1. Finite dimensional vector spaces

Any finite dimensional vector space can be identified as a Euclidean space.

Example 1.1. $M_{m \times n}(\mathbb{R}) = M_{mn}(\mathbb{R})$, the space of all real valued $m \times n$ matrix, can be identified as \mathbb{R}^{mn} . Every matrix

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

is mapped to the column vector

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} & a_{21} & \cdots & a_{2n} & \cdots & a_{m1} & \cdots & a_{mn} \end{bmatrix}^T.$$

Question: How to find a basis for $M_{m \times n}(\mathbb{R})$? **Answer:** $\{M_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}$ forms a basis for $M_{m \times n}(\mathbb{R})$, where M_{ij} is the $m \times n$ matrix with 1 in the (i, j)-entry and 0 elsewhere.

Example 1.2. $S_n(\mathbb{R})$, the space of all real valued symmetric $n \times n$ matrix, can be identified as $\mathbb{R}^{\frac{n(n+1)}{2}}$, thus has dimension $\frac{n(n+1)}{2}$ (Consider why?). Consider how to find a basis for $S_n(\mathbb{R})$. Recall any symmetric matrix is symmetric with respect to the main diagonal.

Example 1.3. \mathbb{P}_n , the space of all polynomials of degree no more than n, can be identified as \mathbb{R}^{n+1} . Every polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is mapped to the column vector

$$\begin{bmatrix} a_0 & \cdots & a_n \end{bmatrix}^T$$
.

Question: How to find a basis for \mathbb{P}_n ? **Answer:** $\{t^n, t^{n-1}, \dots, t, 1\}$ forms a basis for \mathbb{P}_n .

Example 1.4. More generally, any n-dimensional vector space V can be identified as \mathbb{R}^n . Since V is n-dimensional, we can find a a basis $\{v_1, \dots, v_n\}$. For every v in V, we can find a unique linear combination

$$v = c_1 v_1 + \dots + c_n v_n.$$

(Consider why this linear combination is unique). Then the vector v is mapped to the column vector

$$\begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}^T$$
.

This column vector is called the coordinates of v with respect to the basis $\{v_1, \dots, v_n\}$.

2. Infinitely dimensional vector spaces

There does exist infinitely dimensional vector space. A vector space is of infinite dimension if it has a basis containing infinitely many vectors.

Example 2.1. P := the set of all polynomials is an infinite dimensional vector space. $\{1, x, x^2, \dots\}$ is a basis of P. This space can be recognized as \mathbb{R}^{∞} .

Example 2.2. Let I be an interval or the real line \mathbb{R} .

 $C^n(I) = \{ f : I \to \mathbb{R} : f \ n \ times \ differentiable, \}$

 $f, f', \cdots, f^{(n)}$ are all continuous.}

is an infinite dimensional vector space. Indeed, there is a basis of $C^n(I)$ containing $\{1, x, x^2, \dots\}$, and thus has infinitely many elements.

3. Subspaces

A subspace S is a subset of a vector space V, which is a vector space itself if equipped with the vector addition and scalar multiplication of V.

Example 3.1. State all the subspaces of \mathbb{R}^3 .

Solution. Subspaces of \mathbb{R}^3 are \mathbb{R}^3 itself and all the planes and lines passing through the origin.

Remark 3.2. A subset S of a vector space V is a subspace if and only if S is closed under the same vector addition and scalar multiplication.

Remark 3.3. If 0_V is not in S, then S is not a subspace.

Example 3.4. The null space of an $m \times n$ matrix A, that is, the set of solutions to the homogeneous linear system

$$Ax = 0, \tag{1}$$

is a subspace of \mathbb{R}^n . The dimension of this subspace is $n - \operatorname{rank}(A)$.

Example 3.5. The null space of an $m \times n$ matrix A, that is, the set of solutions to the nonhomogeneous linear system

$$Ax = b \neq 0, \tag{2}$$

is never a subspace of \mathbb{R}^n .

Example 3.6. The set of all the polynomial $ax^2 + bx + c$ satisfying a + b = c forms a subspace of \mathbb{P}_2 . The dimension of this subspace is 2.(Consider why?)

4. LINEAR DEPENDENCE AND INDEPENDENCE

Proposition 4.1. A set of vectors $S = \{v_1, \dots, v_n\}$ is linearly dependent if and only if some v_k can be expressed as a linear combination of the **other** vectors in S.

Summary: How to determine whether a given set $\{v_1, \dots, v_n\}$ in \mathbb{R}^m is linearly independent or not?

- If m < n, not linearly independent. (Consider why?)
- If $m \ge n$, let $A = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$
- If rank(A) = n, that is, the number of columns of A, then $\{v_1, \dots, v_n\}$ is linearly independent. Otherwise, not.

Remark 4.2. When m = n, A is a square matrix. In this case, the last step can be replaced by computing the determinant of A. More precisely, if $det(A) \neq 0$, then $\{v_1, \dots, v_n\}$ is linearly independent. Otherwise, not.

