y − 3z = 0. Recall the argument leading to the conclusion

{v1, · · · , vn} spans Rm ⇐⇒ rank(A) = m.

First, we look at the linear system AX = b for arbitrary b ∈ Rm. If rank(A)
< m, then ref(A) has at least one bottom zero row. Since b is arbitrary, we
can always find a proper b such that rank(A) < rank(A|b).

But in the above example, b is not arbitrary, since b always belongs to the
subspace x + 2y − 3z = 0.
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Theorem 5.4 (rank nullity theorem). Given an m× n matrix A, or equiv-
alently a homogeneous linear system Ax = 0, then

rank(A) + dim(Null space of A) = n = the number of unknowns.

Summary: How to find a spanning set of a subspace in Rn? (NOT Rn!)

• A subspace of Rn is usually given by a homogeneous linear system
Ax = 0, where A is a m× n matrix.

• Solving this linear system, the solutions can be expressed as

~x = c1v1 + · · · ckvk,

where c1, · · · , ck are free parameters, and v1, · · · , vk are fixed vectors
in Rn. Here

k = n− rank(A)
by Theorem 5.4.

• Then {v1, · · · , vk} is a spanning set of the subspace.

Remark 5.5. {v1, · · · , vk} is indeed a basis of this subspace!!

Theorem 5.6. If a vector space V is of dimension n and {v1 · · · , vn} is a
subset of V , then the following statements are equivalent.

1. {v1 · · · , vn} is linearly independent.

2. {v1 · · · , vn} is a spanning set.

3. {v1 · · · , vn} is a basis.

Example 5.7. Is

S = {

1
1
1

 ,

3
0
1

 ,

6
0
2

}
a spanning set for the plane

x + 2y − 3z = 0

in R3.

Solution. First, it is an easy task to check all three vectors in {

1
1
1

 ,

3
0
1

 ,

6
0
2

}
satisfy x + 2y − 3z = 0. So they all belong to this plane. Let

A =

1 3 6
1 0 0
1 1 2

 ∼
1 0 0

0 1 2
0 0 0

 .
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Therefore, {

1
1
1

 ,

3
0
1

} is linearly independent. Recall by Theorem 5.4, the

dimension of the plane x+2y−3z = 0 is 2. By Theorem 5.6, {

1
1
1

 ,

3
0
1

} is a

basis of the plane x+2y−3z = 0. So S is a spanning set of x+2y−3z = 0. J

Summary: How to determine whether a given set {v1, · · · , vk} is a spanning
set of a subspace S of Rn? (NOT Rn!)

• Find the homogeneous linear system Ax = 0, where A is an m × n
matrix, representing the subspace S.

• Verify if vi’s are solutions to Ax = 0. If one of vi’s is not a solution,
then this is not a spanning set.

• If all vi’s are solutions, then let
A =

[
v1 · · · vk

]
.

• Pick up a linearly independent subset out of {v1, · · · , vk}. Recall a
linearly independent subset of {v1, · · · , vk} consists of the columns
containing the leading 1’s in ref(A).

• Use Theorem 5.4 to find out the dimension of the subspace S.

• If dimS =the number of vectors in the linearly independent subset
of {v1, · · · , vk}, then {v1, · · · , vk} is a spanning set. Otherwise, not.

6. Dimensions and bases

Proposition 6.1. V is of dimension n. Then

• any linearly independent set cannot contain more than n vectors;

• any spanning set must contain at least n vectors;

• any basis contains exactly n vectors.

Remark 6.2. A basis can be considered as a “maximal” linearly independent
set, or a “minimal” spanning set.

Proposition 6.3. S is a subspace of V . Then dimS ≤ dimV . If dimS =
dimV , then S = V.

Summary: How to determine if a set {v1, · · · , vm} is a basis of Rn?

• If m 6= n, this is not a basis.
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• If m = n, let A =
[
v1 v2 · · · vn

]
.

• If det(A) 6= 0, or equivalently, rank(A) = n = m, this is a basis.
Otherwise, it is not.

Theorem 6.4. S is a subspace of V . Then any basis of S can be extended
to a basis of V .

Question: Given a basis of a subspace S, how to extend it to a basis of
V ?

Example 6.5. Extend the basis of span(

−2
1
0

 ,

3
0
1

) to a basis of R3.

Solution. We first check −2 3
1 0
0 1

 ∼
1 0

0 1
0 0

 .

Therefore, {

−2
1
0

 ,

3
0
1

} is a basis for span(

−2
1
0

 ,

3
0
1

). To find the third

vector extending {

−2
1
0

 ,

3
0
1

} into a basis for R3, we look at

A =

−2 3 1 0 0
1 0 0 1 0
0 1 0 0 1

 .

The last three column vectors in A is the standard basis for R3. Thus, the
five column vectors of A is a spanning set of R3. Moreover,

A ∼

1 0 0 1 0
0 1 0 0 1
0 0 1 2 3

 .

From this observation, we know that the first three columns of A are linearly

independent, and thus{

−2
1
0

 ,

3
0
1

},
1

0
0

} form a basis for R3. J

Summary: How to extend a basis for a subspace S to a basis Rn?

• Find a basis {v1, · · · , vk} for S.

• Let A =
[
v1 v2 · · · vk u1 u2 · · · un

]
. Here {u1, · · · , un} is

a basis (usually, we take this set to be the standard basis) of Rn.
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• A basis of V is the column vectors corresponding to the columns con-
taining the leading 1’s in ref(A) (these columns will include {v1, · · · , vk}).

Summary: How to find a basis for Rn or a subspace S of Rn?

• Find a spanning set {v1, · · · , vn}.

• Let A =
[
v1 v2 · · · vn

]
.

• A basis set, or equivalently a linearly independent subset of {v1, · · · , vn},
is the column vectors corresponding to the columns containing the
leading 1’s in ref(A).

7. Relationship between spanning sets, liner independence, and
bases

Suppose V is an m-dimensional vector space and S = {v1, · · · , vn} is a set
of vectors in V . Then

• if n > m, then S is linearly dependent;

• if m > n, then S is not a spanning set;

• if n 6= m, then S is not a basis.

S = {v1, · · · , vn} is a basis for V means

• S is a “maximal” linearly independent subset of V , i.e., for any
u ∈ V , {v1, · · · , vn, u} becomes linearly dependent;

• S is a “minimal” spanning set of V , i.e., after removing any vector
vk from S, the set {v1, · · · , vk−1, vk+1, · · · , vn} is not spanning set
anymore.

8. Rank, Row and column spaces

Am×n =

 r1
...

rm

 =
[
c1 · · · cn

]
is a m× n matrix.

Note that
colspace(A) = rowspace(AT ), colspace(AT ) = rowspace(A).

Remark 8.1.

• colspace(A) is a subspace of Rm.

• rowspace(A) is a subspace of Rn.
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Remark 8.2. rank(A) = the dimension of colspace(A) = the dimension of
rowspace(A) = rank(AT ).

Summary: How to find a basis for colspace(A)?

• The basis for colspace(A) consists of the columns containing the
leading 1’s in ref(A).

Summary: How to find a basis for rowspace(A)?

• The nonzero rows in ref(A) form a basis for rowspace(A). (Note that
these rows are not from the original rows of A.) Or

• The columns containing the leading 1’s in ref(A) forms a basis for
colspace(AT ). Taking transpose of these columns, we obtain a basis
for rowspace(A). (These rows are not from the original rows of A.)


