EXAMPLES OF SECTIONS 1.8

Question 1. Solve

$$
\left\{\begin{array}{l}
x y^{\prime}+(2 x-3) y=5 x^{5} y^{4} \\
y(1)=1
\end{array}\right.
$$

Solutions.

1. Write the equation as

$$
y^{\prime}+\frac{2 x-3}{x} y=5 x^{4} y^{4}
$$

for $x \neq 0$, which is a Bernoulli equation with $n=4$. Set $v=y^{1-n}=y^{-3}$. The equation for v then becomes

$$
\frac{d v}{d x}+(1-4) \frac{2 x-3}{x} v=(1-4) 5 x^{4}
$$

or

$$
\frac{d v}{d x}+\left(\frac{9}{x}-6\right) v=-15 x^{4}
$$

Using the formula for first order linear D.E.'s with $p(x)=\frac{9}{x}-6$ and $q(x)=$ $-15 x^{4}$, we have

$$
\begin{aligned}
& e^{-\int p(x) d x}=e^{6 x-9 \ln x}=x^{-9} e^{6 x}, \\
& e^{\int p(x) d x}=e^{-6 x+9 \ln x}=x^{9} e^{-6 x} .
\end{aligned}
$$

where we assumed $x>0$ since the problem is defined only for $x>0$ or $x<0$ (because $x \neq 0$). From this we get

$$
\int q(x) e^{\int p(x) d x} d x=-15 \int x^{13} e^{-6 x} d x .
$$

This integral is done by a tiresome (but not difficult) process of integrating by parts thirteen times. The answer is

$$
\begin{aligned}
- & \frac{e^{-6 x}}{314928}\left(25025+150150 x+450450 x^{2}+900900 x^{3}+1351350 x^{4}+1621620 x^{5}+1621620 x^{6}\right. \\
& \left.+1389960 x^{7}+1042470 x^{8}+694980 x^{9}+416988 x^{10}+227448 x^{11}+113724 x^{12}+52488 x^{13}\right)
\end{aligned}
$$

Denote the above expression by $f(x)$. Then using the formula for solutions of first order linear equations,

$$
v(x)=x^{-9} e^{6 x}(f(x)+C)
$$

from which follows

$$
y(x)=\left[x^{-9} e^{6 x}(f(x)+C)\right]^{-\frac{1}{3}}
$$

To find C use $y(1)=1$,

$$
y(1)=1=\left[e^{6}(f(1)+C)\right]^{-\frac{1}{3}} \Rightarrow C=e^{-6}-f(1)
$$

thus

$$
y(x)=\left[x^{-9} e^{6 x}\left(f(x)+e^{-6}-f(1)\right)\right]^{-\frac{1}{3}} .
$$