Summary: How to find a linearly independent subset out of a given subset $\{v_1, \dots, v_n\}$ in \mathbb{R}^m ?

- Let $A = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$
- A linearly independent subset of $\{v_1, \dots, v_n\}$ consists of the columns containing the leading 1's in ref(A).

5. Spanning set

Summary: How to determine whether a given set $\{v_1, \dots, v_n\}$ is a spanning set of \mathbb{R}^m ?

• If m > n, not a spanning set. (Consider why?)

• Let

4

$$A = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}.$$

• If rank(A) = the number of rows of A, or equivalently, there is no bottom zero row in ref(A), then $\{v_1, \dots, v_n\}$ is a spanning set. Otherwise, not.

Remark 5.1. When m = n, A is a square matrix. In this case, the last step can be replaced by computing the determinant of A. More precisely, if $det(A) \neq 0$, then $\{v_1, \dots, v_n\}$ is spanning set. Otherwise, not.

Example 5.2. Find a spanning set for the plane

$$x + 2y - 3z = 0$$

in \mathbb{R}^3 .

Solution. This plane actually gives a homogeneous linear system

$$x + 2y - 3z = 0$$

Solving it, we obtain the general expression for the solutions

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}.$$

Then $\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix} \right\}$ is a spanning set of the plane x + 2y - 3z = 0.

L U J L L Remark 5.3. In the above example, the set $\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix} \right\}$ is a spanning set of the plane x + 2y - 3z = 0. But the matrix

$$A = \begin{bmatrix} -2 & 3\\ 1 & 0\\ 0 & 1 \end{bmatrix}$$

has rank 2, which is smaller than 3. This seems to be a contradiction. However, in this example, the vector space is not the whole \mathbb{R}^3 , but just a subspace x + 2y - 3z = 0. Recall the argument leading to the conclusion

$$\{v_1, \cdots, v_n\}$$
 spans $\mathbb{R}^m \iff \operatorname{rank}(A) = m$.

First, we look at the linear system AX = b for arbitrary $b \in \mathbb{R}^m$. If rank(A) < m, then ref(A) has at least one bottom zero row. Since b is arbitrary, we can always find a proper b such that rank(A) $< \operatorname{rank}(A|b)$.

But in the above example, b is not arbitrary, since b always belongs to the subspace x + 2y - 3z = 0.

Theorem 5.4 (rank nullity theorem). Given an $m \times n$ matrix A, or equivalently a homogeneous linear system Ax = 0, then

 $\operatorname{rank}(A) + \dim(\operatorname{Null space of} A) = n = \text{the number of unknowns.}$

Summary: How to find a spanning set of a subspace in \mathbb{R}^n ? (NOT \mathbb{R}^n !)

- A subspace of \mathbb{R}^n is usually given by a homogeneous linear system Ax = 0, where A is a $m \times n$ matrix.
- Solving this linear system, the solutions can be expressed as

$$\vec{x} = c_1 v_1 + \cdots + c_k v_k,$$

where c_1, \dots, c_k are free parameters, and v_1, \dots, v_k are fixed vectors in \mathbb{R}^n . Here

$$k = n - \operatorname{rank}(A)$$

by Theorem 5.4.

• Then $\{v_1, \dots, v_k\}$ is a spanning set of the subspace.

Remark 5.5. $\{v_1, \dots, v_k\}$ is indeed a basis of this subspace!!

Theorem 5.6. If a vector space V is of dimension n and $\{v_1, \dots, v_n\}$ is a subset of V, then the following statements are equivalent.

- 1. $\{v_1 \cdots, v_n\}$ is linearly independent.
- 2. $\{v_1 \cdots, v_n\}$ is a spanning set.
- 3. $\{v_1 \cdots, v_n\}$ is a basis.

Example 5.7. Is

$$S = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 6\\0\\2 \end{bmatrix} \right\}$$

a spanning set for the plane

$$x + 2y - 3z = 0$$

in \mathbb{R}^3 .

Solution. First, it is an easy task to check all three vectors in $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 6\\0\\2 \end{bmatrix} \right\}$ satisfy x + 2y - 3z = 0. So they all belong to this plane. Let

$$A = \begin{bmatrix} 1 & 3 & 6 \\ 1 & 0 & 0 \\ 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore, $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix} \right\}$ is linearly independent. Recall by Theorem 5.4, the

dimension of the plane x + 2y - 3z = 0 is 2. By Theorem 5.6, $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix} \right\}$ is a basis of the plane x + 2y - 3z = 0. So S is a spanning set of x + 2y - 3z = 0.

Summary: How to determine whether a given set $\{v_1, \dots, v_k\}$ is a spanning set of a subspace S of \mathbb{R}^n ? (NOT \mathbb{R}^n !)

