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ON ERROR ESTIMATES OF THE PENALTY METHOD
FOR UNSTEADY NAVIER-STOKES EQUATIONS*

JIE SHEN'

Abstract. The penalty method has been widely used for numerical computations of the un-
steady Navier—Stokes equations. However, the best error estimates available to the author’s knowledge
were not optimal and could have led to an improper choice of the penalty coefficient € for time dis-
cretizations of the penalized system. Optimal error estimates for the penalized system and its time
discretizations for the unsteady Navier—Stokes equations are derived.
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method
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1. Introduction. In this article, we consider the approximations by the penalty
method for the unsteady Navier-Stokes equations:

(1.1) u; —vAu+ (u-V)u+Vp= fin Q x 0,77,

(1.2) divu =0in @ x [0,T],  ule=o = uo,

where Q is an open bounded set in R¢ (d = 2 or 3) with a sufficiently smooth boundary.
For the sake of simplicity, we shall only consider the homogeneous Dirichlet boundary
condition for the velocity, i.e., ulgq = 0.

We note that the velocity u and the pressure p in the above equations are coupled
together by the incompressibility constraint “divae = 0,” which makes the system
difficult to solve numerically. A popular strategy to overcome this difficulty is to
relax the incompressibility constraint in an appropriate way, resulting in a class of
pseudocompressibility methods, among which are the penalty method, the artificial
compressibility method, the pressure stabilization method, and the projection method
(see for instance [5], [6], [17], [19], [18], [4], and [16]).

The penalty method was introduced by Courant [7] in the context of the calculus
of variations. Its application to the Navier-Stokes equations was initiated in Temam
[17]. When applied to the unsteady Navier—Stokes equations, the penalty method is
to approximate the solution (u,p) of (1.1)-(1.2) by (uf,p®) satisfying the following
penalized system:

(1.3) uf — vAu® + B(u®,u) + Vp° = f,

(1.4) divu® +ep® =0, u|t=0 = uo,

where B(u,v) = (u- V)v + 3(divu)v is the modified bilinear term, introduced by
Temam [17] to ensure the dissipativity of the system (1.3)—(1.4). We note also that p°
in (1.3)—(1.4) can be eliminated to obtain a system of u® only, which is much easier to
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solve than the original system (1.1)—(1.2). Hence the penalty method has been widely
used in many areas of computational fluid dynamics (see for instance [2], [12]).
It is well known (cf. [17]) that lim._,o(u®,p®) = (u,p), the solution of (1.1)—(1.2).

It has also been shown (cf. [3]) that the attractors generated by the penalized system
converge to the attractor of the original Navier-Stokes equations. As for the error
analysis, it has been thoroughly studied in the context of steady Stokes and Navier—
Stokes equations (see for instance [1], [13], and [14]). For instance, the following
optimal error estimate holds for the penalized system applied to the steady Stokes
equations:

(1.5) llw —uflly + [lp — p°I| < Ce,

where || - ||; and || - || denote the norm in H!(Q)¢ and L?(f2), respectively. However,
in the unsteady case, to the author’s knowledge, the best error estimate available
is (see [10] for the linearized Navier-Stokes equations and [15] for fully nonlinear
Navier—Stokes equations)

(1.6) lu(t) —u(t)|| < Cve Vt e [0,T],

which is certainly not satisfactory in view of the error estimate (1.5) for the steady
case. Furthermore, the estimate (1.6) is misleading when it is used to choose the value
of ¢ for a time-discretized penalized system. For instance, when the backward Euler
scheme (see (5.5) below) is applied to the penalized system (1.3)—(1.4), the estimate
(1.6) would lead to

(1.7) lu(tn) — u™|| < C(At+ €) Vn < T/At.

Hence it suggests the choice ¢ = A¢?, which would results in a very ill conditioned
system when (5.5) is further discretized in space variables. The situation may become
even worse when higher-order time-discretization schemes are used (see Thm. 4 in [15]).
In general, the optimal choice of € will vary according to different time discretization
schemes (as we can see from the results in §5) as well as to different space-discretization
schemes. But unfortunately in previous implementations (see for instance [2], [12]) the
relation between the penalty coefficient € and the time step At of a time-discretization
scheme was not addressed because of lack of proper error estimates. Our aim in
this article is to derive optimal error estimates for the penalty system and its time
discretizations. The main results are stated in Theorem 4.1 for the error estimate of
the penalized system and in Theorem 5.1 and Proposition 5.1 for error estimates of
two time-discretized schemes of the penalized system. We note that these results are
optimal and substantially improve the previous results (1.6) and (1.7). In particular,
our error estimates lead to proper choices of € for time discretizations of the penalized
system.

