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We construct first- and second-order time discretization schemes for the Cahn-Hilliard—
Navier—Stokes system based on the multiple scalar auxiliary variables (MSAV) approach
for gradient systems and (rotational) pressure-correction for Navier—-Stokes equations.
These schemes are linear, fully decoupled, unconditionally energy stable, and only require
solving a sequence of elliptic equations with constant coefficients at each time step.
We carry out a rigorous error analysis for the first-order scheme, establishing optimal
convergence rate for all relevant functions in different norms. We also provide numerical
experiments to verify our theoretical results.
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1. Introduction

We consider in this paper the construction and analysis of efficient time discretiza-
tion schemes for the following Cahn—Hilliard—Navier—Stokes system:

99

8t+( -V)p=MAp inQxJ, (1.1a)
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p=—-MA¢+ G (¢) inQxJ, (1.1b)
ou .
E—l—u-Vu—yAu—i—Vp:uV(ﬁ in Qx J, (1.1c)
Vou=0 inQxJ (1.1d)
dp O B
8_n_8n_0’ u=0 on I x J, (1.1e)

where G(¢) = 75(1 — ¢*)? with € representing the interfacial width, M > 0 is
the mobility constant, A > 0 is the mixing coefficient, v > 0 is the fluid viscosity.
Q is a bounded domain in R? and J = (0,T]. The unknowns are the velocity u,
the pressure p, the phase function ¢ and the chemical potential ;. Here, we set
u-V=uy % + uga%. We refer to Refs. 12, [16] and 22 for its physical interpretation
and derivation as a phase-field model for the incompressible two-phase flow with
matching density (set to be pg = 1 for simplicity), and to Ref. [Ilfor its mathematical
analysis. The above system satisfies the following energy dissipation law:
dE(¢p,u)

2O — M|Vl — vVul? with B(o,w)

:/Q{%|u|2+%|v¢|2+)\G(¢)}dx. (12)

For nonlinear dissipative systems such as the Navier—Stokes equation, Cahn—
Hilliard equation and Cahn-Hilliard-Navier—Stokes system (), it is important
that numerical schemes preserve a dissipative energy law at the discrete level. Var-
ious energy stable numerical methods have been proposed in the last few decades
for Navier—Stokes equations and for Cahn—Hilliard equations. A main difficulty in
solving the Navier—Stokes equation is the coupling of velocity and pressure by the
incompressible condition V - u = 0. A popular strategy is to use a projection type
method pioneered by Chorin and Temam in late 1960830 which decouples the com-
putation of pressure and velocity, we can refer to Ref. [0 for a review on various
projection type methods for Navier—Stokes equations. The main issue in dealing
with the Cahn—Hilliard equation is how to treat the nonlinear term effectively so
that the resulting discrete system can be efficiently solved while being energy sta-
ble. Popular approaches include the convex splitting/® stabilized semi-implicit 28
invariant energy quadratization (IEQ) 33 and scalar auxiliary variable (SAV)25 We
refer to Ref. [l (see also Ref. 29)) for an up-to-date review on various methods for
gradient flows which include in particular the Cahn—Hilliard equation.

On the other hand, it is much more challenging to develop efficient numerical
schemes and to carry out corresponding error analysis for phase-field models such as
([d) coupling Navier—Stokes equations and Cahn-Hilliard equations. The system
(I is a highly coupled nonlinear system whose dissipation law (2)) relies on del-
icate cancellations of various nonlinear interactions. Usually, energy stable schemes
for (1)) are constructed using fully or weakly coupled fully implicit or partially
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implicit time discretization. Feng et al@ considered fully coupled first-order-in-time
implicit semi-discrete and fully discrete finite element schemes and established their
convergence results. Shen and Yang constructed a sequence of weakly coupled??
and full decoupled 28 linear, first-order unconditionally energy stable schemes in
time discretization for two-phase incompressible flows with same or different den-
sities and viscosities with a modified double-well potential. Griin® established an
abstract convergence result of a fully discrete implicit scheme for diffuse interface
models of two-phase incompressible fluids with different densities. Han and Wang®¥
constructed a coupled second-order energy stable scheme for the Cahn-Hilliard—
Navier—Stokes system based on convex splitting for the Cahn—Hilliard equation, a
related fully discrete scheme is constructed in Ref. [4 where second-order conver-
gence in time is established. Han et al™ developed a class of second-order energy
stable schemes based on the IEQ approach. Recently, in Ref. [I8, we constructed a
second-order weakly-coupled, linear, energy stable SAV-MAC scheme for the Cahn—
Hilliard—Navier—Stokes equations, and established second-order convergence both
in time and space for the simpler Cahn—Hilliard-Stokes equations. Note that in all
these works, a coupled linear or nonlinear system with variable coefficients has to be
solved at each time step. We refer to the aforementioned papers for the references
therein for other related work on this subject.

We would like to point out that Yang and Dong®¥ developed linear and uncon-
ditionally energy-stable schemes for a more complicated phase-field model of two-
phase incompressible flow with variable density, but the velocity and pressure are
still coupled and it requires solving a nonlinear algebraic equation at each time step.
To the best of our knowledge, despite a large number of works devoted to the con-
struction and analysis for the Cahn—Hilliard—Navier—Stokes system ([LI]), there is
still no fully decoupled, linear, second-order-in-time, unconditionally energy stable
scheme, and there is no error analysis for any fully decoupled schemes for (I1]) as all
previous analyses are for schemes which are either fully coupled or weakly coupled.
In particular, it is highly nontrivial to establish error estimates for fully decoupled
linear schemes due to additional difficulties which arise from explicit treatment of
nonlinear terms and the extra splitting error due to the decoupling of pressure from
velocity.

The main purposes of this work are (i) to construct first- and second-order fully
decoupled, linear and unconditionally energy stable schemes for (II]), and (ii) to
carry out a rigorous error analysis. By using a combination of techniques in the
multiple SAV approach2 pressure-correction and rotational pressure-correction™
and a special SAV approach for the Navier-Stokes equation29 we are finally able
to construct a fully decoupled, linear, second-order-in-time, unconditionally energy
stable scheme for (ILT)). Furthermore, the schemes we constructed do not involve a
nonlinear algebraic equation as in Refs. [I7 and 21l and lead to bounds including the
kinetic energy 1||u/|? rather than a positive SAV constant as an approximation to
the kinetic energy as in Refs. [17 and 21l This turns out to be crucial in the error
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analysis. More precisely, the work presented in this paper for (I)) is unique in
the following aspects: (i) we construct fully decoupled, unconditionally energy sta-
ble, first- and second-order linear schemes which only require solving a sequence of
elliptic equations with constant coefficients at each time; (ii) we establish rigorous
first-order error estimates in time for all relevant functions in different norms with-
out using an induction argument which often requires restriction on the time step.
The key property is that our schemes lead to uniform bounds on the kinetic energy
2{|u|[?. We believe that our second-order scheme is the first fully decoupled, linear,
second-order-in-time, unconditionally energy stable scheme for (II]), and our error
analysis for the first-order scheme is the first for any linear and fully decoupled
schemes for (LT with explicit treatment of all nonlinear terms.

This paper is organized as follows. In Sec. Bl we describe some notations and
useful inequalities. In Sec. Bl we construct the fully decoupled multiple scalar aux-
iliary variables (MSAV) schemes, prove their unconditional energy stability, and
describe an efficient procedure for their implementation. In Sec. [ we carry out
error estimates for the first-order MSAV scheme for all functions except the pres-
sure. In Sec. B, we present numerical experiments to verify the accuracy of the
theoretical results. The error estimate for the pressure is derived in the appendix.

