
CHAPTER 5 REVIEW

Throughout this note, we assume that V and W are two vector spaces with
dimV = n and dimW = m. T : V →W is a linear transformation.

1. A map T : V →W is a linear transformation if and only if

T (c1v1 + c2v2) = c1T (v1) + c2T (v2),

for all v1, v2 ∈ V and all scalars c1, c2.

Every linear transform T : Rn → Rm can be expressed as the matrix product
with an m× n matrix:

T (v) = [T ]m×nv =
[
T (e1) T (e2) · · · T (en)

]
v,

for all n-column vector v in Rn. Then matrix [T ]m×n is called the matrix
of transformation T , or the matrix representation for T with respect to the
standard basis.

Remark 0.1. More generally, given arbitrary basis B = {v1, · · · , vn} of Rn,

T (v) = [TB]m×nv =
[
T (v1) T (v2) · · · T (vn)

]

c1
c2
...
cn

 ,

where v = c1v1 + · · ·+ cnvn.


c1
c2
...
cn

 can be considered as the coordinates of v

with respect to the basis {v1, · · · , vn}.

Example 0.2. Let T : P3 → P2 be a linear transformation defined by

T (a0 + a1t+ a2t
2 + a3t

3) = (a0 + a3) + (a1 + a2)t+ (a0 + a1 + a2 + a3)t2.

Then the matrix of T relative to the bases. If we choose the standard bases

{t3, t2, t, 1}, {t2, t, 1}

for P3 and P2, respectively. Then

[T ] =

1 1 1 1
0 1 1 0
1 0 0 1

 .
1
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2. How to find the image of a vector under a linear transformation.

Example 0.3. Let T : R2 → R2 be a linear transformation given by

T (
[
1
1

]
) =

[
−3
−3

]
, T (

[
2
1

]
) =

[
4
2

]
.

Find T (
[
4
3

]
).

Solution. We first try to find constants c1, c2 such that[
4
3

]
= c1

[
1
1

]
+ c2

[
2
1

]
.

It is not a hard job to find out that

c1 = 2, c2 = 1.

Therefore,

T (
[
4
3

]
) =

[
−3 4
−3 2

] [
2
1

]
=
[
−2
−4

]
.

J

Example 0.4. T is a linear transformation from P2 to P2, and

T (x2 − 1) = x2 + x− 3, T (2x) = 4x, T (3x+ 2) = 2x+ 6.

Find T (1), T (x), and T (x2).

Solution. We identify T as a linear transformation from R3 to R3 by the
map

ax2 + bx+ c 7→

ab
c

 .
By the given conditions, we have

T (1, 0,−1) = (1, 1,−3), T (0, 2, 0) = (0, 4, 0), T (0, 3, 2) = (0, 2, 6).

We immediately have

T (0, 1, 0) = 1
2T (0, 2, 0) = (0, 2, 0).

Let

A =

 1 0 0
0 2 3
−1 0 2

 .
Solving

A~x =

0
0
1

 ,
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we get ~x =

 0
−3

41
2

. Therefore,

T (0, 0, 1) =

 1 0 0
1 4 2
−3 0 6


 0
−3

41
2

 =

 0
−2
3

 .
Finally,

T (1, 0, 0) = T (1, 0,−1) + T (0, 0, 1) =

 1
−1
0

 .
Now we restore this result back to the space P2 and obtain

T (1) = −2x+ 3, T (x) = 2x, T (x2) = x2 − x.

J

Summary: Suppose the images of a basis B = {v1, · · · , vn} are given, i.e.,
we known T (v1), · · · , T (vn). For a given vector v,

1. we identify T as a linear transformation from Rn to Rm;

2. write down the representation matrix [TB];

3. find the coordinates of v, i.e., v = c1v1 + · · ·+ cnvn;

4. T (v) = [TB]

c1
...
cn

 ;

5. restore the result in Rn and Rm to the original vector spaces V and
W .

If you are asked to find the images for all vectors in V ,

1. we identify T as a linear transformation from Rn to Rm;

2. follow the steps given above to find T (e1), · · ·T (en);

3. write down the representation matrix [T ];

4. T (v) = [T ]v;

5. restore the result in Rn and Rm to the original vector spaces V and
W .

3. Kernel and Range
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Example 0.5. T is a linear transformation from P1 to P2. Moreover,

T (a+ bx) = (2a− 3b) + (b− 5a)x+ (a+ b)x2.

Find Ker(T ) and Rng(T ).

