CHAPTER 4 REVIEW

1. Finite dimensional vector spaces

Any finite dimensional vector space can be identified as a Euclidean space.
Example 1.1. $M_{m \times n}(\mathbb{R})=M_{m n}(\mathbb{R})$, the space of all real valued $m \times n$ matrix, can be identified as $\mathbb{R}^{m n}$. Every matrix

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

is mapped to the column vector

$$
\left[\begin{array}{llllllllll}
a_{11} & \cdots & a_{1 n} & a_{21} & \cdots & a_{2 n} & \cdots & a_{m 1} & \cdots & a_{m n}
\end{array}\right]^{T} .
$$

Question: How to find a basis for $M_{m \times n}(\mathbb{R})$?
Answer: $\left\{M_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ forms a basis for $M_{m \times n}(\mathbb{R})$, where $M_{i j}$ is the $m \times n$ matrix with 1 in the (i, j)-entry and 0 elsewhere.

Example 1.2. $S_{n}(\mathbb{R})$, the space of all real valued symmetric $n \times n$ matrix, can be identified as $\mathbb{R}^{\frac{n(n+1)}{2}}$, thus has dimension $\frac{n(n+1)}{2}$ (Consider why?). Consider how to find a basis for $S_{n}(\mathbb{R})$. Recall any symmetric matrix is symmetric with respect to the main diagonal.

Example 1.3. \mathbb{P}_{n}, the space of all polynomials of degree no more than n, can be identified as \mathbb{R}^{n+1}. Every polynomial

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}
$$

is mapped to the column vector

$$
\left[\begin{array}{lll}
a_{0} & \cdots & a_{n}
\end{array}\right]^{T} .
$$

Question: How to find a basis for \mathbb{P}_{n} ?
Answer: $\left\{t^{n}, t^{n-1}, \cdots, t, 1\right\}$ forms a basis for \mathbb{P}_{n}.
Example 1.4. More generally, any n-dimensional vector space V can be identified as \mathbb{R}^{n}. Since V is n-dimensional, we can find a a basis $\left\{v_{1}, \cdots, v_{n}\right\}$. For every v in V, we can find a unique linear combination

$$
v=c_{1} v_{1}+\cdots+c_{n} v_{n} .
$$

(Consider why this linear combination is unique). Then the vector v is mapped to the column vector

$$
\left[\begin{array}{lll}
c_{1} & \cdots & c_{n}
\end{array}\right]^{T} .
$$

This column vector is called the coordinates of v with respect to the basis $\left\{v_{1}, \cdots, v_{n}\right\}$.

2. Infinitely dimensional vector spaces

There does exist infinitely dimensional vector space. A vector space is of infinite dimension if it has a basis containing infinitely many vectors.
Example 2.1. $P:=$ the set of all polynomials is an infinite dimensional vector space. $\left\{1, x, x^{2}, \cdots\right\}$ is a basis of P. This space can be recognized as \mathbb{R}^{∞}.

Example 2.2. Let I be an interval or the real line \mathbb{R}.

$$
\begin{aligned}
C^{n}(I)= & \{f: I \rightarrow \mathbb{R}: f n \text { times differentiable, }, \\
& \left.f, f^{\prime}, \cdots, f^{(n)} \text { are all continuous. }\right\}
\end{aligned}
$$

is an infinite dimensional vector space. Indeed, there is a basis of $C^{n}(I)$ containing $\left\{1, x, x^{2}, \cdots\right\}$, and thus has infinitely many elements.

3. Subspaces

A subspace S is a subset of a vector space V, which is a vector space itself if equipped with the vector addition and scalar multiplication of V.
Example 3.1. State all the subspaces of \mathbb{R}^{3}.
Solution. Subspaces of \mathbb{R}^{3} are \mathbb{R}^{3} itself and all the planes and lines passing through the origin.

Remark 3.2. A subset S of a vector space V is a subspace if and only if S is closed under the same vector addition and scalar multiplication.

Remark 3.3. If 0_{V} is not in S, then S is not a subspace.
Example 3.4. The null space of an $m \times n$ matrix A, that is, the set of solutions to the homogeneous linear system

$$
\begin{equation*}
A x=0, \tag{1}
\end{equation*}
$$

is a subspace of \mathbb{R}^{n}. The dimension of this subspace is $n-\operatorname{rank}(A)$.