2. Preliminaries

We first introduce some standard notations. Let L™(2) be the standard Banach

space with norm
1/m
ol Ly = ( / |v|mdﬂ) .
Q

(F.9) = (fg) 12 = /Q fgd®2

For simplicity, let

denote the L*(Q) inner product. For the case p = oo, set [[v]joc = [[0]|po() =
ess sup{|f(z)| : x € Q}. And WFP(Q) be the standard Sobolev space

WEP(Q) = {g:llgllwy ) < oo},

where
1/p

lgllwre@ = | D 1Dy | (2.1)
jal<h

in the case 1 < p < oo, and in the case p = oo,

¢, 00 - Da oo .
lgllw» (Q) g@i” gllz (Q)

For simplicity, we set H*(Q) = W*2(Q) and || f|lx = | fll )
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By using Poincaré inequality, we have
IVl < el Vv,  ¥v e Hy(Q), (2.2)
where ¢; is a positive constant depending only on Q and
H}(Q) = {ve H'(Q) : v|r = 0}.
Define
H={vel?Q):divv=0,v-nlp =0}, V={veH)Q):divv =0},

and the trilinear form b(,-,-) by
b(u,v,w) = / (u-V)v - wdx.
Q

We can easily observe that the trilinear form b(-, -, -) is skew-symmetric with respect
to its last two arguments, i.e.

b(u,v,w) = —b(u,w,v), YucH, v, weH}Q), (2.3)
and
b(u,v,v)=0, YuecH, vecHQ). (2.4)

By using a combination of integration by parts, Holder’s inequality and Sobolev
inequalities, we have Ref. [31] for d < 2

b(u,v,w)
clulviiwh, — VuveH weH)O),
collull2||v]|||wl1, Vue H*(Q)NH, veH, wecH}Q),
callullz|[v]la[[w], Vue H*(Q)NH, veH, weHQ),
< q ellull[Ivl[2]lwl], VveH*(QNH, uecH, weHQ),
callalllIvilzllwl|1, VVEHQ(Q)HH ucH, WEH(l)(Q)7
1/2 1/2
eal[ully? w2 v ]}/
V]2l wl|1, Vu,veH, weHQ),

where ¢; is a positive constant depending only on €.
Let Py be the projection operator in L*() onto H. We have (cf. (1.47) in

Ref. [32))
[Paulls < C(Q)ulli, YueH(Q). (2.6)
We will frequently use the following discrete version of the Gronwall lemmal523:
Lemma 2.1. Let ag, by, c, di, vk, Atr be nonnegative real numbers such that

ap+1 — ap + bp 1 Atgr1 + cpp1Atgr1 — Aty < apdp Atk + Y1 Atk (2.7)
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for all0 < k <m. Then

m+1 m m—+1
Am+1 + Z b Aty < exp (Z dkAtk> {ao + (bo + co) Aty + Z %Atk}.

k=0 k=0 k=1
(2.8)

Throughout the paper, we use C, with or without subscript, to denote a posi-
tive constant, independent of discretization parameters, which could have different
values at different places.

3. The MSAV Schemes

In this section, we first reformulate the Cahn—Hilliad—Navier—Stokes system into
an equivalent system with MSAV. Then, we construct first- and second-order fully
decoupled semi-discrete MSAV schemes, present a detailed procedure to efficiently
implement them, and prove that they are unconditionally energy stable.

3.1. MSAYV reformulation

Let v > 0 be a positive constant, F'(¢) = G(¢)— %¢2 and E1(¢) = [, F(¢)dx. Here,
the term ¢ is introduced to simplify the analysis (cf. Ref. 24). We introduce the
following two scalar auxiliary variables:

r(t) =V Ei(¢) +0, Vé>n, (3.1a)

t
t) = —= .1b
o0 = (1), (3.10)
where € < 1, and reformulate the system (L)) as
oo r

o + m(uV)qﬁ =MAp inQxJ, (3.2a)

= -Mé+ Mt At () inQx.J, (3.2b)

Ei(¢) +9
dr 1 N .
e - Q .
n 2\/W/QF (¢) 5t dx inQxJ, (3.2c)
g—ltl + exp (%) ¢g(t)hu-Vu—vAu+ Vp = mMV(b in QxJ, (3.2d)

V-ou=0 inQxJ, (3.2

1
%:—Tq—kexp(%)/gu-Vu-udx in QxJ (3.2f)

Since [,u-Vu-udx = 0, it is easy to see that, with r(0) = \/FE1(¢|i—o) + 0 and
q(0) = 1, the above system is equivalent to the original system. Taking the inner
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products of [B2a) with y, @28) with 22, B2d) with u, and multiplying 2d) with
2r, summing up the results, we obtain the original energy law (2). Furthermore,

if we take the inner product of (32f) with ¢ and add it to the previous expression,
we obtain an equivalent dissipation law:
dE (¢, u,7) 2 2 2
—— = —-M||V —v||V — =
o 98]~ v Vul? - 2
where E(¢,u,r,q) = Jo 3{luf? + Ay¢? + A|Vo|? }dx + 3¢ + Ar?. We shall construct
below efficient numerical schemes for the above system which are energy stable with

(3.3)

respect to (B3).
3.2. A first-order scheme
We denote
gn _ gnfl
At=T/N, t"=nAt, dg" = —Ar for n < N.

Our first-order scheme for 32) is as follows: Find
(92511—0—17 lun—i-l, ﬁn—O—l7 un—i—l’pn—O—l’ ,,,n—i—l7 qn—i-l) such that

¢n+1 — " n prtl (un . v)(bn _ MA/AH+17 (3'4)
At Ei(¢") 40
+1 )\A(b +1 A ¢ +1 A TnJrl F/((b ) (3 5)
Mn — T + vy n + S — ™ ; .
Ei(¢™)+ 6
TnJrl — 1 ¢n+1 ¢n>
— F/ n n+1 un AV )
= e (e T ) + 5 o)
1 ~n+1
(@™ Ve 3.6
2\ E1(¢")+5( ) (3.6)
ﬁTLJrl —u” tn+1 n+l,.n n ~n+1 n
A + exp (T) ¢""Tu" - Vu" —vAQ"T + Vp (3.7)
,,,n+1 ‘unvqsn ﬁn+1| 0
= T ) 00 = U;
Ei(¢m) +0
V-u"tt =0, u"™! . njsn =0, (3.8)
un+1 - ﬁn+1 n+1 n
A Vet -pt) =0 (3.9)
qn+1 - qn _ 1 n+1 tn+1 n n ~n-+1
Q71 + exp T (u"-vu",a""m). (3.10)

Note that we added the terms (u"*+', u™ - Vom) — (a"™!, u"V¢™) in B8) which is
a first-order approximation to (u, uVe) — (u, uV¢) = 0. On the other hand, [B.7)-
BJ) is a first-order pressure-correction schemé? for (Z:2d)-([32d). Hence, the above
scheme is first-order consistent to (32)).
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Remark 3.1. There are two main differences between the current scheme and the
scheme in Ref. [I§] (and other schemes for ([I])):

e We employ a pressure-correction technique to decouple the computation of pres-
sure and velocity.

e We introduced two SAVs here instead of one in Ref. [I8l The second SAV, ¢(t),
allows us to totally decouple the numerical scheme, as opposed to weakly coupled
in Ref. [I8 as well as avoiding solving a nonlinear algebraic equation at each
time step, which presents great challenge in establishing well-posedness and error
estimates of the scheme.

3.2.1. Efficient implementation

We observe that the above scheme is linear but coupled. A remarkable property is
that the scheme can be decoupled as we show below. Denote

n+1 tn+1 n+1
= exp (S )0, (3.11)

,r.n+1

Ei(¢") +6

n+1l _
1 =

and set

¢n+1 _ ¢(7)l+1 _'_gfwrl 711+1 + £g+1¢g+17

,u"'H — ,U6L+1 + 611—0—1#1&1 + 5;”1#3“,

ﬁn+1 _ ﬁngl + S{Hrlﬁiwrl + §g+ll~l;+17 (3.12)
wth =g g e 4 g g

pn+1 — p6L+1 4 51L+1p?+1 + f;L—Hng_l.

Plugging (312) in BA)-BA) and BX)-B3), and collecting terms without

{’“1, 2+ with €77 and with €57 respectively, we can obtain ¢7 !, pr ! ur
@t and pI'tt (i = 0,1,2) as follows:

%

Step 1: Find (¢!, u*1) (i = 0,1,2) such that

3

ntl gt = MALAESTY Tt = —AAGET - Myon Tt (3.13)
T At V)" = MAEAPSTY, it = XA 4 Mgl + AR (97),

(3.14)
g = MAART, st = SAAGT + Aep (3.15)

We derive immediately from the last relation that ¢35+ = 0, 5™ = 0. On the other
hand, BI3) (respectively, (BI4))) is a coupled second-order system with constant
coefficients in the same form as a simple semi-implicit scheme for the Cahn—Hilliard
equation.

Step 2: Find @™ (i = 0, 1,2) such that

At —ut — P AIATT + AV =0, gt a0 = 0, (3.16)



Math. Models Methods Appl. Sci. 2022.32:457-495. Downloaded from www.worldscientific.com
by PURDUE UNIVERSITY on 04/07/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

On fully decoupled MSAV schemes for the CHNS model 465

o - vAtARyT = Atp"Ve", ay T ae =0, (3.17)
! + At - Vu' - vAtAaytT =0, a5 e = 0. (3.18)

The above three systems are decoupled second-order equations with same constant
coefficients.

Step 3: Find (u™,p!"*)(i = 0,1,2) such that
ugtt At AtV (pptt —p) =0, Veougt =0, ujt-njpgn =0, (3.19)

u At AP =0, Veultt =0, ult!injpe =0, i=12.
(3.20)

The above systems correspond to the projection step in the pressure-correction
scheme for Navier—Stokes equations. By taking the divergence operator on each
of the above system, we find that p!'™'(i = 0,1,2) can be determined by solving
a Poisson equation with homogeneous boundary conditions? and then u”+1(
0,1,2) can be obtained explicitly.

