EXAMPLES OF SECTIONS 1.9

Question 1. Solve $\frac{y}{x}+6 x+(\ln |x|-2) y^{\prime}=0$.
Question 2. Find b such that $\left(x y^{2}+b x^{2} y\right) d x+(x+y) x^{2} d y$ is exact and solve the equation.

Question 3. Find the integrating fact for $\left(3 x^{3}+y\right) d x+\left(2 x^{2} y-x\right) d y=0$ and solve the equation.

Solutions.

1. First, one checks

$$
\frac{\partial}{\partial y} M=\frac{1}{x}=\frac{\partial}{\partial x} N,
$$

and thus this equation is exact. Set

$$
\phi(x, y)=\int M(x, y) d x+h(y)=y \ln |x|+3 x^{2}+h(y)
$$

and differentiate ϕ w.r.t. y

$$
\frac{\partial}{\partial y} \phi(x, y)=\ln |x|++h^{\prime}(y)=N(x, y)=\ln |x|-2 .
$$

We thus obtain $h^{\prime}(y)=-2$, which yields $h(y)=-2 y$. In summary,

$$
\phi(x, y)=y \ln |x|+3 x^{2}-2 y=C,
$$

or equivalently

$$
y(x)=\frac{C-3 x^{2}}{\ln |x|-2}
$$

is the general solution.
2. We need

$$
\frac{\partial}{\partial y} M=2 x y+b x^{2}=\frac{\partial}{\partial x} N=3 x^{2}+2 x y
$$

which clearly implies $b=3$. As above,

$$
\begin{aligned}
\phi(x, y) & =\int M(x, y) d x+h(y)=\frac{1}{2} x^{2} y^{2}+x^{3} y+h(y) \\
& \Rightarrow \frac{\partial}{\partial y} \phi(x, y)=x^{2} y+x^{3}+h^{\prime}(y)=x^{3}+x^{2} y \\
& \Rightarrow h^{\prime}(y)=0 \Rightarrow h(y)=0 \\
& \Rightarrow \phi(x, y)=\frac{1}{2} x^{2} y^{2}+x^{3} y=C .
\end{aligned}
$$

3. $\left(3 x^{3}+y\right) d x+\left(2 x^{2} y-x\right) d y=0$ Let $M(x, y)=3 x^{3}+y$ and $N(x, y)=$ $2 x^{2} y-x$. Then

$$
\partial_{y} M-\partial_{x} N=2(1-2 x y) \Longrightarrow \frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{2}{x}
$$

Then

$$
I(x)=e^{\int \frac{2}{x} d x}=\frac{1}{x^{2}} .
$$

The equation

$$
\left(3 x-\frac{y}{x^{2}}\right) d x+\left(2 y-\frac{1}{x}\right) d y=0
$$

is exact. Following the same procedure as above, we get

$$
\phi(x, y)=\frac{3}{2} x^{2}+y^{2}-\frac{y}{x}=C
$$

is the general solution.