- Find the homogeneous linear system Ax = 0, where A is an $m \times n$ matrix, representing the subspace S.
- Verify if v_i 's are solutions to Ax = 0. If one of v_i 's is not a solution, then this is not a spanning set.
- If all v_i 's are solutions, then let

 $A = \begin{bmatrix} v_1 & \cdots & v_k \end{bmatrix}.$

- Pick up a linearly independent subset out of $\{v_1, \dots, v_k\}$. Recall a linearly independent subset of $\{v_1, \dots, v_k\}$ consists of the columns containing the leading 1's in ref(A).
- Use Theorem 5.4 to find out the dimension of the subspace S.
- If dim S = the number of vectors in the linearly independent subset of $\{v_1, \dots, v_k\}$, then $\{v_1, \dots, v_k\}$ is a spanning set. Otherwise, not.

6. Dimensions and bases

Proposition 6.1. V is of dimension n. Then

- any linearly independent set cannot contain more than n vectors;
- any spanning set must contain at least n vectors;
- any basis contains exactly n vectors.

Remark 6.2. A basis can be considered as a "maximal" linearly independent set, or a "minimal" spanning set.

Proposition 6.3. S is a subspace of V. Then $\dim S \leq \dim V$. If $\dim S = \dim V$, then S = V.

Summary: How to determine if a set $\{v_1, \dots, v_m\}$ is a basis of \mathbb{R}^n ?

• If $m \neq n$, this is not a basis.

- If m = n, let $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$.
- If $det(A) \neq 0$, or equivalently, rank(A) = n = m, this is a basis. Otherwise, it is not.

Theorem 6.4. S is a subspace of V. Then any basis of S can be extended to a basis of V.

Question: Given a basis of a subspace S, how to extend it to a basis of V?

Example 6.5. Extend the basis of span $\begin{pmatrix} -2\\1\\0 \end{pmatrix}$, $\begin{bmatrix} 3\\0\\1 \end{bmatrix}$) to a basis of \mathbb{R}^3 .

Solution. We first check

$$\begin{bmatrix} -2 & 3\\ 1 & 0\\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}.$$

Therefore, $\{\begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}\}$ is a basis for span $(\begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix})$. To find the third
vector extending $\{\begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}\}$ into a basis for \mathbb{R}^3 , we look at
$$A = \begin{bmatrix} -2 & 3 & 1 & 0 & 0\\ 1 & 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

The last three column vectors in A is the standard basis for \mathbb{R}^3 . Thus, the five column vectors of A is a spanning set of \mathbb{R}^3 . Moreover,

$$A \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}.$$

From this observation, we know that the first three columns of A are linearly independent, and thus $\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$ form a basis for \mathbb{R}^3 .

Summary: How to extend a basis for a subspace S to a basis \mathbb{R}^n ?

- Find a basis $\{v_1, \cdots, v_k\}$ for S.
- Let $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_k & u_1 & u_2 & \cdots & u_n \end{bmatrix}$. Here $\{u_1, \cdots, u_n\}$ is a basis (usually, we take this set to be the standard basis) of \mathbb{R}^n .

• A basis of V is the column vectors corresponding to the columns containing the leading 1's in ref(A) (these columns will include $\{v_1, \dots, v_k\}$).

Summary: How to find a basis for \mathbb{R}^n or a subspace S of \mathbb{R}^n ?

- Find a spanning set $\{v_1, \cdots, v_n\}$.
- Let $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$.
- A basis set, or equivalently a linearly independent subset of $\{v_1, \dots, v_n\}$, is the column vectors corresponding to the columns containing the leading 1's in ref(A).

7. Relationship between spanning sets, liner independence, and bases

Suppose V is an m-dimensional vector space and $S = \{v_1, \dots, v_n\}$ is a set of vectors in V. Then

- if n > m, then S is linearly dependent;
- if m > n, then S is not a spanning set;
- if $n \neq m$, then S is not a basis.

 $S = \{v_1, \cdots, v_n\}$ is a basis for V means

- S is a "maximal" linearly independent subset of V, i.e., for any $u \in V, \{v_1, \dots, v_n, u\}$ becomes linearly dependent;
- S is a "minimal" spanning set of V, i.e., after removing any vector v_k from S, the set $\{v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n\}$ is not spanning set anymore.

8. RANK, ROW AND COLUMN SPACES

$$A_{m \times n} = \begin{bmatrix} r_1 \\ \vdots \\ r_m \end{bmatrix} = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix} \text{ is a } m \times n \text{ matrix.}$$

Note that

$$colspace(A) = rowspace(A^T), \quad colspace(A^T) = rowspace(A).$$

Remark 8.1.

- colspace(A) is a subspace of \mathbb{R}^m .
- rowspace(A) is a subspace of \mathbb{R}^n .

8

Remark 8.2. rank(A) = the dimension of <math>colspace(A) = the dimension of $<math>rowspace(A) = rank(A^T).$

Summary: How to find a basis for colspace(A)?

• The basis for colspace(A) consists of the columns containing the leading 1's in ref(A).

Summary: How to find a basis for rowspace(A)?

- The nonzero rows in ref(A) form a basis for rowspace(A). (Note that these rows are not from the original rows of A.) Or
- The columns containing the leading 1's in ref(A) forms a basis for $rospace(A^T)$. Taking transpose of these columns, we obtain a basis for rowspace(A). (These rows are not from the original rows of A.)