CHAPTER 5 REVIEW

Throughout this note, we assume that V and W are two vector spaces with $\operatorname{dim} V=n$ and $\operatorname{dim} W=m . T: V \rightarrow W$ is a linear transformation.

1. A map $T: V \rightarrow W$ is a linear transformation if and only if

$$
T\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right),
$$

for all $v_{1}, v_{2} \in V$ and all scalars c_{1}, c_{2}.
Every linear transform $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be expressed as the matrix product with an $m \times n$ matrix:

$$
T(v)=[T]_{m \times n} v=\left[\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right)
\end{array}\right] v,
$$

for all n-column vector v in \mathbb{R}^{n}. Then matrix $[T]_{m \times n}$ is called the matrix of transformation T, or the matrix representation for T with respect to the standard basis.

Remark 0.1. More generally, given arbitrary basis $\mathcal{B}=\left\{v_{1}, \cdots, v_{n}\right\}$ of \mathbb{R}^{n},

$$
T(v)=\left[T_{\mathcal{B}}\right]_{m \times n} v=\left[\begin{array}{llll}
T\left(v_{1}\right) & T\left(v_{2}\right) & \cdots & T\left(v_{n}\right)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right],
$$

where $v=c_{1} v_{1}+\cdots+c_{n} v_{n} .\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$ can be considered as the coordinates of v with respect to the basis $\left\{v_{1}, \cdots, v_{n}\right\}$.

Example 0.2. Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ be a linear transformation defined by $T\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right)=\left(a_{0}+a_{3}\right)+\left(a_{1}+a_{2}\right) t+\left(a_{0}+a_{1}+a_{2}+a_{3}\right) t^{2}$. Then the matrix of T relative to the bases. If we choose the standard bases

$$
\left\{t^{3}, t^{2}, t, 1\right\}, \quad\left\{t^{2}, t, 1\right\}
$$

for \mathbb{P}_{3} and \mathbb{P}_{2}, respectively. Then

$$
[T]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

2. How to find the image of a vector under a linear transformation.

Example 0.3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
-3 \\
-3
\end{array}\right], \quad T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{l}4 \\ 3\end{array}\right]\right)$.
Solution. We first try to find constants c_{1}, c_{2} such that

$$
\left[\begin{array}{l}
4 \\
3
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

It is not a hard job to find out that

$$
c_{1}=2, \quad c_{2}=1
$$

Therefore,

$$
T\left(\left[\begin{array}{l}
4 \\
3
\end{array}\right]\right)=\left[\begin{array}{ll}
-3 & 4 \\
-3 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-4
\end{array}\right] .
$$

Example 0.4. T is a linear transformation from \mathbb{P}_{2} to \mathbb{P}_{2}, and

$$
T\left(x^{2}-1\right)=x^{2}+x-3, \quad T(2 x)=4 x, \quad T(3 x+2)=2 x+6
$$

Find $T(1), T(x)$, and $T\left(x^{2}\right)$.

Solution. We identify T as a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} by the map

$$
a x^{2}+b x+c \mapsto\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

By the given conditions, we have

$$
T(1,0,-1)=(1,1,-3), \quad T(0,2,0)=(0,4,0), \quad T(0,3,2)=(0,2,6)
$$

We immediately have

$$
T(0,1,0)=\frac{1}{2} T(0,2,0)=(0,2,0)
$$

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right]
$$

Solving

$$
A \vec{x}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

we get $\vec{x}=\left[\begin{array}{c}0 \\ -\frac{3}{4} \\ \frac{1}{2}\end{array}\right]$. Therefore,

$$
T(0,0,1)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 4 & 2 \\
-3 & 0 & 6
\end{array}\right]\left[\begin{array}{c}
0 \\
-\frac{3}{4} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right] .
$$

Finally,

$$
T(1,0,0)=T(1,0,-1)+T(0,0,1)=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] .
$$

Now we restore this result back to the space \mathbb{P}_{2} and obtain

$$
T(1)=-2 x+3, \quad T(x)=2 x, \quad T\left(x^{2}\right)=x^{2}-x .
$$

Summary: Suppose the images of a basis $\mathcal{B}=\left\{v_{1}, \cdots, v_{n}\right\}$ are given, i.e., we known $T\left(v_{1}\right), \cdots, T\left(v_{n}\right)$. For a given vector v,

1. we identify T as a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m};
2. write down the representation matrix $\left[T_{\mathcal{B}}\right]$;
3. find the coordinates of v, i.e., $v=c_{1} v_{1}+\cdots+c_{n} v_{n}$;
4. $T(v)=\left[T_{\mathcal{B}}\right]\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$;
5. restore the result in \mathbb{R}^{n} and \mathbb{R}^{m} to the original vector spaces V and W.

If you are asked to find the images for all vectors in V,

1. we identify T as a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m};
2. follow the steps given above to find $T\left(e_{1}\right), \cdots T\left(e_{n}\right)$;
3. write down the representation matrix $[T]$;
4. $T(v)=[T] v$;
5. restore the result in \mathbb{R}^{n} and \mathbb{R}^{m} to the original vector spaces V and W.
6. Kernel and Range

Example 0.5. T is a linear transformation from \mathbb{P}_{1} to \mathbb{P}_{2}. Moreover,

$$
T(a+b x)=(2 a-3 b)+(b-5 a) x+(a+b) x^{2} .
$$

Find $\operatorname{Ker}(T)$ and $\operatorname{Rng}(T)$.

