CHAPTER 5 REVIEW

Throughout this note, we assume that V and W are two vector spaces with $\dim V = n$ and $\dim W = m$. $T: V \to W$ is a linear transformation.

1. A map $T: V \to W$ is a linear transformation if and only if

$$T(c_1v_1 + c_2v_2) = c_1T(v_1) + c_2T(v_2),$$

for all $v_1, v_2 \in V$ and all scalars c_1, c_2 .

Every linear transform $T: \mathbb{R}^n \to \mathbb{R}^m$ can be expressed as the matrix product with an $m \times n$ matrix:

$$T(v) = [T]_{m \times n} v = \begin{bmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{bmatrix} v,$$

for all *n*-column vector v in \mathbb{R}^n . Then matrix $[T]_{m \times n}$ is called the matrix of transformation T, or the matrix representation for T with respect to the standard basis.

Remark 0.1. More generally, given arbitrary basis $\mathcal{B} = \{v_1, \cdots, v_n\}$ of \mathbb{R}^n ,

$$T(v) = [T_{\mathcal{B}}]_{m \times n} v = \begin{bmatrix} T(v_1) & T(v_2) & \cdots & T(v_n) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

where $v = c_1v_1 + \dots + c_nv_n$. $\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ can be considered as the coordinates of v

with respect to the basis $\{v_1, \cdots, v_n\}$.

Example 0.2. Let $T : \mathbb{P}_3 \to \mathbb{P}_2$ be a linear transformation defined by $T(a_0 + a_1t + a_2t^2 + a_3t^3) = (a_0 + a_3) + (a_1 + a_2)t + (a_0 + a_1 + a_2 + a_3)t^2$. Then the matrix of T relative to the bases. If we choose the standard bases $(a_3 + a_3 + a_3) = (a_3 + a_3) + (a_3 + a_3)t^2$.

 $\{t^3, t^2, t, 1\}, \{t^2, t, 1\}$

for \mathbb{P}_3 and \mathbb{P}_2 , respectively. Then

$$[T] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}.$$

2. How to find the image of a vector under a linear transformation.

Example 0.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by

$$T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{bmatrix} -3\\-3 \end{bmatrix}, \quad T\begin{pmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix}$$

Find $T(\begin{bmatrix} 4\\ 3 \end{bmatrix})$.

Solution. We first try to find constants c_1, c_2 such that

$$\begin{bmatrix} 4\\3 \end{bmatrix} = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 2\\1 \end{bmatrix}.$$

It is not a hard job to find out that

$$c_1 = 2, \quad c_2 = 1.$$

Therefore,

$$T\begin{pmatrix} 4\\3 \end{pmatrix} = \begin{bmatrix} -3 & 4\\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} -2\\-4 \end{bmatrix}$$

Example 0.4. T is a linear transformation from \mathbb{P}_2 to \mathbb{P}_2 , and

$$T(x^2 - 1) = x^2 + x - 3$$
, $T(2x) = 4x$, $T(3x + 2) = 2x + 6$.

Find T(1), T(x), and $T(x^2)$.

Solution. We identify T as a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 by the map

$$ax^2 + bx + c \mapsto \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

By the given conditions, we have

$$T(1,0,-1)=(1,1,-3), \quad T(0,2,0)=(0,4,0), \quad T(0,3,2)=(0,2,6).$$

We immediately have

$$T(0,1,0) = \frac{1}{2}T(0,2,0) = (0,2,0).$$

Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ -1 & 0 & 2 \end{bmatrix}.$$

Solving

$$A\vec{x} = \begin{bmatrix} 0\\0\\1 \end{bmatrix},$$

we get
$$\vec{x} = \begin{bmatrix} 0 \\ -\frac{3}{4} \\ \frac{1}{2} \end{bmatrix}$$
. Therefore,
$$T(0,0,1) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 4 & 2 \\ -3 & 0 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{3}{4} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix}.$$

Finally,

$$T(1,0,0) = T(1,0,-1) + T(0,0,1) = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}.$$

Now we restore this result back to the space \mathbb{P}_2 and obtain

$$T(1) = -2x + 3$$
, $T(x) = 2x$, $T(x^2) = x^2 - x$.

Summary: Suppose the images of a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ are given, i.e., we known $T(v_1), \dots, T(v_n)$. For a given vector v,

- 1. we identify T as a linear transformation from \mathbb{R}^n to \mathbb{R}^m ;
- 2. write down the representation matrix $[T_{\mathcal{B}}]$;
- 3. find the coordinates of v, i.e., $v = c_1v_1 + \cdots + c_nv_n$;

4.
$$T(v) = [T_{\mathcal{B}}] \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix};$$

5. restore the result in \mathbb{R}^n and \mathbb{R}^m to the original vector spaces V and W.

If you are asked to find the images for all vectors in V,

- 1. we identify T as a linear transformation from \mathbb{R}^n to \mathbb{R}^m ;
- 2. follow the steps given above to find $T(e_1), \cdots T(e_n)$;
- 3. write down the representation matrix [T];
- 4. T(v) = [T]v;
- 5. restore the result in \mathbb{R}^n and \mathbb{R}^m to the original vector spaces V and W.
- **3.** Kernel and Range

Example 0.5. *T* is a linear transformation from \mathbb{P}_1 to \mathbb{P}_2 . Moreover,

$$\Gamma(a+bx) = (2a-3b) + (b-5a)x + (a+b)x^2.$$

Find $\operatorname{Ker}(T)$ and $\operatorname{Rng}(T)$.