T

Once ¢t p Tt ™ @t and pI'*tt (i = 0,1,2) are known, we are now in
position to determine &' and &7, From &8) and @I0), we find that £ an

7+ can be explicitly determined by solving the following 2 x 2 linear algebrau:
system:

A& + A& = A,

(3.21)
B1&1 + Ba&y = By,

where
r 1 ott—om\ 1
A= —+ — (| F/ n707)+ ntl yn L yen
o= T+ s (e ) - 50 &)
1 ~Nn n n
_X(u0+17/1‘ V¢ ))7

A= El(gb:)+5_2 El(;n)jL(;(( @, ;1>

1 n n n 1 n n n
RO T - ST,

1
Ay = (@ 4" V"),
Ei(¢™) +0
By = ﬁ—l—ex e (u" - vu",agtt)
0 — At p T )
tn+1
Bl = —exp( T ) ( Vu” ~n+1)7
n+1 n+4+1
_exp(—5) | exp(—5) ¢t n n antl
By = Al + T exp | —5 (u"-vu",ai").

(3.22)



Math. Models Methods Appl. Sci. 2022.32:457-495. Downloaded from www.worldscientific.com
by PURDUE UNIVERSITY on 04/07/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

466 X. Li & J. Shen

In summary, at each time step, we only need to solve two coupled second-order
systems with the same constant coefficients in [BI3)-(BI0), and three Poisson-

type equations in (BI6)-(BI8), and three Poisson equations (Z19)—B20). Finally,
we can determine &; (i = 1,2) by solving a 2 x 2 linear algebraic system (B21])

with negligible computational cost. Hence, this scheme is very efficient and easy to
implement.

3.2.2. Unique solvability and energy stability
We show first that the 2 x 2 linear system (B2I]) is uniquely solvable.

Lemma 3.1. For the 2 x 2 linear system [B21]), we have A3B1 — A1 By # 0.

Proof. Taking the inner product of the first equation in ([BI4]), the second equation
in I4) and BI7) with u™, ¢7* and a7, we have

A0 V)", pi ) = —(@ i) — MAYIVEETE, (3.23)
AE (@), 67F1) = (T o0 = MIVer 12 = Mller ™12, (3.24)
At(unVer,ay ) = [[ar P + vAL Va2, (3.25)
Thus substituting (23)-324) into the formula for A; in (322), we can obtain
Ei(¢") +6 1 ( 1 +1p2 . Y +1 2)
A= + —|IVol + — o7

VR + H oy t? o+ VIVu"“||2>~ (3.26)

1
S
2X\\/ E1(¢™) + 0
By taking the inner product of BI7) with ﬁg“, we can also recast the formula
for Ay in (322) as
1 1
Ay = ( @yt asth +p(vartt, vu"“)). (3.27)

IN/EL (") + 6 Al

Similarly by taking the inner product of (BI8]) with u”Jrl and ﬁ;’+17 respectively,
we have

At(u™ - Vur, att) = —(@pth altt) —var(vaytt vastt),  (3.28)

At(u™ - Vo', ay ) = —|lag P - vA| Vay T2 (3.29)
Hence the formulas for By and Bs in (322 can be transformed into
By = exp e ! —(ayt ayth) +p(vaytt, vagt) (3.30)
! T ) \ar'™ ’ '

1 1 ! ¢t 12 112
Ba= (7)o (-5 )+ (S ) (gl + vagi?).

(3.31)
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Since the term
g+l 2
e 1
A2B1 _ o XEp( QZ;L) ( ( n+1 ~n+1)+y(vu?+l vun+1))
VE(
exp(2)
L ( A7) Slap 1P agth® + ||”“L“IIII”“L“HHVu H

<
T 20/ Eq(o7) +
t"'H) 2

unJrl ep(
v ||) o

Va2 Va2

tn+1

exp(7—) i n
(Gl + )

<
= AEL(0") +
< (gl + vivag e )
< AlBQ, (332)

which implies the desired result. O

Theorem 3.1. The scheme BA)-@BI0) admits a unique solution, and is uncon-
ditionally energy stable in the sense that

En+1(¢7 u, T, Q) - En(¢7 u,r, Q)

N R N e CRCE )
where
B (g, w1, q) = AIVE 12 + Ayl 12 + 2+ 2 |+ 2
(A + [ (3.34)

Proof. Obviously, (¢f ™, pftt aftt ult p?*h) (i = 0,1,2) can be uniquely
determined by using BI3)-B20). Lemma Bl implies that the 2 x 2 linear sys-
tem (BZI) has a unique solution. Hence, the scheme ([B4)-BI0) admits a unique
solution.

Next, we prove the energy stability. Taking the inner products of (B4
with 2A¢p" ) @H) with 2(¢" ! — ¢"), respectively, and multiplying (B8] with
ANAtr™ L we can obtain

AV = Vo™ || + [Vt — Vg ||?)
F X (" = Ml |17 + [l = 6™ )1%)
P 7+ )
2AtrmH

= e L) S 2MAT T (39
1
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Taking the inner product of 1) with 2Ata"™ ™" leads to

n+1

t
[ 2 = a2 + o —u”? + 24t exp ( T

) anrl(un . vun7 ﬁn+1)

20t
AL VA2 4+ 24t @, V) = o (@™, y" V).
Ei(¢m™) +6
(3.36)
Multiplying BI0) with 2Atg"+! gives
2At
|qn+1|2 _ |qn|2 4 |qn+1 _ qn|2 + T|qn+l|2
tn+1
= 2Atexp (T) " vut, a"th). (3.37)
Recalling (39]), we have
u"tl L AVt = @t Arvpn. (3.38)

Taking the inner product of ([B38) with itself on both sides and noticing that
(Vprtl untl) = —(pnt1 V- u™tl) = 0, we have

[ 2+ (A VPP = A - 248 (Vp", a ) + (A2 V2.

(3.39)
Combining [336) with 337) and (339) results in
o 2 w2 (A0 [V 2 — (A0
2A¢ .
S e U R e R = i R 2V A i
20ty !
= (@"", 4y V"), (3.40)
VEL (™) + 0
Thus, we can obtain the desired result by combining (340) with B35]). |

3.3. A second-order scheme

By replacing first-order approximations in the scheme B4)-@I0) with second-
order approximations, and using particularly the second-order rotational pressure-
correction scheme for Navier—Stokes equations, we can obtain a second-order linear
MSAV scheme as follows: Find (¢!, p+1 @™ unt! prtl pntl gn+1) such that

3¢n+1 _ 4¢n + (bnfl TnJrl
2A¢ Ey(¢nt1) +6

Arntl

E1((5"+1) +90

@t V)"t = MAu" Y, (3.41)

’unJrl _ —)\AgzﬁnJrl + /\,wanrl + F’(&S”Jrl); (3.42)
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37,.n+1 — Yy + Tnfl _ 1 F/($n+1) 3¢n+1 _ 4¢n + (bnfl

2A¢t 2v/E1(¢"H1) + 6 ’ 2A¢t
(3.43)

1 n+l —=n+1 Tn+1 1 ~n+1l —n+1 Tn+1

+X(M ,u""" - Vo )_X(u R N
~n+1 4um n—1 thrl
su 2225 tu + exp (T) g"Hantl . vartt — pAa" Tt 4 vpt o (3.44)
,r,n+1

—n+1 n+1 ~n—+1
) V] VQS , a |3Q = O;
Ey(¢nt!) +6

3unt! — 3gn Tt

V"t —p"+vV-at ) =0 3.45
SAL +Vi(p pr+rV-att) =0, (3.45)
Vou"t =0, u"! nlyq =0; (3.46)
n+1 4 n—1 1 tn+1
&l qut ot e ( - ) @ vart @t (3.47)
where gt = 2¢" — g"~! for any sequence {g"}.

3.3.1. Efficient implementation

The above scheme can be efficiently implemented as the first-order scheme by solv-
ing a sequence of linear systems with constant coefficients. In fact, plugging (3:12)

in BA0)-B22) and BZA4)—-@BE44), and collecting terms without §”+17 o+ with

”H and with f"“ respectively, we can obtain, for each i = 0, 1, 2, linear systems

for (o, ) similar to BI3)-@BI5), for a7 similar to EI6)-@IF), and for

(u "+1, p?“) the corresponding linear systems are

uptt Attt 4 AtV (pptt - pt oV - apth) =0,
Voul™ =0, ul™ nlpn =0, (3.48)
utt @ttt AVt v Aty = 0,

Vo™ =0,uf" nfon =0, i=1,2. (3.49)

The above systems correspond to the projection step in the rotational pressure-
correction schemé? for Navier-Stokes equations, and can be solved again by solving
a Poisson equation with homogeneous boundary conditions?
Once ¢!, p ™t u?™ @t and p™ (i = 0,1,2) are known, we can plug
BI2) into B3] and (BZH) to form a 2 x 2 linear algebraic system for &' and
7+ We leave the detail to the interested readers.
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3.3.2. Energy stability

The second-order scheme is also unconditionally energy stable as we show below.

