EXAMPLES OF SECTIONS 1.1, 1.2

Question 1. Classify the following differential equations as linear or nonlinear and determine their orders.
(a) $y^{\prime}+\cos y=x^{3}$;
(b) $y y^{\prime \prime}+y^{2} y^{\prime}+\frac{1}{x}=y$;
(c) $e^{\sin t^{2}} \frac{d^{2} x}{d t^{2}}+\omega^{2} t \frac{d^{3} x}{d t^{3}}=e^{-t}$.

Question 2. Find the constant r such that $y(t)=e^{r t}$ is a solution to the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=0$.

Question 3. Find the constant r such that $y(t)=x^{r}$ is a solution to the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.

Question 4. A projectile is fired straight upward with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$ from the top of a building 20 m high and falls to the ground at the base of the building. Find (a) its maximum height above the ground; (b) when it passes the top of the building; (c) the total time in the air.

Solutions.

1.

(a) First order, nonlinear.
(b) Second order, nonlinear.
(c) Third order, linear..
2. Let $y(t)=e^{r t}$. Then $y^{\prime \prime}=r^{2} e^{r t}$ and $y^{\prime}=r e^{r t}$. It yields

$$
0=r^{2} e^{r t}+2 r e^{r t}-3 e^{r t}=e^{r t}\left(r^{2}+2 r-3\right)
$$

Therefore we have $r^{2}+2 r-3=0 \Rightarrow r=1$, or $r=-3$.
3. As in Question 2, one checks

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Solving it gives $r= \pm 1$.
4. The acceleration of gravity is $g=-9.8 \mathrm{~m} / \mathrm{s}$ with the y-axis oriented upward. Since gravity is the only force acting on the projectile,

$$
a=\frac{d v}{d t}=g=-9.8 \Rightarrow \int d v=-9.8 \int d t \Rightarrow v=-9.8 t+C
$$

But $v(0)=100$ so

$$
\begin{equation*}
v=-9.8 t+100 \tag{1}
\end{equation*}
$$

Integrate again to find the position y :
$v=\frac{d y}{d t}=-9.8 t+100 \Rightarrow \int d y=\int(-9.8 t+100) d t \Rightarrow y=-4.9 t^{2}+100 t+C$.
Since $y(0)=20$, we obtain

$$
\begin{equation*}
y=-4.9 t^{2}+100 t+20 \tag{2}
\end{equation*}
$$

(a) At the maximum point, $v=0$. Setting $v=0$ in (1) gives $t=\frac{100}{9.8}$. Using this into (2) produces $y\left(\frac{100}{9.8}\right)=-4.9\left(\frac{100}{9.8}\right)^{2}+100 \times \frac{100}{9.8}+20 \approx 530$ meters.
(b) It passes the top of the building when $y(t)=-4.9 t^{2}+100 t+20=20$, which gives two solutions, $t=0$ (when the projectile is launched) and $t=$ $\frac{100}{4.9} \approx 20.4$ seconds, which is the desired answer.
(c) It reaches the ground when $y=0$. Solving $-4.9 t^{2}+100 t+20=0$ yields $t=20.61$ seconds and $t=-0.2$ seconds. The second solution is not physical, hence the answer is 20.61 seconds.