The rest of the article is organized as follows. In the next section, we introduce
notations and recall some preliminary results. In §3, we analyze the error behavior
of the penalty method for the Navier-Stokes equations linearized at © = 0. Then in
84, we consider the penalty method for the fully nonlinear Navier—-Stokes equations.
Finally in §5, we analyze two time-discretized schemes for the penalized system.

2. Preliminaries. We describe below some of the notations and results which
will be frequently used in this paper.

We will use the standard notations L?(2), H*(Q), and H¥(f) to denote the usual
Sobolev spaces over 2. The norm corresponding to H*(2) will be denoted by || - ||x-
In particular, we will use || - || to denote the norm in L?(Q2) and (-,-) to denote the
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scalar product in L2(Q). The vector functions and vector spaces will be indicated by
boldface type.

We denote

H = {ve L*Q): divv=0,v-n|p =0},

V ={v e H}(Q) : divv =0},

H~%(Q): the dual space of H2(2) N H}(R),

Pgy: the orthogonal projector in L?(Q2) onto H, §

A = —PgA: the Stokes operator, which is an unbounded positive self-adjoint

closed operator in H with domain D(A) = H?(Q)N V.

We now introduce some operators usually associated with the Navier—-Stokes equa-
tions and their approximations.

B(u,v) = (u - V)v, (u v) = (u-V)v+%(divu)v,

b(u, v, w) = (B(u,v),w), b(u,v,w)=(B(u,v),w
We note that
(2.1) b(u,v,v) =0 Yuc H,ve H}Q).
One can also easily check by integration by parts that
b(u, v, w) —{b(u v,w) — b(u, w,v)} Yu,v,w € H}(Q).
Therefore, we have
(2.2) I;(u,v,v) =0 VYu,ve H}(Q).

The following two inequalities will be used repeatedly in the upcoming sections.
They can be proved by using a combination of integration by parts, Holder’s inequality,
and Sobolev inequalities (see for instance Lemma 2.1 in [20]).

~ 1 1
(23)  bu,v,w) < Clluflillvlif o]} lwl Vo € H*(Q) N H;(Q), u,w € Hy(Q),

lellsllvllillwll Yu, v, w € Hg(9),

lullzllvlllwll: Yu € H*(Q) N Hy(Q), v.w € Hg (),
lullzllvll|w] Yu € H*(Q) N Hg(Q), v.w € Hy (%),
lullillvllzllwl Yo € H*(Q) N Hg(Q), u,w € Hg(9).

(2.4) b(u, v, w) <

We note that (2.3) is valid for d < 3 and sharp for d = 3; (2.4) is valid for d < 4. In
most cases, (2.4) is sufficient for our purposes.

We define A.u = —vAu — %Vdivu, which is the operator associated with the
penalty method. It is clear that A, is a positive self-adjoint operator from H?(Q2) N
H} () onto L?(Q) and that the powers A% of A (a € R) are well defined. Further-
more, we have the following lemma.

LEMMA 2.1. There exists a constant C > 0 such that for € sufficiently small, we
have
(a) [Au|l < CllAcull Vu € H? N H(Q);

(b) IVul < CllAZu|l vu e HY(Q);
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(c) [AZ ull < Cllull-2  Yu € H72(Q).
Proof. Let us consider the equations
(2.5) Acu=Ff, u = 0]sq-
It can be reformulated as
—vAu+ Vp = f,
(2.6) .
divu = —ep, u = 0|sq-

From the regularity result of the Stokes equations (see for instance [21]), we have

lullz + ol < CUIFI + ellpll)-
Thus, for € sufficient small such that Ce < %, we have
lulls + llpllx < 2C1£1l = 2C]| Acu].
For proving inequality (b), we take the inner product of (2.5) with u to obtain
(u, ) = (w, Acw) = | A ull? = V|Vl + 2 divul®

Finally, let v be the solution of
(2.7) Av = AZlu, v = 0|pq-
Using (a), we derive

147 ul® = (Aev, AT w) = (v,u) < | -2llv]l.