Theorem 3.2. The scheme BAI)-BA1D) admits a unique solution, and is uncon-
ditionally energy stable in the sense that

En+1(¢7 u, T, Q) - En(¢7 u,r, Q)

2A
< —vAH|VE" T2 - vAL|V x w2 - Tt|q’“b+1|2 — 2M AL V™3,

(3.50)
where

~ 1 1 2
By, ryq) = 5w+ G120 — P S0 VH 2
+ v A g R + SIVETE 4+ S)2v6n - gr|E 4 2L e

A
+ 7"’”2@5"+1 — |1 + A2 4 A2rn L — g2
1n+12 12n+1_n2 1
+5ld" T+ 12 q"% (3.51)
where {g*, H*} are defined by
9° =0, g =vv-@T+g", H'" =p"tl4gtth n>0. (352)
Proof. By using exactly the same procedure as for the first-order scheme (34—
B3)), we can show that, the second-order scheme BAI)-[B47) admits a unique
solution.
Taking the inner products of @A) with 2Atu" !, @42 with (3¢ — 49" +
¢" 1), respectively, and multiplying 43 with 4 \A¢r"*1 and using the identity

2(3a —4b+ c,a) = |al]® +|2a — b]* — [b]* — |20 — ¢|* + |a — 2b+ |, (3.53)
we can obtain

2982 + 2967+ — V| — [ V672 — 296" ~ V6" )
+ 2 (g2 26— 6P — 677 — 26" — 6™ ?)
F NPT A 2e T e 2 A2 = N 2e™ — Y2
+ 2V 296" 4 VP

A
4 %Hqsn—o—l _ 2¢n 4 ¢n—1H2 4 )\|,r,n+1 _ 27,n 4 ,,,n—1|2

2A¢ n+1 -~
(@) +
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Taking the inner product [Zd) with 2Ata™ ! leads to

(Bu" T —4u" 4 u" A"t AL Va2

n+1

t
= —2Atexp ( T

) qn+1(ﬁn+1 . Vﬁn+17 ﬁ"+1) o 2At(Vp"7 ﬁn+1)

2ALr L
Ei(¢nt1) +4

Recalling (340) and [B53)), the first term on the left-hand side of ([B5H) can be
transformed into

(" Vet At (3.55)

(3ﬁn+1 —4u™ + un717ﬁn+1) _ (3(ﬁn+1 _ un+1) +3un+l —4u” +un717ﬁn+1)

_ 3(ﬁn+1 o un+17ﬁn+1) + (3un+1 —4u” + un717un+1)

+ (3un+1 —Au" + unfl,ﬁn+1 _ un+1)

3 ~n+1(2 n+12 ~n+1 n+12 1 n+12 1 n+1 n|2
= U™ = ™=+ 1o — o™ %) 4 Sfla™ " 4+ Sfjl2u™ —u]

1 n|2 1 n n—12 1 n+1 n n—1(2
— Sl = Sz — w4 S - 2wt (3.56)
Thanks to ([3.52), we can recast (3.43) as

2 2
V3urtt + AtVH™T = V3a" + ——AtVH". 3.57
7 7 (3.57)
Taking the inner product of ([357) with itself on both sides, we have
4
B 4 5 (AP [ VH?

= 3@t ® + %(At)QHVH"HQ +4At(@" T, Vp") + 4AH@" ', V).

The last term on the right-hand side can be controlled by
AAL@™T, V") = —dv ' At(g" T — g™, ")

=20 At(lg" P — g™ P+ g™ — g")

= 207 A g"]|? — 20 T AL[g" | 4 20 ALV - a2 (3.58)
Thanks to the identity

[V xv|?+|V-v|>=||Vv|?, VveH)Q), (3.59)
we have

AAHET, V") = 207 Atllg")* — 20 A"

+ 2vAt| Va2 — 20AH|V x u T2 (3.60)
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Then combining [B55]) with (350)-B-60) results in

S 2 4 S l2u™ = a2 4 (A [VHT T 4 v At g
3
+ —||f1n"’1 —u" 2 4 vA VA T2 4 v ALV x w2
1 u”® 2 n n—1/2 2 2 n|2 -1 n|2
< Slu™"+ H211 —ut T+ S (AOTVET + v Atllg"
tn—i—l ~
— 2Atexp (T) ¢ttt vartt anrtt)

2Atrm 1
Ei(¢pnt1) +4

Multiplying ([B47) by 2At¢" ! and using (.53), we have

(p" Vet antt). (3.61)

Sl 512" = P = Sl = 120" = " TP SleT - 20 + g
C2A 1.2 ! 1 1 1 =ntl
= | "2+ 2At exp 5 @t o vartt artt). (3.62)

Then combining (354]) with (3.61) and 62) leads to

S 4 S f2um T —u? + g(At)QIIVH P T A g
+§||V¢ 12+ §||2V¢ Ve + 7||¢ 12
A 1

4 77H2¢n+1 _ (anQ =+ )\|rn+1|2 4 )\|2T,n+1 _ Tn|2 4 §|qn+1|2

1 n n )\ n n n—
+512¢" =g+ [ Ve - 2Ve" + Ve

)\7 s n n— n ’I’L ~Nn
+ 5 llo" T — 20" +om TP+ ||u A S RS AV A

+ VALV x w2+ 2M AL VT2
2—Athnﬂl2

n+1_2qn+qn—1|2+ 7

1
=lg

_|_/\|7,n+1 —opn + ,,,n—1|2 + 5

1 n 1 n n— 2 n — n
= Sl gll2u — w4 S AV EN P 4 A"
Mgl 4 Movgr n— Mz 4 M ggn _ an—
+ 51V 12+ 512" — Vor T+ S [lo" 1 + S l120" — "2
2 2 2 2
1 1
+)\|Tn|2+)\|2rn_rnfl|2+§|qn|2+§|2qn_qnfl|27

which leads to the desired result (B350). O
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4. Error Estimates

In this section, we carry out an error analysis for the first-order semi-discrete scheme
(2)—@3I0). While in principle the error analysis for the second-order scheme
BA0)-@BZ1) can be carried out by combing the procedures below and those in
Ref. for the rotational pressure-correction scheme, but it will be much more
involved and beyond the scope of this paper.

Since the scheme B4)—-(BI0) is totally decoupled, it is much more difficult to
carry out an error analysis as we have to deal with additional splitting errors due
to the decoupling of pressure from the velocity as well as additional errors due to
the explicit treatment of all nonlinear terms. Thus, extra regularity assumptions
are required to carry out the error analysis.

However, the scheme avoids an essential difficulty associated with the nonlinear
algebraic equation for the SAV in Refs. 17 and [34.

For notational simplicity, we shall drop the dependence on z for all functions
when there is no confusion. Let (¢, u,u,p,7,¢q) be the exact solution of BII),
and ("1, gttt untt prtl gttt gntl) be the solution of the scheme ()

3I0), we denote

éﬁ+1 _ ﬁn+1 o u(tn+1)7 61111—0—1 _ un+1 o u(tn—i-l)7

et = p(en ), eptt = - g, )
eZJrl _ ¢n+1 o ¢(tn+1)7 eZJrl _ MnJrl _ M(tn+1)7 .
e:L—‘rl — ,r,n+1 _ T(tn+1).

The main results are stated in the following theorem:
Theorem 4.1. Assuming ¢ € W2°°(0,T; L2(Q)) NnW(0,T; HY(Q)), p € Whe

(0,7; HY(2)) N L®(0,T; HA(Y)), w € W>(0,T; H () N Wh(0,T; H*(2)),
and p € WH>(0,T; H*()), then for the first-order scheme ([B.4)-BI0), we have

m m
VeI 4 lleg 12+ ALY Ve ™2+ ALY flep 2 + e+

n=0 n=0

m
HleG T+ vAL Y [VETH? + ALV + e

n=0
m m m
+Y Vet = VeplP+ > leptt —epllP+ D et — enll?
n=0 n=0 n=0
m m
Y et —er P> feptt — el < C(AH)?, VO<n< N -1,
n=0 n=0

where the positive constant C' is independent of At.
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Remark 4.1. The above result indicates that the errors for (¢, s, u,r,q) are first-
order accurate in various norms. However, it only leads to a 1/2-order error esti-
mate for the pressure in L°°(0,7; H'). With the error estimates established for the
velocity and phase variables, we can also derive a first-order error estimate for the
pressure using a rather standard procedure, albeit very technical. For the sake of
brevity, we omit the proof here and provide the detailed proof in the arXiv version
of this paper ™

The proof of the above theorem will be carried out through a sequence of inter-
mediate lemmas.

We shall first derive an H?() bound for ¢" without assuming the Lipschitz
condition on F'(¢). A key ingredient is the following stability result:

n n
[ (S 20N N 1 el AV N v/
k=0 k=0

1™ I + [P+ 1P < K (4.2)

where the positive constant K is dependent on u® and ¢°, which can be derived
from the unconditionally energy stability (3.33)).

