EXAMPLES OF SECTIONS 1.4, 1.5

Question 1. The intensity I of the light at a depth of x meters below the surface of a lake satisfies the differential equations I' = -1.4I.

- (a) At what depth is the intensity half of the intensity I_0 at the surface of the water?
- (b) What is the intensity at a depth of 10 meters?
- (c) At what depth will the intensity be 1% of that at the surface?

Question 2. According to one cosmological theory, there were equal amounts of the two uranium isotopes ^{235}U and ^{238}U at the creation of the universe in the big bang. At present there are 137.7 atoms of ^{238}U for each atom of ^{235}U . Using the half-lives 4.51×10^9 years for ^{238}U and 7.10×10^8 years for ^{235}U , calculate the age of the universe.

Definition 0.1. The disintegrating rate of radioactive substances obey the Malthusian model $P(t) = P_0 e^{kt}$ for some k < 0 varying from substance to substance. The half-life period $t_{1/2}$ of a radioactive substance is the time when the amount of the substance equals the half of its original amount, *i.e.*,

$$P(t_{1/2}) = \frac{P_0}{2} = P_0 e^{kt_{1/2}}.$$

Solving this equation, we get $t_{1/2} = -\frac{1}{k} \ln 2$.

Question 3. A colony of 10 thousand rabbits lives in a confined field and its growth obeys the logistic model.

- (a) If after a month the population reaches 12 thousand, and after two month there are 13 thousand rabbits. What is the carrying capacity of the colony?
- (b) If the field can support 42 thousand rabbits. After 1 month, the colony reaches 14 thousand rabbits. Use a logistic model to predict when the population will his 21 thousand rabbits.

Solutions.

1. a. The differential equation

$$I' = -1.4I \tag{1}$$

is separable, and thus we can derive the general solution to (1) as $I(x) = Ce^{-1.4x}$. Plugging in the initial condition $I(0) = I_0$, we get that the intensity

at a depth of x meters is $I(x) = I_0 e^{-1.4x}$. Then

$$I(x) = \frac{I_0}{2} = I_0 e^{-1.4x} \Rightarrow x = \frac{\ln 2}{1.4} \approx 0.495 \text{ meters}$$

b. Plugging in t = 10, $I(10) = I_0 e^{-14} \approx 8.3 \times 10^{-7} I_0$.

c. Solving $I_0 e^{-1.4x} = 0.01 I_0$ for x gives $x = \frac{\ln 100}{1.4} \approx 3.29$ meters.

2. Let $N_8(t)$ and $N_5(t)$ be the numbers of ${}^{238}U$ and ${}^{235}U$ atoms, respectively, t billions of years after the big bang. Since both isotopes follow a radioactive decay model x' = kx, whose solution was seen in class to be $x(t) = x_0 e^{kt}$, we have

$$N_8 = N_0 e^{-kt}.$$

and

$$N_5 = N_0 e^{-\ell t},$$

where N_0 is the initial number of atoms of each isotope, which is the same for both ^{238}U and ^{235}U by hypothesis. Notice however that the rates of decay, k and ℓ , differ for these isotopes. Their values are given by

$$N_8(4.51) = \frac{N_0}{2} = N_0 e^{-k \times 4.51} \Rightarrow k = \frac{\ln 2}{4.51},$$
$$N_5(0.71) = \frac{N_0}{2} = N_0 e^{-\ell \times 0.71} \Rightarrow \ell = \frac{\ln 2}{0.71}.$$

We know that for the value of t corresponding to "now" we have $\frac{N_8}{N_5} = 137.7$, hence

$$\frac{N_8}{N_5} = \frac{N_0 e^{-kt}}{N_0 e^{-\ell t}} = e^{(\ell - k)t} = e^{(\frac{\ln 2}{0.71} - \frac{\ln 2}{4.51})t} = 137.7.$$

Solving for t gives

$$t = \frac{\ln 137.7}{\frac{\ln 2}{0.71} - \frac{\ln 2}{4.51}} \approx 5.99.$$

According to this theory, therefore, the universe should be about 6 billion years old.

3. a. Let P(t) be the population of the colony at time t. According to the logistic model and the initial population of the colony,

$$P(t) = \frac{10C}{10 + (C - 10)e^{-rt}}.$$
(2)

The given conditions tell us P(1) = 12 and P(2) = 13, and thus

$$\frac{10C}{10 + (C - 10)e^{-r}} = 12, \quad \frac{10C}{10 + (C - 10)e^{-2r}} = 13$$

Easy computations show

$$e^{-r} = \frac{10C - 120}{12(c - 10)}, \quad e^{-2r} = \frac{10C - 130}{13(c - 10)}.$$

Since
$$e^{-2r} = (e^{-r})^2$$
, we get
 $\left[\frac{10C - 120}{12(c - 10)}\right]^2 = \frac{10C - 130}{13(c - 10)} \iff 144(C^2 - 23C + 130) = 130(C - 12)^2.$

This is a quadratic equation. Solving it gives C = 0 or $C = \frac{192}{14} \approx 13.7143$. The first solution is not physical. Thus the carrying capacity is 13.7143.

b. The first condition implies that C = 42 in (2) and thus (2) becomes

$$P(t) = \frac{420}{10 + 32e^{-rt}}.$$

By P(1) = 14, we have $r = \ln(8/5)$. Solving $21 = \frac{420}{10+32e^{t \ln(5/8)}}$ gives $t = \frac{\ln(5/16)}{\ln(5/8)} \approx 2.4748$.