< Clullsl|Acv]l = Cllull ol AT*ull. D

We recall that (see for instance [21]) for
(A1) ug €V, f € L>*(0,T; L*(Q)),
there exists a 17 < T such that
(2.8) u e C([0,Th); V)N L30,Ty; H*(R)), pe€ L*0,Ty; H(Q)/R).
In some cases, we will assume additionally
(A2) tf; € L*(0,T: L*(Q)).

which enables us to prove, by using the smoothing property of the Navier—Stokes
equations at ¢t = 0, that (see for instance [11])

(2.9) tpe € L*(0,T1; H'(Q)).
Using the operator A., we can rewrite the penalized system (1.3)—(1.4) as
(2.10) u; + Acu® + B(us,ue) =f, uf|aq = 0.

Similar to the Navier-Stokes equations, one can show (see for instance [3]) that as-
suming (A1), there exists a T» < T and a constant C independent of € such that

t
ww%+/nwwﬁ@sa te 0,7
0

In the sequel, we restrict ourselves to the interval [0, Tp] with Ty = min{T}, T2}
For simplicity, we will use ||v]|z»(x) to denote the norm (foT° ||v||5 dt)'/? in LP(0, Tp; X).
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We will use C as a generic constant depending only on the data: 2, ug, f, To, and v.
C may grow exponentially with Ty, but it will only grow algebraically with »~!

For the readers’ convenience, we recall two lemmas of Gronwall type which will
be frequently used.

LEMMA 2.2 (Gronwall lemma). Let y(t), h(t), g(t), f(t) be nonnegative functions
satisfying

t t T
y(t) +/0 h(s)ds < y(0) +/0 (g(s)y(s) + f(s))ds VO <t < T, with /0 g(t)dt < M.

Then .
y(t) + / h(s)ds < exp(M)(y / f(s)ds) VO <t < T.

LEMMA 2.3 (discrete Gronwall lemma). Let y™, h™, g", f™ be nonnegative series
satisfying

T/k
y™ +kZh”<ng"y"+f"), withk Y g" < M Y0 <m < T/k.
n=0 n=0 n=0

Assume kg™ < 1Yn and let 0 = maxo<p<r/R(1 — kg")*l, then

m m
y"+kY A" <exp(oM)(B+kY_ f") Vm < T/k.
n=1 n=0
3. Linearized problem. In this section, we will consider the following Navier—
Stokes equations linearized at u = 0:
u; —vAu+ Vp = f,
(3.1) !
divu = 0, u(0) = up.

The results in this section will then be used in the next section as an intermediate
step for analyzing the fully nonlinear Navier-Stokes equations.

The penalty method applied to (3.1) is
39 u; — vAu® + Vp® = f,
(3:2) divu® +ep® =0, uf(0) = ug.

We shall derive a sequence of estimates for the penalty errors e = u—u* and ¢ = p—p°.
Subtracting (3.2) from (3.1), we obtain

(3.3) e; —vAe+Vqg=0,
(3.4) dive + eq = ¢ep, e(0) =0.
LEMMA 3.1. Assuming (Al), we have
(3.5) lell e (z2) + VVllellL2qay + Vellall 22y < Ce.
(36) “e||L2(L2) S Ce.

Proof. Taking the inner product of (3.3) with e and (3.4) with ¢, summing up
the two relations, we derive

5 llel? + vIVel? + ellal? = elp,) < Sllall> + 5 ol
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Integrating the above inequality from 0 to ¢t < Ty, thanks to e(0) = 0 and (2.8), we
obtain

el oo (z2) + viielZz ey +ellglliecrey < Ce,

which is equivalent to (3.5).
We now use the standard parabolic duality argument. For any 0 <\t, < Tp, we
define (w, ¢) by

ws +vAw+ Vo =e(s) YV0<s<t,

(3.7) divw = 0, w(t) = 0.

Let us first establish the following inequality:
(3.8) vl|wllLzcaz) + IVl L2(z2) < Cllelpzz2)-

Taking the inner product of (3.7) with Aw, integrating from 0 to ¢, we derive imme-
diately

vl|lwllLzarz) + [Vw(0)l L2cze) < Cllellrzze).
Applying the projection operator Py on (3.7), we derive
lwsllL2(z2) < Cllellz(L2).-
We then use the equation (3.7) again to obtain
IV@llL2(z2) < CllellLzre),

which completes the proof of (3.8).
We now take the inner product of (3.7) with e(s), in light of (3.3) and divw = 0,
and derive

lell> = (ws, e) + v(Aw,e) + (Vo,e)

= —d%(w, e) — (es,w) —v(Ve,Vw) + (Vo, e)