Lemma 4.1. There exists a positive constant Ko independent of At such that

[AG" T + [l TH* < K2, YO<n <N -1

Proof. Combining 4] with (33 and taking the inner product with AZ2¢"*! leads

to
1
E(HAQM—H”Q — HAQS"”Q + ||A¢n+1 _ A¢n|‘2) + M)\|‘A2¢n+1”2
+ MXy[|[VAg™ |2
A (AF(g), A% - T (un e, A2
Ei(¢") +6 ’ Fro") £0 , .

(4.3)

Similar to the estimate in Lemma 2.4 of Ref. 24, the first term on the right-hand
side of (3] can be controlled by the following equation with the aid of (Z2):
,r,n+1

M)\W(AFI(QSTL)?AQQSR_H) < MT)‘HAQQSn—H”Q + C(Kl)HAF/(gbn)”Q

IN

M, . MA, o
THA% 2+ THAQQS 12+ C(K1).
(4.4)
Using ([@2]) and the following Sobolev inequality:
Ifllzs < CIAE 112, (45)
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the last term on the right-hand side of (&3]) can be bounded by
TnJrl
o un . V¢n7A2¢n+1 S C un 4 v(bn 4 A2¢n+l
7E1(¢”)+5( ) (| La[[ V™ || L4l |
< Clla |2l |2 Ve |2Vt | i A2

< Ol IV [m + 1A%

< THA%”“II2 + Clla"™[[F (1A¢"[* + C (K1) (4.6)
Combining (£3]) with (@4)—-(E4) leads to
L n+1)2 _ n|2 n+l ni2
S (1862 = [Ag" 7 + | Ag — Ag™|?)

MM\ " "
+ T”A% T2+ My VA2

A
< MTIIAQQS"II2 +Clu" 3 (A" |* + C(K1)) + C(K1).  (4.7)

Then multiplying (£7) by 2At¢ and summing over n, n =0,1,2,...,m, m < N —1,
we have

[AG™HY|? + MAAL|AZG™ | + MAYAL Y~ [VAQ" ||
n=0

< A + MAALA?QO|? + CAL Y [lu" |3 | 20" 1P + C (K1), (4.8)

n=0
which, together with Lemma 2 Iland Eqs. (B3] and ([@2]), lead to the desired result.
O

Lemma 4.2. Under the assumption of Theorem 1] we have
A

n n n M n
S (IVep 2 = [ Veg)? + [ Vep™! waﬁw;nw;lw
L e 02 — Bl + lle ™ — epl?) + e P
)‘ n+1(2 n|2 n+l n2
et = e et — erf?)

< Clh? + CIVes|? + CIVes™ |2+ Clehl? + e 2
1
ORI =P + (C + g IVaIP) e+
1

M n M n
+ §||eu|\2 + ?HV%HQ +C(At)?, YO<n<N-1,

where C' is a positive constant independent of At.
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Proof. Let RZ“ be the truncation error defined by

QoY) () —o(t) _ 1 / %
ntl = - = — tn — dt, 4.
R ot At At Jin e ot? (4.9)
and E;f,“ is defined by
n+1 n+1
gt = ) () vyt - (" ).
Er(o(t"th)) +0 Ei(¢") +0
(4.10)
Subtracting [3Zal) at t"*! from (B4, we obtain
n+1 n
@ — MAe™ = R 4 B (4.11)
At # ¢ N

Taking the inner product of (LIl with eﬁ*l and eg+17 respectively, we obtain

n+1 n
e e
(u ”+1>+M||ve“+1|2 (RO, enth) 4 (Bl enth),  (4.12)

NG
and
s (e 12 = el + e = e3)
= (R el ™) + (BRt ef ™) — M(Vep ™, veptt). (4.13)
Let E™! be defined by
En+1 — )\,r,(t’rLJrl) F/(¢”) F/(¢(t"+1)) . (414)
r VEI(0") +0  VEL($(") + 6
Subtracting [B20) at "1 from ([B3]), we obtain
\ n+1
€Z+1 = —)\Aeerl + )\’y€n+1 + mf—‘/(¢n) + E?~+1. (415)

1

n+ n
Taking the inner product of ([@I5) with Mej ™! and % % , respectively, we obtain
Mlep™]? = MA(Vept!, Verth) + MAy(e) o, "“)

€u
+MAL( F'(¢™),ep™) + M (ERtt ep™™), (4.16)
Ei(¢™) +6 )

and

eyt~ ey
n n+1 n+1 n
o et ) = S (VeI — VeI + Ve - veRl?)

At TTH
Ae""'l n+1 en en+1 _ en
+ [ Fl(eM), So "%\ L D
Ei(o") +9 At At

+ oz (leg ™2 = llegll® + leg*" — egll®). (4.17)
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Combining (£12) with (@I3)-EIT), we have
A

o Ve P = 1Veg]l® + [Vep™ = Veg|?) + M| Ve |®

L2 (et — el + e = epl®) + Mg

)\en+1 eZJFl — eg en+1

[N F/ s 27— M)\Ti n n+1

El(¢">+5< s IrDET A
n+1

e —e
=+ <E$+17M€Z+1 [ A ¢> +(E]7\l]+1 n+1+en+l)

(RnJrl7 Z+1)+(RZ+1 n+1)+M)\7( n+1’ Z_H) (4.18)
Using the Cauchy—Schwarz inequality, the second term on the right-hand side of
(£IR)) can be recast as

M (), ) < Ol P M (9
Ei(¢™) + 06 o " 4 K

Recalling (£IT]), the third term on the right-hand side of [@I8) can be written as

n+1 n
e — €
(E;i“, Mentt - 2 @ N ¢> = (Ept Meptt — MAel™ — Ry — B
= (Ep*Y, Mep ' — RYFH — ERFHY + M(VERH, Vep ™). (4.20)

We now estimate the terms on the right-hand side as follows: Since
F/ n F/ tn+1
E;—Q—l _ T(thrl) (¢ ) (¢( ))
VEi(¢") + 6 \/El (tn+1)) + 0

- r(t" T F (o)) (Br(o(t™)) — Ei(¢™))
\/El(cb") + 5\/E1(¢(t"+1)) + 5(\/E1(¢" )+0+ \/E1 (p(tnt1)) +9)

+ T(thrl) (F/(¢n) _ F/((b(thrl)))
Eq(¢™) + 6 7
we obtain
B < Cllegll + Clldllwr. 0,7;02(0)) At (4.21)

Similarly, we have
IVER | < Cllegl + CIVeyl + Cllwrmorm@apAt.  (422)

On the other hand,

gt = ) iy gty - —L v
N E1(6(t"F1)) + 6 Ei(¢") +0
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(¢t 1 1 ]
— V- ("t et"t!)) - —=V " (u"¢")

VEL(o(t 1)) +0 Er(¢") +6

P+l
= El(qs(ftn-H))) " 5V . (u(tn+1)¢(tn+1) —u(t™)e(t))
() - Fntl V- (u(t™) (™)
VELGET) £ VE(9M) +3
pntl -

V- (u(t")e]

A
VEi(9") + 6 VEi (™) +6
Recalling Lemma LT and ([@2), [£3), and
Ifllz~ < CUA N e (4.24)
the first term on the right-hand side of (£20) can be bounded by

(E;H’l,MeZ-‘-l _ RZ+1 _ E]7\l]+1)

(end™): (4.23)

< CIEFH e ™ I + IRGHHD + CIVER ||er ™|
+CIIVER (@) | allell e + lledlll¢™ | o)
+CIVEEH I(19llwroe 0,7522()) + allwres 0,122 () At
+ CIVEE(18]l Lo 0,702 (0)) + 1l Lo (0,711 (02)) ) AL

n n n M n n
< Clep P + Cllegll® + ClIVegll® + llei ™17 + Cllegll®

+ C(”“H%/VLOO(O,T;L?(Q)) + ”uH%W(O,T;Hl(Q)))(At)Q
+ C(”¢H%/V2~°°(O,T;L2(Q)) + ”¢H%/V1~°°(O,T;Hl(Q)))(At)z' (4.25)
The second term on the right-hand side of (£20) can be estimated by

M
M(VER, Vepth) < Clleg|* + ClIVeg||* + Ve I*

+ Cll 8100 0,7, 11 (02)) (AL)? (4.26)
Using ([@23)), the fourth term on the right-hand side of ([@If]) can be bounded by
(E]’fﬁl,eﬁ“ +eg+1)
< ClIVe™ + Ve (e ™ + lu)l pallegliza + llewlllle™ )
+ O Vet + V€g+1||(||¢HW1~°°(O,T;L2(Q)) +[ullwiieeo,1;L2(0))) At

+C| Vet + V€g+1||(||¢HL°°(0,T;H1(Q)) + [[ul| oo 0,711 (02)) ) At

M
< Clet P+ Cllegll® + CIVeg|* + CIVeR ™I + Cllegll* + - Ve I
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+ C(||“||%/VL°°(0,T;L2(Q)) + ||u||2L°°(O,T;H1(Q)))(At)2

+ C(1811.0 0,7 £2(02)) F 191200 (0,7 11102y ) (A1)
(4.27)

Combining (AI]) with (@I9)-E27), we obtain
A

n n n M n
S (Ve = Vg + Vel = Veg|[?) + - |Vep |
Lo (e = gl + et = e3l?) + Sl

n+1 e"+1 — e
S A TN —
Ei(¢m) +9 At

+Cllegll® + ClIVeg|® + C[Vey ™| + Clleg|?

