EXAMPLES OF SECTIONS 4.4

Question 1. Find solution vectors \vec{u} and \vec{v} such that the solution space is the set of all linear combinations of the form $s \vec{u}+t \vec{v}$:

$$
\left\{\begin{array}{c}
x_{1}-4 x_{2}-3 x_{3}-7 x_{4}=0 \\
2 x_{1}-x_{2}+x_{3}+7 x_{4}=0 \\
x_{1}+2 x_{2}+3 x_{3}+11 x_{4}=0
\end{array}\right.
$$

SOLUTIONS.

1. The augmented matrix of the system is

$$
\left[\begin{array}{rrrrll}
1 & -4 & -3 & -7 & \vdots & 0 \\
2 & -1 & 1 & 7 & \vdots & 0 \\
1 & 2 & 3 & 11 & \vdots & 0
\end{array}\right] .
$$

Applying Gauss-Jordan elimination we find

$$
\left[\begin{array}{llllll}
1 & 0 & 1 & 5 & \vdots & 0 \\
0 & 1 & 1 & 3 & \vdots & 0 \\
0 & 0 & 0 & 0 & \vdots & 0
\end{array}\right]
$$

Therefore x_{3} and x_{4} are free variables. Denoting by $x_{3}=s, x_{4}=t$, we can then write

$$
\begin{aligned}
& x_{1}=-s-5 t, \\
& x_{2}=-s-3 t .
\end{aligned}
$$

Therefore solutions $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ can be written as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-s-5 t \\
-s-3 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
1
\end{array}\right]=s \vec{u}+t \vec{v},
$$

where

$$
\vec{u}=\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
1
\end{array}\right] .
$$