Solution. We identify T as a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3}. By the given conditions, we have

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-3
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-5 \\
2
\end{array}\right] .\right.
$$

So the representation matrix $[T]$ of T is

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & -5 \\
-3 & 2
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] .
$$

$\operatorname{Ker}(T)=$ Null space of $[T]$. For any $m \times n$ matrix A,

$$
\operatorname{rank}(A)+\operatorname{dim}(\text { Null space of } A)=n .
$$

So $\operatorname{Ker}(T)=\{0\}$.
On the other hand,

$$
\begin{aligned}
\operatorname{Rng}(T) & =\{T(a x+b): a, b \in \mathbb{R}\} \\
& =\left\{(2 a-3 b)+(b-5 a) x+(a+b) x^{2}: a, b \in \mathbb{R}\right\} \\
& =\left\{a\left(2-5 x+x^{2}\right)+b\left(-3+x+x^{2}\right): a, b \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{2-5 x+x^{2},-3+x+x^{2}\right\} .
\end{aligned}
$$

$\operatorname{dim}(\operatorname{Rng}(T))=2$.

Summary: Kernel

1. we identify T as a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m};
2. find the representation matrix $[T]=\left[\begin{array}{lll}T\left(e_{1}\right) & \cdots & T\left(e_{n}\right)\end{array}\right]$;
3. $\operatorname{Ker}(T)$ is the solution space to $[T] x=0$.
4. restore the result in \mathbb{R}^{n} to the original vector space V.

Example 0.6. Find the range of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ whose standard representation matrix is given by

$$
A=[T]=\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
3 & 4 & -1 & 2 \\
-1 & -2 & 5 & 4
\end{array}\right] .
$$

Solution. $\operatorname{Rng}(T)=$ colspace $([T])$. Note that the colspace $([T])$ consists of all the vectors $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that the homogeneous linear system $[T] x=v$ is consistent.

$$
\left[\begin{array}{cccccc}
1 & 1 & 2 & 3 & \vdots & x \\
3 & 4 & -1 & 2 & \vdots & y \\
-1 & -2 & 5 & 4 & \vdots & z
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 9 & 10 & \vdots & 4 x-y \\
0 & 1 & -7 & -7 & \vdots & y-3 x \\
0 & 0 & 0 & 0 & \vdots & y+z-2 x
\end{array}\right]
$$

The above system is consistent if and only if $y+z-2 x=0$, that is, colspace $([T])$ consists of all vectors $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ satisfying $y+z-2 x=0$.

In other words, colspace $([T])$ is the plain $y+z-2 x=0$.
Remark 0.7. This example actually gives an algorithm to find $\operatorname{colspace}(A)$ and rowspace (A) of a matrix A.

Summary: Range

1. we identify T as a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m};
2. find the representation matrix $[T]=\left[\begin{array}{lll}T\left(e_{1}\right) & \cdots & T\left(e_{n}\right)\end{array}\right]$;
3. $\operatorname{Rng}(T)=\operatorname{colspace}([T])$, which is a subspace of \mathbb{R}^{m};
4. restore the result in \mathbb{R}^{m} to the original vector space W.
5. How to find eigenvalues and eigenvectors/eigenspaces?

Example 0.8. Find the eigenvalues and eigenspaces of the matrix

$$
A=\left[\begin{array}{ccc}
5 & 12 & -6 \\
-3 & -10 & 6 \\
-3 & -12 & 8
\end{array}\right]
$$

Determine A is defective or not.
Solution. The characteristic polynomial is given by

$$
p(\lambda)=\operatorname{det}\left(A-\lambda I_{3}\right)=-(\lambda-2)^{2}(\lambda+1) .
$$

So the eigenvalues are $\lambda_{1}=2, \lambda_{2}=-1$. Their multiplicities are $m_{1}=$ $2, m_{2}=1$. Since

$$
A-2 I_{3} \sim\left[\begin{array}{ccc}
1 & 4 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The eigenspace with respect to $\lambda_{1}=2$ is

$$
E_{1}=\operatorname{span}\left\{\left[\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\}
$$

Similarly, the eigenspace with respect to $\lambda_{2}=-1$ is

$$
E_{2}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

We have $\operatorname{dim} E_{i}=m_{i}$ for $i=1,2$. So A is non-defective.
Example 0.9. Find the eigenvalues and eigenspaces of the matrix

$$
A=\left[\begin{array}{cc}
6 & 5 \\
-5 & -4
\end{array}\right]
$$

Determine A is defective or not.

Solution. The characteristic polynomial is given by

$$
p(\lambda)=\operatorname{det}\left(A-\lambda I_{2}\right)=(\lambda-1)^{2}
$$

So the eigenvalues are $\lambda_{1}=1$ with multiplicity $m_{1}=2$. Since

$$
A-I_{2} \sim\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Thus, the eigenspace with respect to $\lambda_{1}=1$ is

$$
E_{1}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\}
$$

We have $\operatorname{dim} E_{1}=1<m_{1}=2$. So A is defective.

Summary:

1. Factorize the characteristic polynomial

$$
p(\lambda)=\operatorname{det}(A-\lambda I)= \pm\left(\lambda-\lambda_{1}\right)^{m_{1}} \cdots\left(\lambda-\lambda_{k}\right)^{m_{k}}
$$

Then $\lambda_{1}, \cdots, \lambda_{2}$ are all the eigenvalues of A.
2. The eigenspace E_{i} with respect to the eigenvalue λ_{i} is the solution space to the homogeneous linear system $\left(A-\lambda_{i} I\right) x=0$. All the nonzero vectors in E_{i} are the eigenvectors with respect to the eigenvalue λ_{i}.
3. A is non-defective if and only if $\operatorname{dim} E_{i}=m_{i}$ for $k=1, \cdots, k$.

Remark 0.10. An $n \times n$ matrix A is non-defective if A has n distinct roots. If A has some repeated root(s), then while check defectiveness A, one only need to check the dimension(s) of the eigenspace(s) E_{i} with respect to the eigenvalue(s) λ_{i} with multiplicity $m_{i} \geq 2$.