+ O(HUHWLDO(O,T;L2(Q)) + HUHLoo(o,T;Hl(Q)))(At)2
+ C(H¢||%/V2v°°(0,T;L2(Q)) + H¢||%/VL°°(0,T;H1(Q)))(At)2- (4.28)

Next, we continue the estimate by establishing an error equation corresponding to
the auxiliary variable r. Let R"*! be the truncation error defined by

or(th) ety — () 1t or
n+1 __ _ _ n _ e
Ryt = O - o / ("~ ) ogdt.  (429)

Subtracting ([3:2d) at t" ! from ([3.6) and multiplying the equation by 2Xe?*! lead to

Rl fen? +lept — enf?)
- 5( (o), H;t_eg’)— (P B
+ e (P - o), 240
(B T ) (P, 21520)
b (T V) = () + AR

(4.30)
The second term on the right-hand side of (Z30]) can be estimated by

n+1
el

_W( "(¢"), Ry < Clet™ 2 + Cllollwe. 0,102 (A1), (4.31)
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The third and fourth terms on the right-hand side of ([£30) can be bounded by

M)

/\e:}_‘—l r(an / n+1
— (") - Flote), 240

Eq1(¢m)

Aertl - Aentl — M
! (\/E1(¢")+5 \/E1(¢(tn+1))+5> (F (")), 5 )

< Clef 2 + Cllegll* + Cllo . o,r;120) (A1) (4.32)

By using ([33]), we have
é:llJrl _ e:zlJrl + Atv(pn+1 _pn)
=t 4 AtV(eZH —ey) + AtV (p(t™Th) — p(t™)). (4.33)

Using the above [2]) and LemmalT] the fifth term on the right-hand side of (30
can be estimated by

n+1
m ((p"th ™ ve") — (@, u"Ve™))
en+1 N
< i (V) (i w V)
n+1
+ m (", @"Vg") — (@™, V)

< Cle [l = g paa|[[IVe" | s

Ol — o[ V6"
< TRl + et 2 + Ve + I 9e 1) + Clleg? + Cllei™ P
OBV = )P+ Cle U 4 i VAP P
+ Cllplyro 0,711 () (A8 + Cllallfroo 0.1 11 () (A1)
+ Cllullfs (07,120 (A1) (4.34)

Combining (@30) with (@3T)-34) results in

)
g (ler T len? + ler ™ — el )

Aertt . eg“ — €

= VE (o) 46

M
+ 5 (eill” + e 1 + 1Veill® + [1Ve ™ 1%) + Cllegl” + Cllea ™|
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1
2 n+1 ny||2 ni2 n+1|2
Can?IViey™ = P+ (C+ el ) )

+Cled” + C||P||%/VL°°(0,T;H1(Q))(At)4 + C”/‘H%/Vlv"o(O,T;Hl(Q))(At)z

+ CHUH%/VLw(o,T;B(Q))(At)Q + C||7"H%/V2,°<>(0,T)(At)2

+ Cllo 2. 0,712 () (AL).

Combining the above equation with (£28)]) gives

M
n+12 2 n+1 n|2 n+1(2
S (IVER P = VRl + Vet = Vep|?) + Vet

)\’)’+1 n41y2 2 ntl g2y L Mo g2
AL (lez™ 1% — llegll® + lleg™ — egll )+Z”e“ |

A
g (er TP = Jer P feptt e ?)
< Cllegl® + CIVe] + ClIVeg |12 + Clleg]® + Cllei ™|

OV — e + (c+ v |2) Bl

M n M n
SRl + S NTERR + Cllrlya o (A2

+ C(H“H%/VLOO(O,T;L?(Q)) + ”uH%OO(O}T;Hl(Q)))(At)?

+ C[10132.0 0.7 £2(00)) + 1017100 (0,7, 11 (020) ) (A1)

+ Cllplfyse o :m ) (A8 + Cllullfyroo 0,101 (02)) (A1),

which implies the desired result.

Lemma 4.3. Under the assumption of Theorem Il we have

et I” — llenll?
u Uu +
2At 2A¢

HenJrl n||2

(4.35)

(4.36)

|

Vieon At " n
+2IVE + SHIVe T ~ Ve )

n+1
S—exp( )e"“ ((u" - V)u", en™) + Cllulli< o rsm2(0) + llenlDllen]?

T

M n M n n n n n
+ g lenll” + T IVerl® + ClIIVeR | + Cllegl + Cler ™ I + Clley™|1”

+ C(A*([Vep]? + IVep™?) + C(AL)?, YO<n< N -1,

where the positive constant C' is independent of At.
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Proof. Let R”" be the truncation error defined by

n+1 n+1 n it 2
R = au(;; ) _ue™ )At_ u(t) _ é/ (" — t)aaT;ldt. (4.37)
Subtracting @.2d)) at t"*! from [B7), we obtain
én+1 —en tn+1
s vaa — o (U ) ) Due )
At n+1 u” (0 n+1
—eXp( 7 )q -Vu = V(p" —p(t"))
nt1 n+1
i Elr(ﬁz;) ="V R gfﬁ:ﬁ» TV + R

(4.38)
Taking the inner product of (@38 with é7+! we obtain
a P lleal® | llew
2A¢t 2At

= (e (5 ) a1y - puen )

tn+1
— eXp (T) ¢"'u" - Vu", éﬁ“)

e w— el

+vl[vert?

+ rntl nv¢n _ (tn+1) n+1)v¢(tn+l) sn+1
NZACOET VE @)
— (V" —pt™*h),ed™h) + Ry eg™). (4.39)
By (B3), we can obtain that
ngrl - éﬁ+1 n+1 n
T + V(p —p ) =0. (440)
Taking the inner product of {@40) with < +1+e , we derive
A A R
SAL +3 (V" —p"),extt) = 0. (4.41)
Adding (£39) and (@A), we have
lea ™ I? — lleall? | lleg™ —eql® ———
v n
2A¢ T aar  rvarl

= (e (5 ) sty - puen )

tn+1
— eXp (T) ¢"'u" - Vu", éﬁ“)
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,r,n+1 ,,,(tn—i-l )

* Ei(¢m) +6N Ei(p(tmt1)) + 0

u(t"“)V¢(t"“)7€ﬁ“>

(V@ +p" = 2p(t™), eth) + R enth).

N =

(4.42)

For the first term on the right-hand side of ([@42]), we have

tn+1 n+1 n+1 n+1 tn+1 n+l..n n ~n-+1
xp (=7 g ) (") - V)u(t" ) — exp A -Vu", e

_ ( n+1) (thrl) (( (thrl) n) vi (thrl) ~n+1)
= exp T q u —u u s €u

©exp ( n+1) q(tn_H) (un . v(u(tn—H) o u"),éﬁ“)
T

t’rLJrl
—exp ( T ) eZH (0™ V)u",erth). (4.43)

Recalling 22)) and (Z3]), the first term on the right-hand side of (£43]) can be
estimated by

n+1
exp (3 ) ) () = ) u(e ), 2y
< eo(1 4 cr)|lu™™) —u"[[[la(™ )2 Ver |
v ~n n
< g”veu—i_ln2 + OHu||%°°(O,T;H2(Q))||eu||2
+ Cllullf < 0 712 () 111,00 0.7 12 02y (D) (4.44)

Noticing ([@2)) and using Cauchy—Schwarz inequality, the second term on the right-
hand side of (£43]) can be estimated by

n+1
exp (T ) ) (0 Tl - ), 2

n+1
= (T )0l (- ) w2

t’n+1 1 I
—exp (U ) ) (e vt

n+1
—oxp (T ) ) () v 2y
v ~Nn n n
< gHV%HH2 + C([ull oo, m2(0) + llenlDlleql?