= %(w,e) + (Vq,'w) - (¢7 dive) = %(w’e) _ E(¢,p€)_

Integrating from 0 to t, since w(t) = e(0) = 0, we obtain

t t
/0 lell*ds = —]O e(¢,p%)ds < 6119l Z2(r2) + Coe®IP 7212,

where Cjs is a constant depending on § only. Thanks to (3.8) and Lemma 3.1, we can
choose ¢ sufficiently small such that

t
/ lel?ds < CE||p° |2a sy < CE* Vi€ [0, T [
0

The following results related to (2.9) will be needed to derive improved error

estimates.
LEMMA 3.2. Assuming (Al) and (A2), we have

t
[ #twiieas <o vie o,
0
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Proof. Taking the partial derivative with respect to ¢ on (3.3) and (3.4), we obtain
(39) €t — z/Aet + VQt = 0,
(3.10) dive; + €g¢ = epy, e(0) =0.

Taking the inner products of (3.3) with te;(¢), (3.10) with ¢g, and summing up the
two relations we get

vd
2dt

ed

2
t|Vell* + 5 7

v 3
tle? + thall* = 5 1Vel® + S llal® + et(pe, 9)
2 2
v 9
< 5lIvel® +ellal® + 52 lpll*.

Integrating over [0, t], using Lemma 3.1, (2.9), and the Gronwall lemma, we derive
t
(3.11) - / sllecl?ds + tlle] + etlg|® < Ce.
0

We then take the inner products of (3.9) with #2e;, (3.10) with #2¢;, and adding
them up, we obtain

1d
5t lled? + V2 Ve + et gul> = tlec] + o, )

et? ct?
< tlle|? + —2-—||th|2 + 7llptll2-

Integrating the above relation from 0 to ¢, using (3.11) and (2.9), we get

¢ ¢ ¢
E/ 52||qel?ds < C/ s||es||>ds + Ce/ 82||p¢||?ds < Ce,
0 0 0

The desired result follows from the above inequality and (2.9). 0
LEMMA 3.3. Assuming (A1) and (A2), we have

t t
(3.12) t||e(t)||2+V/ s||Ve(s)||2ds+a/ sllq(s)l|2ds < Ce? vt € [0,Th),
0 0

(3.13) t2||Ve(t)||® + /t s2||q(s)||?ds < Ce? Vit € [0, Ty).
0

Proof. Let us consider the decomposition (cf. [9])
H}(Q)=VeVt, where V!= {(-A)"'Vq:qe L*(Q)}

and v = (—A)"'Vq iff —Av = Vq and v|sq = 0. It is well known (cf. [9]) that for
p(t) € L2()/R, there exists a unique ¢(t) € V+ such that dive(t) = p(t) with

(3.14) le@®l1 < Cllp(®)]l ¥ ¢ € [0, To).
Furthermore, if p;(t) € L?(Q)/R, we then have dive;(t) = ps(t) with

(3.15) llee(t)llr < Clipe(t)|| YVt € [0, To).
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Taking the inner product of (3.3) with te and of (3.4) with tg, summing up the
two relations, and using (3.3), we derive

1d 1 ) '
5&@”6”2) + tI/”Ve||2 +Et||q||2 = 5”e“2 +et(p,q) = 5”6”2 + et(divep, q)
1 1
(3.16) = §|Iell2 —et(Vgq,p) = §||e||2 + et(es, @) + evt(Ve, Vo)
1 d .
= Sllel* +eZt(e. ) — e(e. ) ~etle, @) +evt(Ve, Vep).

With the assumption (A1), we can show (cf. [11]) that vtp € L>(0,To; H'(Q)/R),
therefore using (3.14), we get

et(elt), o(1)) < Ll + el < 5 lle(®)| + Ce?.

Hence, integrating (3.16) from 0 to ¢, using the above relation, the Cauchy—Schwarz
inequality, Lemma 3.1, (2.9), (3.14), and (3.15), we derive

t
tle()|? + / (vsl|Ve(s) |2 + eslla(s)|2)ds
0
t t t
<ce+cC / le(s)||%ds + Ce? / l(s)|%ds + Ce? / ()|
0 0 0
t
< Ce 4 Ce? / (Ipll? + s*llpe]®)ds < Ce2.
0

Taking the inner products of (3.3) with #2e;, (3.10) with t?q, and summing up the two
relations, we obtain

Ld cd
2dt 2dt
Using equations (3.3) and (3.14), we get

(3.17) 2lled® + 5= Vel® + 5 = tllall? = tllel + etllgll® + et*(pr, ).

et?(py, q) = et*(diveps, q) = —€t?(pr, Vq) = et* (e, 1) + et?(Ve, V)
< %Iletll2 + O |l pi||? + 8[| Vel® + 2| Vepe |*
< Eled? +2Vel + 024
Integrating (3.17) and using the Gronwall lemma, we obtain
/Ot s2|lex(s)||2ds + 2| Ve(t)|| + et?||q(t)||> < Ce? Vt € [0, To).