Example 3.5. The null space of an $m \times n$ matrix A, that is, the set of solutions to the nonhomogeneous linear system

$$
\begin{equation*}
A x=b \neq 0 \tag{2}
\end{equation*}
$$

is never a subspace of \mathbb{R}^{n}.
Example 3.6. The set of all the polynomial $a x^{2}+b x+c$ satisfying $a+b=c$ forms a subspace of \mathbb{P}_{2}. The dimension of this subspace is 2 .(Consider why?)

4. Linear dependence and independence

Proposition 4.1. A set of vectors $S=\left\{v_{1}, \cdots, v_{n}\right\}$ is linearly dependent if and only if some v_{k} can be expressed as a linear combination of the other vectors in S.

Summary: How to determine whether a given set $\left\{v_{1}, \cdots, v_{n}\right\}$ in \mathbb{R}^{m} is linearly independent or not?

- If $m<n$, not linearly independent. (Consider why?)
- If $m \geq n$, let $A=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]$
- If $\operatorname{rank}(A)=n$, that is, the number of columns of A, then $\left\{v_{1}, \cdots, v_{n}\right\}$ is linearly independent. Otherwise, not.

Remark 4.2. When $m=n, A$ is a square matrix. In this case, the last step can be replaced by computing the determinant of A. More precisely, if $\operatorname{det}(A) \neq 0$, then $\left\{v_{1}, \cdots, v_{n}\right\}$ is linearly independent. Otherwise, not.

Summary: How to find a linearly independent subset out of a given subset $\left\{v_{1}, \cdots, v_{n}\right\}$ in \mathbb{R}^{m} ?

- Let $A=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]$
- A linearly independent subset of $\left\{v_{1}, \cdots, v_{n}\right\}$ consists of the columns containing the leading 1 's in $\operatorname{ref}(A)$.

5. Spanning set

Summary: How to determine whether a given set $\left\{v_{1}, \cdots, v_{n}\right\}$ is a spanning set of \mathbb{R}^{m} ?

- If $m>n$, not a spanning set. (Consider why?)
- Let

$$
A=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right] .
$$

- If $\operatorname{rank}(A)=$ the number of rows of A, or equivalently, there is no bottom zero row in $\operatorname{ref}(A)$, then $\left\{v_{1}, \cdots, v_{n}\right\}$ is a spanning set. Otherwise, not.

Remark 5.1. When $m=n, A$ is a square matrix. In this case, the last step can be replaced by computing the determinant of A. More precisely, if $\operatorname{det}(A) \neq 0$, then $\left\{v_{1}, \cdots, v_{n}\right\}$ is spanning set. Otherwise, not.

Example 5.2. Find a spanning set for the plane

$$
x+2 y-3 z=0
$$

in \mathbb{R}^{3}.

Solution. This plane actually gives a homogeneous linear system

$$
x+2 y-3 z=0 .
$$

Solving it, we obtain the general expression for the solutions

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right] .
$$

Then $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$ is a spanning set of the plane $x+2 y-3 z=0$.
Remark 5.3. In the above example, the set $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$ is a spanning set of the plane $x+2 y-3 z=0$. But the matrix

$$
A=\left[\begin{array}{cc}
-2 & 3 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

has rank 2, which is smaller than 3. This seems to be a contradiction. However, in this example, the vector space is not the whole \mathbb{R}^{3}, but just a subspace $x+2 y-3 z=0$. Recall the argument leading to the conclusion

$$
\left\{v_{1}, \cdots, v_{n}\right\} \text { spans } \mathbb{R}^{m} \Longleftrightarrow \operatorname{rank}(A)=m .
$$

First, we look at the linear system $A X=b$ for arbitrary $b \in \mathbb{R}^{m}$. If $\operatorname{rank}(A)$ $<m$, then $\operatorname{ref}(A)$ has at least one bottom zero row. Since b is arbitrary, we can always find a proper b such that $\operatorname{rank}(A)<\operatorname{rank}(A \mid b)$.

But in the above example, b is not arbitrary, since b always belongs to the subspace $x+2 y-3 z=0$.

Theorem 5.4 (rank nullity theorem). Given an $m \times n$ matrix A, or equivalently a homogeneous linear system $A x=0$, then
$\operatorname{rank}(A)+\operatorname{dim}($ Null space of $A)=n=$ the number of unknowns.