+ ClJulffy1.00 (0,7, 112 (02)) (A1) (4.45)
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Then using (@33)) and (@2)), [@3) and Lemma [T] the second term on the right-
hand side of ([£Z2]) can be bounded by

prtl n n (tn—i-l) n+1 s i
NACDET i _Wt V"), &
,,,n+1
= m (u"ngS" _ (t”+1)V¢(tn+1) ~ﬁ+1)
1
n+1 n+1
+<\/E1r(<b”)+6 N (ttnﬂ) +5> (n(E" V(™) egt)

< Cllp™ = p(t™ D)2l V" [l Lalleg™

+ Ol ) L@ V" = Vo™ ) llen™ |

1
+r(t"+1)< ET VEGETS 5) ()T (), 25
b () Ve, )
Ei(¢") +9 A

< LIV + Tellehl + Tl Vel + CIVeR? + Cllehl + Clep 2
+Clleg™ 1P + AV (ep™ — eI + Cllpllfys 0,111 () (A1)
+ C(lllir1.0 0.7, (2)) + Nl e (0,712 () ) (A1)
+ Cll@llr.o0 (0,711 (2 (A1) (4.46)

Next, we estimate the third term on the right-hand side of ([£42). Using (£33), we
have

—% (V™ +p" —2p(t™ ), Ent)
= 3 (Ve + e —plt™+) 4 pli™), &)
= SV 4 e = plt ) + p(tm), el
+ ALV (ent —el) + V(p(t™h) — p(t™)))
At

= =5 (IVegIIZ = Ve [*) = ALV (p(t" ) = p(t"), Vey)

+ THV(p(t”*l) —p(t"))II?
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At n n n
< =5 (IVeg 2 = IVep ) + (At Vep ||

+ Clpllfros 0.1, m1 (02)) (A1) + (A)?).

(4.47)
For the last term on the right-hand side of ([{Z42]), we have
n N v N
Ry e < SIVETHE + Cllallfyece o.rm-1 ) (A1 (4.48)
Combining (£42]) with (£43)-([£4]), we obtain
lea ™ 1” —lleqll? | lea™ —edl® | v o At o on n
el T Al K vert 2+ S(IvetR - [vepl?)

thrl n n n sn n n
< —exp( S et D) + OO o e + ISP

+ el + T IV + CIVeR|P + Cliegl?

+0ley ™2+ Olleg™ 12 + C(AD*([Vep |12 + Ve HH1?)
+ CHpHg/I/l’N(O,T;Hl(Q)) ((A1)* + (A1)* + (At)*)

+ Cl16lI351.00 (0,7 111 (02)) (A1) + C Ul allFr1. (0,7, 111 (c2))

+ ||M||2Lo<>(o,T;H2(Q)))(At)2 + C(|\“||%/V2=oo(o,T;H—1(Q))
Fullfyoe 0,112 () (A1),

which implies the desired result. O

Lemma 4.4. Under the assumption of Theorem 1] we have
|egl+1|2 _ |eg|2 |eg+l _ eg|2
2At 2At

1 n
+ ﬁ|eq+l|2

n+1
< exp< T )et}“(u" ) 4l e

+C(AH)?, Y0O<n<N-1,

where the positive constant C' is independent of At.

Proof. Subtracting (321) from BI0) leads to
eptt

At T4

_on
eq
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where
n+1
dq(t™™) gt —q(t") 1 [* 9%q
R = - = — " t) e dt. 4.
4 dt At At /t " - )8t2 dt (4.50)
Multiplying both sides of @ZJ) by ey ! yields
G bl g = el | 1
2A¢ 2A¢ 4

g+l ) ) g+l )
= exp ( T ) e;”r (u" - Vu", ént!) —exp (T) eZJr
n n+1 n n+1 tn+1 n+1
x (0" - V(u("t) —u™),u(t")) —exp (T) €q
< ((a(™™) —u") - Vu(" ), a@t" ) + Rp T er (4.51)

Taking notice of (1) and ([@2]), the second term on the right-hand side of (LX)
can be recast into

n+1
— exp (t - ) eZJrl (u" . V(u(t"“) _ un)7u(tn+1))

< e eXp(l)Ilunlllllu(t"“) —u"[lo[[u(t" ) [l2]eg |

|€n+1|2+0|\un” ||eu||2+OHu||W1°°(OTL2(Q ||u||L<>00TH2(Q (At)2.

(4.52)

_6T

The third term on the right-hand side of ([@XI]) can be estimated by
Cex (“’“) e ((u(Emh) — um) - Vu (), ()
p T q ’

< ez exp(1)[u(t" ™) —u”||lu@ )|l [uE )| )e T

< Clleall® + gleg ™17 + Cllulliye o.rszay 2= 0212 (0) (AD)*. (4.53)
For the last term on the right-hand side of (@11, we obtain
n n 1 n
R} ert! < 5T % 2 + Clglfyzioo 0.1y (A1) (4.54)

Combining (@5I) with (@52)-54) results in

|€Z+1|2 _ |€:11|2 |en+l _ en|2

2At 2At

1
n+1 2

¢ttt .
<o ( T )t vt et + P

+ Cllulffy1.00 (0,722 020) 10170 (0,7 2 029 (A1) + Clalfyre.ce (0,1 (A1),
which leads to the desired result. O
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We are now in position to prove Theorem [T}

Proof of Theorem EIl We observe from ([E3) that u"*+! = Pga™"'. Hence, 0)
implies that |u™+!||; < C(Q)|[a™||;. Using the above, Lemmas E2Z4 leads to

n n n M n
sz (IVEs™ 2 = [VeR? + Vel — Tegl?) + I ver|?

2
Ay +1 M
F AL et e 4 et — el?) + A ey
)\ en+1 2 _ e 2
4 E(|€?+1|2 _ |6?|2 + |€?+1 _ 6?|2) + ” u H2At ” u”
He”‘|r1 —e? v, . At
A e+ e - ive )
N |en+1|2 |€:1L|2 N |€n+1 n|2 L 1 | n+1|2
2At 2At 2T
(O+—||w ||2) e 1 Olenl? + Il ) llen)?

T+ OVt + CVen|? + Cllel?
O+ 2 aen)? + S |en|? + Clent 2
eu ]_6 €N ]_6 eu €q

+ C(A*([IVep]? + IVep ™ 1?) + C(AL)>. (4.55)

Multiplying (£EH) by 2At and summing over n, n = 0,2, ..., m*, where m* is the
time step at which |e;”*+1| achieves its maximum value, and applying the discrete
Gronwall Lemma 2], we can obtain

m* m*
Ve 1P+ lleg T2+ ALY ([ Vept P+ A flep™ 1> + e+

n=0 n=0
m*
Hlew TP+ vALY [ Vertt | 4+ At Ve P 4 feg
n=0

+Z||ven+1 V6¢H2+ZH€R+1 e¢H2+Z”~n+1 nH2

) et —er P+ feptt —ef]? < (AL, (4.56)
n=0 n=0
where we use the fact that
n 1 m 1 m,
2At2 [ Tu Pl < e a3 v < Sler i,

n=0

which is a direct consequence of ([L2)).
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Since [e™ | = maxg<men—1 e |, @S50) also implies

m m
Ve HI + lleg 12+ At Y IVep ™12+ Aty fleptH 2 + fey P

n=0 n=0

m
+llem 2+ vAL > (IVERt? + At Vep 2 + eyt

n=0
m m m
£ ITentt - e+ 3 et - eplP+ Y et - exl’?
n=0 n=0 n=0

) ettt e P> feptt — el < C(AH?, VO<m <N -1,
n=0 n=0
(4.57)

which implies the desired result in Theorem FT]

5. Numerical Results

We now provide some numerical experiments to verify our theoretical results. First,
we rewrite the total energy in ([32]) as

_ Lo Ao o Ao A o s B2+ 28
B@) = [ {3+ 51vep + 3560+ 2ot —1- 59 - A Y a

42
(5.1)

where (3 is a positive stabilization constant to be specified. To apply our first-order

scheme ([34)-(BI0) and second-order scheme [BAI)—-B4D) to the system [B.2]), we

drop the constant in the free energy and specify Eq(¢) = ﬁ fQ(¢2 — 1 - B)2%dx,

and modify (3] and ([3.22) into

n+l _ ntl | B i it I(n
ptt = =A™ + 207+ mF (9"), (5:2)
n+l _ ntl | B i rrtt 1(Fn+l
Pt = A" + 6—2¢ + WF (0"7). (5.3)
Then we can obtain
F(6) = 5ot = 50l ~1- ) 54)

Although we only discussed semi-discretization in time in the previous sections,
the constructed MSAV schemes can be coupled with any compatible spatial dis-
cretization. In this section, we give the fully discrete first-order MSAV scheme based
on the MAC (marker and cell) method on the staggered grids as follows: Find
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(optt gyt t aptt upt pp et gt such that
n+1 _ ¢h ’f’Z—‘—l
Al - PyPrlay, 1 Doty + g, 9Dy o]
EY(op) +6
= M[dy Dyt + dy Dy, (5.5)
Tn+1
pptt = = Ado Do + dy Dy + Myop T+ A=e—TF"(¢}); (5.6)

B (9}) +0

ot e L (P )
At NIACER) AL ey

(™ PYPEG 1 Doy + 0h s Dyi])iz ar

W, N
S e (D) b uh De(PuR) + PR Dy0)
,r,n+1
- VDx(dwﬁh,l)n+l - de(Dyﬁh,l)n+1 + DmPZ = hiMZDa:(bZa
B 0R) +
(5.8)
~n—+1 — n-+1
U,o —Upo Tt n
— A + exp ( T ) +1(Ph (PYuap Dy 5) 4 uj oDy (PYuj 5))
,r,n+1
- de(Dwﬁh,Q)n+l - VDy(dyﬁh,2)n+l + Dypz = hiMZDU(bZa
B} 0p) +6
(5.9)
dyup i+ dyuptt =0, (5.10)
un+1 ﬁn+1 . N
% + D(pp ™t —pp) =0, (5.11)
q}";b*‘rl C]Z tn+1 ntl
B — o (U ) (haDa(Pru) + PYPRG D) ),
thrl x Yy..n n n Yy..n ~n—+1 1 n+1
+ exp T ((Ph (Phuh,lDIuh,Q) + uh,QDy(Phuh,z))7uh,2 )12,M,T - fqh )

(5.12)
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where P’ and P} are linear interpolation operators in the z and y directions,
respectively, and we use exactly the same notations, such as the discrete difference
quotient operators, the inner products, and the boundary conditions as in Ref. [I8
The second-order fully discrete scheme can be obtained by using exactly similar
procedure.