Solution. We identify T as a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 . By the given conditions, we have

$$T\begin{pmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\-3 \end{bmatrix}, \quad T\begin{pmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\-5\\2 \end{bmatrix}.$$

So the representation matrix [T] of T is

$$\begin{bmatrix} 1 & 1 \\ 1 & -5 \\ -3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

 $\operatorname{Ker}(T) = \operatorname{Null} \operatorname{space} \operatorname{of} [T].$ For any $m \times n$ matrix A,

 $\operatorname{rank}(A) + \operatorname{dim}(\operatorname{Null space of} A) = n.$

So $Ker(T) = \{0\}.$

On the other hand,

$$Rng(T) = \{T(ax + b) : a, b \in \mathbb{R}\}\$$

= $\{(2a - 3b) + (b - 5a)x + (a + b)x^2 : a, b \in \mathbb{R}\}\$
= $\{a(2 - 5x + x^2) + b(-3 + x + x^2) : a, b \in \mathbb{R}\}\$
= $span\{2 - 5x + x^2, -3 + x + x^2\}.$

 $\dim(\operatorname{Rng}(T)) = 2.$

Summary: Kernel

- 1. we identify T as a linear transformation from \mathbb{R}^n to \mathbb{R}^m ;
- 2. find the representation matrix $[T] = [T(e_1) \cdots T(e_n)];$
- 4. Ker(T) is the solution space to [T]x = 0.
- 5. restore the result in \mathbb{R}^n to the original vector space V.

Example 0.6. Find the range of the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^3$ whose standard representation matrix is given by

$$A = [T] = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & -1 & 2 \\ -1 & -2 & 5 & 4 \end{bmatrix}.$$

Solution. Rng(T) = colspace([T]). Note that the colspace([T]) consists of all the vectors $v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that the homogeneous linear system [T]x = v is consistent.

$$\begin{bmatrix} 1 & 1 & 2 & 3 & \vdots & x \\ 3 & 4 & -1 & 2 & \vdots & y \\ -1 & -2 & 5 & 4 & \vdots & z \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 & 10 & \vdots & 4x - y \\ 0 & 1 & -7 & -7 & \vdots & y - 3x \\ 0 & 0 & 0 & 0 & \vdots & y + z - 2x \end{bmatrix}$$

The above system is consistent if and only if y + z - 2x = 0, that is, $\operatorname{colspace}([T])$ consists of all vectors $v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying y + z - 2x = 0.

In other words, colspace([T]) is the plain y + z - 2x = 0.

.

Remark 0.7. This example actually gives an algorithm to find colspace(A) and rowspace(A) of a matrix A.

Summary: Range

- 1. we identify T as a linear transformation from \mathbb{R}^n to \mathbb{R}^m ;
- 2. find the representation matrix $[T] = [T(e_1) \cdots T(e_n)];$
- 3. $\operatorname{Rng}(T) = \operatorname{colspace}([T])$, which is a subspace of \mathbb{R}^m ;
- 4. restore the result in \mathbb{R}^m to the original vector space W.
- 4. How to find eigenvalues and eigenvectors/eigenspaces?

Example 0.8. Find the eigenvalues and eigenspaces of the matrix

$$A = \begin{bmatrix} 5 & 12 & -6 \\ -3 & -10 & 6 \\ -3 & -12 & 8 \end{bmatrix}$$

Determine A is defective or not.

Solution. The characteristic polynomial is given by

$$p(\lambda) = \det(A - \lambda I_3) = -(\lambda - 2)^2(\lambda + 1).$$

So the eigenvalues are $\lambda_1 = 2, \lambda_2 = -1$. Their multiplicities are $m_1 = 2, m_2 = 1$. Since

$$A - 2I_3 \sim \begin{bmatrix} 1 & 4 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The eigenspace with respect to $\lambda_1 = 2$ is

$$E_1 = \operatorname{span}\left\{ \begin{bmatrix} -4\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}.$$

Similarly, the eigenspace with respect to $\lambda_2 = -1$ is

$$E_2 = \operatorname{span}\left\{ \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}.$$

We have $\dim E_i = m_i$ for i = 1, 2. So A is non-defective.

Example 0.9. Find the eigenvalues and eigenspaces of the matrix

$$A = \begin{bmatrix} 6 & 5\\ -5 & -4 \end{bmatrix}.$$

Determine A is defective or not.

Solution. The characteristic polynomial is given by

$$p(\lambda) = \det(A - \lambda I_2) = (\lambda - 1)^2.$$

So the eigenvalues are $\lambda_1 = 1$ with multiplicity $m_1 = 2$. Since

$$A - I_2 \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Thus, the eigenspace with respect to $\lambda_1 = 1$ is

$$E_1 = \operatorname{span}\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}.$$

We have $\dim E_1 = 1 < m_1 = 2$. So A is defective.

Summary:

1. Factorize the characteristic polynomial

$$p(\lambda) = \det(A - \lambda I) = \pm (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_k)^{m_k}.$$

Then $\lambda_1, \dots, \lambda_2$ are all the eigenvalues of A.

- 2. The eigenspace E_i with respect to the eigenvalue λ_i is the solution space to the homogeneous linear system $(A \lambda_i I)x = 0$. All the non-zero vectors in E_i are the eigenvectors with respect to the eigenvalue λ_i .
- 3. A is non-defective if and only if $\dim E_i = m_i$ for $k = 1, \dots, k$.

Remark 0.10. An $n \times n$ matrix A is non-defective if A has n distinct roots. If A has some repeated root(s), then while check defectiveness A, one only need to check the dimension(s) of the eigenspace(s) E_i with respect to the eigenvalue(s) λ_i with multiplicity $m_i \geq 2$.