Solution. We identify T as a linear transformation from R2 to R3. By the
given conditions, we have

T (
[
1
0

]
=

 1
1
−3

 , T (
[
0
1

]
) =

 1
−5
2

 .
So the representation matrix [T ] of T is 1 1

1 −5
−3 2

 ∼
1 0

0 1
0 0

 .
Ker(T ) = Null space of [T ]. For any m× n matrix A,

rank(A) + dim(Null space of A) = n.

So Ker(T ) = {0}.

On the other hand,

Rng(T ) = {T (ax+ b) : a, b ∈ R}
= {(2a− 3b) + (b− 5a)x+ (a+ b)x2 : a, b ∈ R}
= {a(2− 5x+ x2) + b(−3 + x+ x2) : a, b ∈ R}
= span{2− 5x+ x2,−3 + x+ x2}.

dim(Rng(T )) = 2. J

Summary: Kernel

1. we identify T as a linear transformation from Rn to Rm;

2. find the representation matrix [T ] =
[
T (e1) · · · T (en)

]
;

4. Ker(T ) is the solution space to [T ]x = 0.

5. restore the result in Rn to the original vector space V .

Example 0.6. Find the range of the linear transformation T : R4 → R3

whose standard representation matrix is given by

A = [T ] =

 1 1 2 3
3 4 −1 2
−1 −2 5 4

 .
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Solution. Rng(T ) = colspace([T ]). Note that the colspace([T ]) consists of

all the vectors v =

xy
z

 such that the homogeneous linear system [T ]x = v

is consistent.
1 1 2 3

... x

3 4 −1 2
... y

−1 −2 5 4
... z

 ∼


1 0 9 10
... 4x− y

0 1 −7 −7
... y − 3x

0 0 0 0
... y + z − 2x

 .
The above system is consistent if and only if y + z − 2x = 0, that is,

colspace([T ]) consists of all vectors v =

xy
z

 satisfying y + z − 2x = 0.

In other words, colspace([T ]) is the plain y + z − 2x = 0. J

Remark 0.7. This example actually gives an algorithm to find colspace(A)
and rowspace(A) of a matrix A.

Summary: Range

1. we identify T as a linear transformation from Rn to Rm;

2. find the representation matrix [T ] =
[
T (e1) · · · T (en)

]
;

3. Rng(T ) = colspace([T ]), which is a subspace of Rm;

4. restore the result in Rm to the original vector space W .

4. How to find eigenvalues and eigenvectors/eigenspaces?

Example 0.8. Find the eigenvalues and eigenspaces of the matrix

A =

 5 12 −6
−3 −10 6
−3 −12 8

 .
Determine A is defective or not.

Solution. The characteristic polynomial is given by

p(λ) = det(A− λI3) = −(λ− 2)2(λ+ 1).

So the eigenvalues are λ1 = 2, λ2 = −1. Their multiplicities are m1 =
2,m2 = 1. Since

A− 2I3 ∼

1 4 −2
0 0 0
0 0 0

 .
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The eigenspace with respect to λ1 = 2 is

E1 = span{

−4
1
0

 ,
2

0
1

}.
Similarly, the eigenspace with respect to λ2 = −1 is

E2 = span{

−1
1
1

}.
We have dimEi = mi for i = 1, 2. So A is non-defective. J

Example 0.9. Find the eigenvalues and eigenspaces of the matrix

A =
[

6 5
−5 −4

]
.

Determine A is defective or not.

Solution. The characteristic polynomial is given by
p(λ) = det(A− λI2) = (λ− 1)2.

So the eigenvalues are λ1 = 1 with multiplicity m1 = 2. Since

A− I2 ∼
[
1 1
0 0

]
.

Thus, the eigenspace with respect to λ1 = 1 is

E1 = span{
[
−1
1

]
}.

We have dimE1 = 1 < m1 = 2. So A is defective. J

Summary:

1. Factorize the characteristic polynomial
p(λ) = det(A− λI) = ±(λ− λ1)m1 · · · (λ− λk)mk .

Then λ1, · · · , λ2 are all the eigenvalues of A.

2. The eigenspace Ei with respect to the eigenvalue λi is the solution
space to the homogeneous linear system (A−λiI)x = 0. All the non-
zero vectors in Ei are the eigenvectors with respect to the eigenvalue
λi.

3. A is non-defective if and only if dimEi = mi for k = 1, · · · , k.

Remark 0.10. An n×n matrix A is non-defective if A has n distinct roots.
If A has some repeated root(s), then while check defectiveness A, one only
need to check the dimension(s) of the eigenspace(s) Ei with respect to the
eigenvalue(s) λi with multiplicity mi ≥ 2.