Summary: How to find a spanning set of a subspace in \mathbb{R}^{n} ? (NOT $\mathbb{R}^{n!}$)

- A subspace of \mathbb{R}^{n} is usually given by a homogeneous linear system $A x=0$, where A is a $m \times n$ matrix.
- Solving this linear system, the solutions can be expressed as

$$
\vec{x}=c_{1} v_{1}+\cdots c_{k} v_{k},
$$

where c_{1}, \cdots, c_{k} are free parameters, and v_{1}, \cdots, v_{k} are fixed vectors in \mathbb{R}^{n}. Here

$$
k=n-\operatorname{rank}(A)
$$

by Theorem 5.4.

- Then $\left\{v_{1}, \cdots, v_{k}\right\}$ is a spanning set of the subspace.

Remark 5.5. $\left\{v_{1}, \cdots, v_{k}\right\}$ is indeed a basis of this subspace!!
Theorem 5.6. If a vector space V is of dimension n and $\left\{v_{1} \cdots, v_{n}\right\}$ is a subset of V, then the following statements are equivalent.

1. $\left\{v_{1} \cdots, v_{n}\right\}$ is linearly independent.
2. $\left\{v_{1} \cdots, v_{n}\right\}$ is a spanning set.
3. $\left\{v_{1} \cdots, v_{n}\right\}$ is a basis.

Example 5.7. Is

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right]\right\}
$$

a spanning set for the plane

$$
x+2 y-3 z=0
$$

in \mathbb{R}^{3}.

Solution. First, it is an easy task to check all three vectors in $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}6 \\ 0 \\ 2\end{array}\right]\right\}$ satisfy $x+2 y-3 z=0$. So they all belong to this plane. Let

$$
A=\left[\begin{array}{lll}
1 & 3 & 6 \\
1 & 0 & 0 \\
1 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$ is linearly independent. Recall by Theorem 5.4, the dimension of the plane $x+2 y-3 z=0$ is 2. By Theorem 5.6, $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis of the plane $x+2 y-3 z=0$. So S is a spanning set of $x+2 y-3 z=0$.

Summary: How to determine whether a given set $\left\{v_{1}, \cdots, v_{k}\right\}$ is a spanning set of a subspace S of \mathbb{R}^{n} ? (NOT $\mathbb{R}^{n}!$)

- Find the homogeneous linear system $A x=0$, where A is an $m \times n$ matrix, representing the subspace S.
- Verify if v_{i} 's are solutions to $A x=0$. If one of v_{i} 's is not a solution, then this is not a spanning set.
- If all v_{i} 's are solutions, then let

$$
A=\left[\begin{array}{lll}
v_{1} & \cdots & v_{k}
\end{array}\right] .
$$

- Pick up a linearly independent subset out of $\left\{v_{1}, \cdots, v_{k}\right\}$. Recall a linearly independent subset of $\left\{v_{1}, \cdots, v_{k}\right\}$ consists of the columns containing the leading 1 's in $\operatorname{ref}(A)$.
- Use Theorem 5.4 to find out the dimension of the subspace S.
- If $\operatorname{dim} S=$ the number of vectors in the linearly independent subset of $\left\{v_{1}, \cdots, v_{k}\right\}$, then $\left\{v_{1}, \cdots, v_{k}\right\}$ is a spanning set. Otherwise, not.

6. Dimensions and bases

Proposition 6.1. V is of dimension n. Then

- any linearly independent set cannot contain more than n vectors;
- any spanning set must contain at least n vectors;
- any basis contains exactly n vectors.

Remark 6.2. A basis can be considered as a "maximal" linearly independent set, or a "minimal" spanning set.

Proposition 6.3. S is a subspace of V. Then $\operatorname{dim} S \leq \operatorname{dim} V$. If $\operatorname{dim} S=$ $\operatorname{dim} V$, then $S=V$.

Summary: How to determine if a set $\left\{v_{1}, \cdots, v_{m}\right\}$ is a basis of \mathbb{R}^{n} ?

- If $m \neq n$, this is not a basis.
- If $m=n$, let $A=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$.
- If $\operatorname{det}(A) \neq 0$, or equivalently, $\operatorname{rank}(A)=n=m$, this is a basis. Otherwise, it is not.

Theorem 6.4. S is a subspace of V. Then any basis of S can be extended to a basis of V.