Finally we derive from equation (3.3) that
lgl* < ClIVal?, < C(llAel?y + lledlIZy) < CllellF + lleel®).-
Therefore

To TO
/ s[lql|*ds < C/ s*(lellf + lleel|*)ds < Ce. 0
/0 0

To summarize, we have proved the following theorem.
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THEOREM 3.1. Assuming (Al), we have

le(®)] + ( / ||e<s>||%ds)2 < OVE Ve 0.Ty).

Assuming (A1) and (A2), we have

Vi|e(®)| + t|le®)|l1 + (/0 s2||q||2ds> ’ < Ce Vt € [0,Tp).

4. Nonlinear Navier—Stokes equations. We consider first the following in-
termediate linear equations:
(4.1) vy — vAv + Vy = f — B(u,u),
(4.2) divo + ey =0, v(0) = wuy,
where u is the solution of Navier-Stokes equations (1.1)—(1.2).

Letting £ = v — u,¢ = v — p, and subtracting (4.1)—(4.2) from (1.1)-(1.2), we
obtain

& —vAE+ Vo =0,
div€ + ¢ = —ep, £(0) =0.

LEMMA 4.1. Assuming (Al) and (A2), we have

(4.3)

t \ 3 t \ \ 3
( [ 1wl ds) +ﬁ||s(t>||+t||e<t>||1+( [ #1001 ds) < Ce Vte [0,y

Proof. Thanks to (2.8), we have f — B(u,u) € L?(0,To; L?(f2)). We note that
the assumption (Al) for a linear problem can be replaced by the weaker condition
f € L?(0,Ty; L%(£2)). On the other hand, it can be easily shown (see for instance [11]
that tu; € L2(0, Tp; H3(2)). Hence

£ 2 (F — Bw,w) = (i~ Blu, w) ~ Blaw,w)) € L0, T ().

The lemma is then a direct consequence of Lemma 3.1 and Theorem 3.1 applied to
(4.3). 0

Now, letting n = u® —v, ¢ = p® — v, and subtracting (4.1)—(4.2) from (1.3)-(1.4),
we get

(4.4) 1 — vAn + B(uf,uf) — B(u,u) + Vq =0,
(4.5) divp +eq =0, 1n(0) = 0.
Since

B(u®,u®) — B(u,u) = B(u®,u — u) + B(u® — u,u)
B(u®,€+m) + B(€+n,u),

(4.6)
we can rewrite (4.4) as

(4.7) M+ A+ B(us, €+ 1) + B(§+n,u) = 0.
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THEOREM 4.1. Assuming (Al) and (A2), we have the following estimates:

t 3
Jinu(w—u%t)||+ﬁt||u(t)—u6<t>n1+( i szup(t)—pf(t)u?ds) <Ce VO<t<T.
0
Proof. Taking the inner product of (4.7) with A;ln, we get

2dtllA In)2 + vlnl|2 = —b(us, € +n, A7 n) — b€ + m,u, AT n) = I + L.

Thanks to (2.4) and Lemma 2.1, using Schwarz’s inequality we derive that
I < Cllul2[|€ +nlll A nll < Cllus|2(1€ + nllIVAZ 7|
< Cllus 2]l + [nl)l|AZ *n]l < %[lnll2 + ClEl? + Clluc 131145 H )l
Similarly, we have
< XJnll? + CIIEIP + Cllul| A= ]l
Combining the above inequalities, we arrive at

d _1 _1
(4.8) 7 14e 2nll? + viinll® < ClIENP + Cllull + [lu®|13) | A 20>,

Since fOTO(Hu[]% + ||luf||2)dt < C, we can apply the Gronwall lemma to (4.8), using
Lemma 4.1, and obtain

(4.9) 1AZ Fn@)I2 +v | lIn(s)IPds < C [ [I&(s)|%ds < Ce* vt € [0, ).
0 0

Now, taking the inner products of (4.4) with tn, (4.5) with tq, and adding them up
using (2.4) and Schwarz’s inequality, we derive
1d

3 dttllnll2 +vt|Vn|* + etllq)® = ||77||2 — th(u®, & +n,m) — th(€ +m,u, )

I /\

§||77||2 + Ctl|uf|l2)1€ + nllilnll + Ctlull2(€ + nll1lnl
1 vt .
< §||77||2 + gllvnll2 + €N + Ct(llusll3 + llul3)Inl>.