For simplicity, we define

_ - — n+1l _ n+l
If = glli= = max {[lf"* = g™},

m 1/2
1f = gllee = (Z Atf| et — g”+1|2> 7

n=0

_ — n+1 _ .n+1
IR — 7| Ognnzzxm{R i

5.1. Convergence tests

In the following simulation, we choose = (0,1)x (0,1), 8=5,T =01, A=~y =1,
v =0.001, e = 0.3, M = 0.001, § = 0, with the initial condition

u’(z,y) = [sin(nz) sin(27y), — sin?(ry) sin(272)], p°(z,y) = 0;

¥ (z,y) = cos(mz) cos(my), 10 = /Ei(°)+6, ¢°=1.

The spatial discretization is based on the MAC scheme on the staggered grid with
N, = N, = 160 so that the spatial discretization error is negligible compared to
the time discretization error for the time steps used in the simulation.

We measure the Cauchy error due to the fact that we do not have possession
of an exact solution. Specifically, the error between two different time step sizes
At and 4§ is calculated by [lec|| = [[¢ar — Car /2|l We present numerical results for
the first- and second-order schemes (B.4)-BI0) and B4I)-B47) in Tables [[HA
From Tables [[l and [2, we observe that the first-order scheme leads to first-order
estimates for all functions, consistent with error estimates in Theorem Il We also
observe from Table @ that the second-order scheme [BAI)-(EB41) leads to second-
order convergence for all functions except for pressure which converges at rate 3/2
as predicted by the error estimates in Ref. [I0] for second-order rotational pressure-
correction scheme for the Navier—Stokes equations.

(5.13)

Table 1. Errors and convergence rates with the first-order

scheme (34)-(33]).

At lleglli=  Rate [[Veglli=  Rate ler|oo Rate

3 3.52E-3 — 2.52E-2 — 1.87E-3 —
-4 244E-3  0.53 1.63E-2 0.63 8.15E-4 1.20

5 143E-3 0.77 9.41E-3  0.80 3.88E-4 1.07

6  7.74E-4 0.89 5.06E-3 0.80 1.91E-4 1.02




Math. Models Methods Appl. Sci. 2022.32:457-495. Downloaded from www.worldscientific.com
by PURDUE UNIVERSITY on 04/07/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

On fully decoupled MISAV schemes for the CHNS model 491

Table 2. Errors and convergence rates with the first-order scheme (34)—(3.3]).

At [leullzc  Rate [|Véul|l;2 Rate |lepll;2  Rate leg]oo Rate
273 4.14E-2 — 1.35E-3 — 1.47E-2 — 1.07E-2 —

2-4  2.18E-2 0.93 6.80E-4 0.99 6.34E-3 1.21 5.53E-3 0.96
27%  1.14E-2  0.94 3.57E-4 0.93  3.03E-3 1.07  2.81E-3  0.98
2-6  5.83E-3 0.96 1.85E-4 0.95 1.50E-3 1.01 1.41E-3  0.99

Table 3. Errors and convergence rates with the second-order

scheme (BZ1)-@B47).

At leglli=  Rate [[Veglljoc  Rate ler|oo Rate

273 1.62E-3 — 1.12E-2 — 7.85E-4 —

24 3.75E-4 211 2.57E-3 2.12  1.67E-4 2.23
275 897E-5 2.06 6.11E-4  2.07 3.95E-5 2.08
2=6  217E-5 2.05 1.48E-4 2.05 9.71E-6  2.03

Table 4. Errors and convergence rates with the second-order scheme

BaD-BID.

At |leull;e Rate [|[Véull;2 Rate [lepll;2 Rate leg|oo Rate
273 7.72E-3 — 1.20E-3 — 3.63E-2 — 2.12E-3 —
2-4  1.50E-3 2.36 2.98E-4 2.01 1.28E-2 1.50 5.01E-4 2.08
275  3.35E-4 2.17 7.97E-5 1.90 4.56E-3 1.49 1.23E-4  2.03
2-6  833E-5 201 2.21E-5 1.85 1.62E-3 1.50 3.03E-5 2.01

5.2. Coarsening dynamics

In the following simulation, we choose @ = (0,1) x (0,1), T'= 5, At = 0.001, A =
0.02,v=1,¢=0.01, M = le—4, = 10, with the a random initial condition for the
phase function with values in [—0.1,0.1]. The spatial discretization is based on the
MAC scheme on the staggered grid with N, = N, = 100. We present characteristic
evolutions of the phase-field variable with first-order scheme at different times t =
0.15,0.3,0.5,0.8,1,1.5, 3,5, respectively, in Fig. [l In addition, the energy decay
curve of the original energy and modified energy with first-order scheme for the
Cahn—Hilliard—Navier—Stokes model is shown in Fig. 2 which demonstrates the
consistency between the original energy and modified energy.

As a comparison, we also implement the following usual second-order semi-
implicit scheme: Find (¢, g1, @™, u™t!, p»t1) such that

39"t —dgn 4 ¢n 7!
2
PP = CAAGTH £ Aygm L 4 AR (¢, (5.15)

+ (@t W)t = MAp"T (5.14)

3" — 4u” 4 un!
2A¢

_ ‘an+1vq’sn+1,ﬁn+l|ag — O; (516)

+a"t . vartt —vAatt £ vpt
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Fig. 1. Characteristic evolutions of the phase-field variable at different times with ¢t = 0.15,0.3,
0.5,0.8,1,1.5,3, 5, respectively.

55

T T T T T T T T T
—— Original Energy
50 —+— Modified Energy | |

Fig. 2. Evolution of the original energy and modified energy.

3u”tt — 3"t
2At

V-u"l =0, u".nlpg =0, (5.18)

+ V(" —p" + vV -attt) =0, (5.17)

where g"t! = 2¢™ — g"~! for any sequence {g"}.

We plot the free energy as function of time with At = 3e — 3 by using the
semi-implicit scheme (.14)-(EI8) and MSAV scheme BA1)-B4T) (see Fig.Bl). We
observe that the free energy by the semi-implicit scheme (BI4)—(EI8) eventually
increases, violating the energy dissipation law, while the free energy by the MSAV
scheme ([B41)-(@347) remains to be dissipative.
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55 T T

=—Pp— Semi-implicit Scheme
~—g— MSAV Scheme

Time
Fig. 3. Free energy curves for the semi-implicit scheme and MSAV scheme.

6. Concluding Remarks

The Cahn—Hilliard—Navier—Stokes phase field model is a highly coupled nonlinear
system whose energy dissipation relies on delicate cancellations of nonlinear inter-
actions. We constructed in this paper efficient time discretization schemes for the
Cahn—Hilliard—Navier—Stokes phase field model by combining the MSAV approach
to deal with the various nonlinear terms and the standard or rotational pressure-
correction to deal with the coupling of pressure and velocity. The resulting first-
and second-order schemes are fully decoupled, linear, unconditional energy stable
and only require solving several elliptic equations with constant coeflicients at each
time step. So they are very efficient and easy to implement. We also carried out a
rigorous error analysis for the first-order scheme and derived optimal error estimates
for all relevant functions in different norms.

We only carried out error analysis for the first-order scheme. It is hopeful that
second-order error estimates could be derived by combing the approach in this paper
with the techniques used to derive second-order error estimates for the rotational
pressure-correction scheme in Ref. But this process is nontrivial and requires
substantial new efforts. On the other hand, we have only considered time discretiza-
tion in this work. While the stability proofs and error estimates are based on weak
formulations with simple test functions, it is still a big challenge to extend this
approach to fully discrete schemes with properly formulated spatial discretization.
Error analysis for the second-order scheme as well for full discretization will be left
as subjects of future endeavor.
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