Question: Given a basis of a subspace S, how to extend it to a basis of V?
Example 6.5. Extend the basis of $\operatorname{span}\left(\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right)$ to a basis of \mathbb{R}^{3}.
Solution. We first check

$$
\left[\begin{array}{cc}
-2 & 3 \\
1 & 0 \\
0 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Therefore, $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{span}\left(\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right)$. To find the third vector extending $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$ into a basis for \mathbb{R}^{3}, we look at

$$
A=\left[\begin{array}{ccccc}
-2 & 3 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

The last three column vectors in A is the standard basis for \mathbb{R}^{3}. Thus, the five column vectors of A is a spanning set of \mathbb{R}^{3}. Moreover,

$$
A \sim\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 & 3
\end{array}\right] .
$$

From this observation, we know that the first three columns of A are linearly independent, and thus $\left.\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\},\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ form a basis for \mathbb{R}^{3}.

Summary: How to extend a basis for a subspace S to a basis \mathbb{R}^{n} ?

- Find a basis $\left\{v_{1}, \cdots, v_{k}\right\}$ for S.
- Let $A=\left[\begin{array}{llllllll}v_{1} & v_{2} & \cdots & v_{k} & u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]$. Here $\left\{u_{1}, \cdots, u_{n}\right\}$ is a basis (usually, we take this set to be the standard basis) of \mathbb{R}^{n}.
- A basis of V is the column vectors corresponding to the columns containing the leading 1's in $\operatorname{ref}(A)$ (these columns will include $\left\{v_{1}, \cdots, v_{k}\right\}$).

Summary: How to find a basis for \mathbb{R}^{n} or a subspace S of \mathbb{R}^{n} ?

- Find a spanning set $\left\{v_{1}, \cdots, v_{n}\right\}$.
- Let $A=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$.
- A basis set, or equivalently a linearly independent subset of $\left\{v_{1}, \cdots, v_{n}\right\}$, is the column vectors corresponding to the columns containing the leading 1's in $\operatorname{ref}(A)$.

7. Relationship between spanning sets, liner independence, and BASES

Suppose V is an m-dimensional vector space and $S=\left\{v_{1}, \cdots, v_{n}\right\}$ is a set of vectors in V. Then

- if $n>m$, then S is linearly dependent;
- if $m>n$, then S is not a spanning set;
- if $n \neq m$, then S is not a basis.
$S=\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis for V means
- S is a "maximal" linearly independent subset of V, i.e., for any $u \in V,\left\{v_{1}, \cdots, v_{n}, u\right\}$ becomes linearly dependent;
- S is a "minimal" spanning set of V, i.e., after removing any vector v_{k} from S, the set $\left\{v_{1}, \cdots, v_{k-1}, v_{k+1}, \cdots, v_{n}\right\}$ is not spanning set anymore.

8. Rank, Row and column spaces

$A_{m \times n}=\left[\begin{array}{c}r_{1} \\ \vdots \\ r_{m}\end{array}\right]=\left[\begin{array}{ll}c_{1} & \cdots c_{n}\end{array}\right]$ is a $m \times n$ matrix.
Note that

$$
\operatorname{colspace}(A)=\operatorname{rowspace}\left(A^{T}\right), \quad \operatorname{colspace}\left(A^{T}\right)=\operatorname{rowspace}(A)
$$

Remark 8.1.

- $\operatorname{colspace}(A)$ is a subspace of \mathbb{R}^{m}.
- rowspace (A) is a subspace of \mathbb{R}^{n}.

Remark 8.2. $\operatorname{rank}(A)=$ the dimension of $\operatorname{colspace}(A)=$ the dimension of $\operatorname{rowspace}(A)=\operatorname{rank}\left(A^{T}\right)$.

Summary: How to find a basis for colspace (A) ?

- The basis for colspace (A) consists of the columns containing the leading 1's in $\operatorname{ref}(A)$.
Summary: How to find a basis for $\operatorname{rowspace}(A)$?
- The nonzero rows in $\operatorname{ref}(A)$ form a basis for rowspace (A). (Note that these rows are not from the original rows of A.) Or
- The columns containing the leading 1's in $\operatorname{ref}(A)$ forms a basis for colspace $\left(A^{T}\right)$. Taking transpose of these columns, we obtain a basis for rowspace (A). (These rows are not from the original rows of A.)