Integrating over [0, t], using (4.9), Lemma 4.1, and the Gronwall lemma, we obtain

t t
(4.10) Hn(®)|2 + v / sIVn(s)[Pds + ¢ / slla(s)|2ds < Ce.
0 0

Next we take the partial derivative with respect to t of (4.5) to obtain
(411) diV"]t +eqr = 0.

Taking the inner products of of (4.4) with t?n;, (4.11) with t2q, adding them up, we
get

el + L 22 Vn)2 + L2 = vt V|12 + etlql?

2 dt 2dt
— t2b(u’, € +n,m;) — t2(€ +m, u,my).

We treat the nonlinear terms on the right-hand side as follows.

(4.12)
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Using (2.4) and Lemma 4.1, we derive
t2b(u®, & +m,m5) < £ [|uc||2[1€ + |1 |7
< Zlml + o 01€1E + Iml)
< gllmll2 +Ce?||[ut |3 + CE||u |31 Vn >
Similarly, we can derive

- 2
t2b(€ +m, u,m;) < lemll2 + Ce?||ul3 + Ot |lull3]|Vn*.
Combining the above inequalities into (4.12), we obtain

d d
Bl + v IV + e 22 gl <vE|ValP +etlal?
+ O+ 2Vnl?) (w1 + lul)

Integrating over [0, t], using (4.10) and the Gronwall lemma, we get
¢

(4.13) | S imo)Pds + v Vn(o)l? + ela)|? < e
0

Finally by (2.4), we have
I1B(e, & +m)ll-1 < C[uf[L1€ +nllx) < C(lluf 1€l + lImll),

1B +mn,w)[-1 < C(lull1 € +nll) < C(llwll€l + lnll)-
From (4.4) and (4.6), we get

qu —‘nt+VA77—B('U/E,€+"7) _B(£+n’u)'

Therefore by using previous estimates on the above equation, we derive

To To
/ |lqll?ds < / P(|Vq|l? 1ds < CE,
0 0

which completes the proof of Theorem 4.1. 0

5. Time discretizations of the penalized system. The main purpose for
introducing the penalized system is to alleviate some difficulties related to the numer-
ical solution of the Navier-Stokes equations. To simplify our presentation, we shall
focus on semidiscretization (only the time variable will be discretized) of the penal-
ized system instead of considering full discretizations, since the technicalities vary on
different spatial discretizations and may obscure the essential goal of the paper. Note
in particular that since the pressure approximation p° is given as the divergence of
the velocity approximation u®, the discrete spaces for the velocity and the pressure
must satisfy the Babuska—-Brezzi inf-sup condition to have a well-posed system and an
optimal convergence rate in space variables for the velocity as well as for the pressure.
(We refer to [9] for more details on this aspect.)

We shall analyze two time-discretization schemes for the penalized system. The
first is the backward Euler scheme; the second is a modified scheme which leads to
improved error estimates. To simplify the analysis, we need more regularities on the
solutions of the Navier-Stokes equations and its penalized system.
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LEMMA 5.1. In addition to (A1) and (A2), we assume ug € H?(Q). Then the
solution u® of (2.10) satisfies
(5.1) u® € C([0, To); H*(Q)),
(5.2)
u € L2(0, To; HA(9)), A7 ¥, € L2(0, To; L3(Q)), ViEus, € L2(0, To; L2()).

Sketch of the proof. The proof of (5.1) is standard. We will only sketch the proof
of (5.2). .
Taking the partial derivative with respect to ¢ on (2.10), we get

(5.3) uf, + Acu§ + B(ug, uf) + B(us,ul) = f,.
Taking the inner product of (5.3) with ug, using (2.4) and Lemma 2.1, we obtain
gl + v g < O, + B, u uf)
< CIFellZy + Cllug w12 flugll
< CIAl2s + Clus Glus]® + 2)|adug .
Since u® € C([0,T]; H?(£2)), we can show (see for instance [11]) that u$(0) is well

defined. Hence, integrating over [0, t], using the Gronwall lemma and Lemma 2.1, we
derive

1
(5.4) lwtllzeo(zey + | A2 ufllL2 L2y < C.
By Lemma 2.1, we get ||uf|| 21y < C. Then by using (2.4), we get

