EXAMPLES OF SECTIONS 4.5

Question 1. Determine whether the vectors $(5,-2,4),(2,-3,5)$, and $(4,5-$ 7) are linearly independent or dependent.

Question 2. Verify whether the given vectors $\vec{u}=(7,3,-1,9), \vec{v}=$ $(-2,-2,1,3)$ are linearly independent. If possible, express $\vec{w}=(4,-4,3,3)$ as a linear combination of \vec{u} and \vec{v}.

Question 3. Verify if the given vectors $\vec{u}=(1,0,0,3), \vec{v}=(0,1,-2,0), \vec{w}=$ $(0,-1,1,1)$ are linearly independent. If possible, express $\vec{z}=(2,-3,2,-3)$ as a linear combination of \vec{u}, \vec{v} and \vec{w}.

SOLUTIONS.

1. Denote the vectors by $\vec{u}=(5,-2,4), \vec{v}=(2,-3,5)$, and $\vec{w}=(4,5-7)$. Consider

$$
a \vec{u}+b \vec{v}+c \vec{w}=\overrightarrow{0} .
$$

Recall that the vectors are linearly independent if the only solution of the previous equation is $a=b=c=0$, and linearly dependent otherwise. The equation can be written as

$$
a\left[\begin{array}{c}
5 \\
-2 \\
4
\end{array}\right]+b\left[\begin{array}{c}
2 \\
-3 \\
5
\end{array}\right]+c\left[\begin{array}{c}
4 \\
5 \\
-7
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

or in matrix form

$$
\left[\begin{array}{ccc}
5 & 2 & 4 \\
-2 & -3 & 5 \\
4 & 5 & -7
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

The system will have a unique solution provided that the matrix of the system is invertible. But we readily check that

$$
\operatorname{det}\left[\begin{array}{ccc}
5 & 2 & 4 \\
-2 & -3 & 5 \\
4 & 5 & -7
\end{array}\right]=0
$$

which means that the matrix is not invertible, hence the system does not have a unique solution, and therefore the vectors are linearly dependent.
2. Consider the matrix

$$
A=[\vec{u} \vec{v}]=\left[\begin{array}{rr}
7 & -2 \\
3 & -2 \\
-1 & 1 \\
9 & -3
\end{array}\right] .
$$

Its submatrix

$$
\left[\begin{array}{ll}
7 & -2 \\
3 & -2
\end{array}\right]
$$

has determinant equal to $(-2) \times 7-(-2) \times 3=-14+6=-8 \neq 0$, hence the vectors are linearly independent.

Consider now the system

$$
c_{1} \vec{u}+c_{2} \vec{v}=\vec{w},
$$

or, in matrix form,

$$
\left[\begin{array}{rr}
7 & -2 \\
3 & -2 \\
-1 & 1 \\
9 & -3
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{r}
4 \\
-4 \\
3 \\
3
\end{array}\right] .
$$

The augmented matrix of the system is

$$
\left[\begin{array}{rrlr}
7 & -2 & \vdots & -4 \\
3 & -2 & \vdots & -4 \\
-1 & 1 & \vdots & 3 \\
9 & -3 & \vdots & 3
\end{array}\right]
$$

Applying Gauss-Jordan elimination we find

$$
\left[\begin{array}{cccc}
1 & 0 & \vdots & 2 \\
0 & 1 & \vdots & 5 \\
0 & 0 & \vdots & 0 \\
0 & 0 & \vdots & 0
\end{array}\right] .
$$

This means that the system has solution $c_{1}=2$ and $c_{2}=5$, therefore

$$
\vec{w}=2 \vec{u}+5 \vec{v} .
$$

3. Consider the matrix

$$
A=[\vec{u} \vec{v} \vec{w}]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -2 & 1 \\
3 & 0 & 1
\end{array}\right] .
$$

Its submatrix

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -2 & 1
\end{array}\right] .
$$

has determinant equal to $1 \times(1 \times 1-(-1) \times(-2))=1-2=-1 \neq 0$, hence the vectors are linearly independent.

Consider now the system

$$
c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}=\vec{z},
$$

or, in matrix form,

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -2 & 1 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3 \\
2 \\
-3
\end{array}\right] .
$$

The augmented matrix of the system is

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & \vdots & 2 \\
0 & 1 & -1 & \vdots & -3 \\
0 & -2 & 1 & \vdots & 2 \\
3 & 0 & 1 & \vdots & -3
\end{array}\right]
$$

Applying Gauss-Jordan elimination we find

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & \vdots & 0 \\
0 & 1 & 0 & \vdots & 0 \\
0 & 0 & 1 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 1
\end{array}\right]
$$

The last row corresponds to

$$
0 c_{1}+0 c_{2}+c 0 c_{3}=1,
$$

which of course is contradictory, hence the system has no solution and therefore \vec{z} cannot be expressed as a linear combination of \vec{u}, \vec{v}, and \vec{w}.

Remark. It is important to notice that linear independence per se is not a guarantee that the system will always have a solution. More precisely, a set of vectors $f_{1}, f_{2}, \ldots, f_{\ell}$ in a vector space V being linearly independent does not automatically guarantee that any $g \in V$ can be written as

$$
g=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{\ell} f_{\ell}
$$

While the vectors \vec{u} and \vec{v} of problem 1 are linearly independent and it was possible to write \vec{w} as a linear combination of them, the vectors \vec{u}, \vec{v} and \vec{w} of
problem 2 are also linearly independent, but the system $\vec{z}=c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}$ had no solution. As another example, think of the vectors $\vec{a}=(1,0,0)$ and $\vec{b}=(0,1,0)$ in \mathbb{R}^{3} : they are linearly independent, and any vector of the form $(x, y, 0)$ can be written in terms of \vec{a} and \vec{b}, but $(0,0,1)$ cannot. The situation is different, however, when we have a basis: if the vectors $f_{1}, f_{2}, \ldots, f_{\ell}$ form a basis of a vector space V, then not only are they linearly independent but it is also true that any $g \in V$ can be written as

$$
g=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{\ell} f_{\ell}
$$

