EXAMPLES OF SECTIONS 2.1, 2.2

Question 1. Solve the linear system:

$$
\left\{\begin{aligned}
x+3 y+2 z & =2 \\
2 x+7 y+7 z & =-1 \\
2 x+5 y+2 z & =7
\end{aligned}\right.
$$

Question 2. Identify a matrix that describes the previous system.
Question 3. Consider the differential equation $y^{\prime \prime}-10 y+21 y=0$. Verify that $y=A e^{3 x}+B e^{7 x}$ is a solution, with A and B arbitrary constants. If in addition $y(0)=15, y^{\prime}(0)=13$, write a system for A and B.

SOLUTIONS.

1. Subtract twice the first equation from the second one and replace the second equation by the result to get

$$
\left\{\begin{aligned}
x+3 y+2 z & =2 \\
y+3 z & =-5 \\
2 x+5 y+2 z & =7
\end{aligned}\right.
$$

Subtract twice the first equation from the third one and replace the third equation by the result to get

$$
\left\{\begin{aligned}
x+3 y+2 z & =2 \\
y+3 z & =-5 \\
-y+-2 z & =3
\end{aligned}\right.
$$

Adding the last two equations

$$
\left\{\begin{aligned}
x+3 y+2 z & =2 \\
y+3 z & =-5 \\
z & =-2
\end{aligned}\right.
$$

Multiply the third equation by -3 , add to the second one and replace the second equation with the result to get

$$
\left\{\begin{aligned}
x+3 y+2 z & =2 \\
y & =1 \\
z & =-2
\end{aligned}\right.
$$

Multiply the third equation by -2 , add to the first one to obtain

$$
\left\{\begin{array}{rlrl}
x+3 y & = & 6 \\
y & =1 \\
& z & =-2
\end{array}\right.
$$

Multiply the second equation by -3 and add to the first one to finally obtain

$$
\left\{\begin{aligned}
x & & = & 3 \\
& y & & =1 \\
& z & = & -2
\end{aligned}\right.
$$

So the solution of the system is $x=3, y=1, z=-2$.
2. From the original system we read off

$$
\left[\begin{array}{cccc}
1 & 3 & 2 & 2 \\
2 & 7 & 7 & -1 \\
2 & 5 & 2 & 7
\end{array}\right]
$$

3. We have

$$
\begin{gathered}
y=A e^{3 x}+B e^{7 x} \\
y^{\prime}=3 A e^{3 x}+7 B e^{7 x} \\
y^{\prime \prime}=9 A e^{3 x}+49 B e^{7 x}
\end{gathered}
$$

Then

$$
\begin{aligned}
y^{\prime \prime}-10 y+21 y & =9 A e^{3 x}+49 B e^{7 x}-10\left(3 A e^{3 x}+7 B e^{7 x}\right)+21\left(A e^{3 x}+B e^{7 x}\right) \\
& =(9 A-30 A+21 A) e^{3 x}+(49 B-70 B+21 B) e^{7 x} \\
& =0
\end{aligned}
$$

Plugging zero into the expression for y and using $y(0)=15$ we find $A+B=$ 15 , and plugging zero into the expression for y^{\prime} and using $y^{\prime}(0)=13$ we obtain $3 A+7 B=13$, so

$$
\left\{\begin{aligned}
A+B & =15 \\
3 A+7 B & =13
\end{aligned}\right.
$$