“Aa_%B(Uf,uE)]] < ||B(uf,uf)|-1 £ sup b(ug, u®,v)

< Cllug[lfJul2.
veH(Q) vl

The same is true for B(u®,u¢). Thus

ATy = AZH{f, — Acu, — B(ug.u) — B(us,us)} € L2(0,T; LA(Q)).
Taking the inner product of (5.3) with tu$,, using (2.2) and Schwarz’s inequality, we
get
1d
2 dt

1 1 1 ~ ~
thugl® + 5 =t A2, = A2 we® + t(fr, €5;) — th(ug, u, ug,) — th(us, uf, us,)

IA

1, 1
542 wg|? + ¢l Follllug ]l + Ctlluc |af|ug ]| [l ug, |

IA

1, .1 t
5 llas wl|® + Ctl| fel|* + 5l|u§tll2 + Ctlu®||?||ug||>.

Integrating over [0, Ty], using the Gronwall lemma, (A1), and (5.4), we derive

To
/ tHuglPde<c. O
1]

5.1. Backward Euler scheme. Let us consider the time discretization of the
penalized system (2.10) by the backward Euler scheme

un+1 —un

A + Acu™ 4 B(u™ unt) = ftng1) with u® = ug,

(5.5)
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where k is the time-step size and t,, = nk.
LEMMA 5.2. Under the assumption of Lemma 5.1, we have

m
tml[ U (tn) — w3 + &) talluf(tn) — u™||3 < CK* Vm < To/k.
n=1
Proof. Letting €™ = uf(t,) — u™ and subtracting (5.5) from (2.10) at t = tp41,
we get
n+1 __ em

k

e

(5.6) + A.e™! 4+ B(u™!, e") + B(e™, uf(tny1)) = RY,

where
1 tnt1

kJ,
Taking the inner product of (5.6) with 2ke™*!, thanks to (2.2), we derive

(67 R =uilten) - 0 ) —u)) = 3 [ (- ta)uidt

1
le™ 1> — le”|* + le™+! — em||® + 2k| A2 e™ |2
= 2k(RZ, e™1) — 2kb(e™ 1, uf (tny1), €™ Y).
Using the Schwarz inequality and (5.7), we get

tn+1 _1 k 1
K(RD, em*) = k(AZPRY, AZe™) < Ck?/t A= g P + 1 4F et P,

n

Then using (2.4) and (5.1), we have

2kb(e™t, us (tnt1), €"F) < Cklle™ || [|€" 1 ]|u® (tnt) 2
k. 1
< 7l4é e" | + Cklle™ 2.

Taking the summation of (5.6) for n from 0 to m, using the discrete Gronwall lemma
and Lemma 5.1, we derive

(5.8) le™+12 + kS | AZem |2 < CK? Vi < To/k.
n=0
Thus
1
(5.9) [um < €™y + |uf(tnt1)ll < CllAZe™ |+ C < C.

Taking the inner product of (5.6) with 2kt, 1 A.e" !, we obtain
1 1 1
tni1{|AZe" |2 — | AZe|? + || A2 (€™ — €")[P} + 2kt || Ace™ ||
(5.10) = 2k(tns1 R", Ace™t) — 2kt, 1 1b(ut?, e"t, Ae™)
- 2ktn+15(en+la ua(tn-l—l)v Aeen+1)'
Using (2.4), (5.9), and Young’s inequality, we can derive
. 1 1
2kt 1b(umt?, ", Ace™ ) < Chitnga||Ace™ ! [[[Ju™+ [l le" |1} €™ 13

1
< Cktpyr|Ace™ |3 ||e™+!||2

ktn+1

< Cktnpalle™[F + =7 Ace™ ||,
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2ktyy1b(e™ U (tng1), Ac€™ ) < Chtpyr||u(tng)[l2]€"F 1] Ace™|
k

< ZthIlAEe”“II? + Chtpar|le™ 1.

Using (5.7) and the Schwarz inequality, we have

kt Ct tnt1 2
Kltnsa B2, Ace*) < Bt g emstp St (77t ugar)
tn
Ckt Ct e tnt1
< Hostp e+ Sott [0 g [ g e
k. t tn
kt Ck2t tntl
e el A
n tn

_ bt -
Foid g ems1)2 + 082 / P,

tn

Taking the summation of (5.10) for n from 0 to m, using the above inequalities and
the relation

1 1 1 1 1
tni1{[|AZe™H|? — | AZe" |’} = tnqa | AZ €™ — ta]| A2 ™| — Kl AZe™|?,

we obtain

m m
b [[AZ ™2 4 k Y tarillAce™ P < CE Y taralle™ ]

n=0 n=0
m+1
+CkZ||A2 e |2 4 Ck? / |, | 2.
n=0

Applying the discrete Gronwall lemma to the above inequality, thanks to Lemma 2.1
and Lemma 5.1, we obtain the desired results. 00

Finally, combining Theorem 4.1 and Lemma 5.2, we have proved the following
theorem.

THEOREM 5.1. Under the assumption of Lemma 5.1, we have

Vinlu(tn) — u™|| + tallu(tn) — u™i < C(k +¢€) Vn < To/k.

Remark5.1. The pressure approximation in (5.5) can be defined by p™ = —%divu”.
We can also derive an error estimate for p(t,,) — p™. In fact, taking the inner product
of (5.6) with t2_,(e™*! — e™), after some techmcal endeavors, we can prove

To/k—1
kYt +111 ||2<C’k2

n=0
Then using the equation (5.5) and the available estimates for e”, we can prove

To/k
k Z tallp(tn) — p"|I* < C(K +€%),
which is similar to the estimate in the continuous case (see Theorem 4.1).

5.2. An improved scheme. Theorem 5.1 indicates that the proper choice of €
in (5.5) is € ~ k. However, one notices that when € ~ k is small, the system (5.5) may
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become severely ill conditioned. We present below a modified scheme which would
totally relax the constraint on & while keeping the same accuracy.

To simplify our presentation, we will restrict ourselves to the linearized equations
(3.1), and we will also assume more regularities on the solution (u,p) of (3.1) (see (A3)
below). We note that the verification of (A3) involves some nonlocal compatibility
conditions on the data (see [11]).

The scheme we propose for (3.1) is

un+1 —u"

(5.11) A —vAu™ + Vpt = f(tn1),
(5.12) divu™! +e(p™*t! —p") =0, p° arbitrary.

The scheme (5.11)—(5.12) can be considered as the time discretization of the artificial

n+l__, n

u u

compressibility method (see Remark 5.2 below). Also when we erase the term =
in (5.11), the scheme is in fact the augmented Lagrangian method (or if one prefers,
the iterative penalty scheme) [8] applied to the steady Stokes equations.

Let " = u(t,) — u™,¢" = p(t,) — p™, Subtracting (5.11)-(5.12) from (3.1), we
get

n+l _ ,n

(5.13) € : Y JAe™! 4 vt = R,
(5.14) dive™! + (¢! — q") = e/tn+1 pedt,
tn
where
(5.15) R™ =uy(tny1) — %(u(tnﬂ) —u(ty)) = % tt"+1(t — tn)ugdt.

We will prove the following results for the scheme (5.11)—(5.12).
PROPOSITION 5.1. In addition to (Al) and (A2), we assume

(A3) pe € C([0.T); L2()), pu € C((0.T); L3 (), ug € L*(0,T; H™Y).
Then we have the following estimates for the scheme (5.11)~(5.12):

le™|? + kv Y [[Ve™|* < C(k* +€°k?) Vm < To/k.

n=0

Proof. Taking the scalar products of (5.13) with 2ke™+1, (5.14) with 2kg™*!, and
adding up the two relations, we obtain

(5.16) “en+1“2 _ “en“2 + ”en+1 _ en”2 + 2kV|]V€n+1”2
+he{la™ 1P = lla"l1* + llg™** - a1}

tn+1
R )
tn
Using the Schwarz inequality and (5.15), we get
ey
(Rg,2k3n+1) < Ck“R”H’il + 7V|lven+1“2

o [ 2 kv o nt1y2
<Ck llwsel|Z1dt + 2 Ve |".
tn
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To estimate the second term on the right-hand side of (5.16), we use the same argument
as in the proof of Lemma 3.3. Namely for p;(t), ps:(t) € L?(Q2)/R, there exists a unique
p(t) € H}(2) such that divep(t) = p:(t) and divep:(t) = ps(t) with
(5.17) le@llr < Clipe @Il el < Cllpee(®)l| V¢ € [0, To).

Then using equation (5.13), we derive
(5.18)

tnt tni1
ek (/ ptdt,q"“) = —¢k (/ pdt, Vq"‘”)
tn tn

tnt1 tnt1

=¢ (e"'H - e",/ cpdt) + ekv (Ve"“,/ V<pdt)
tn tn
thtl tn+1
+ ke (R",/ godt) <e (e""‘1 — e",/ cpdt)
tn tn

kv 12 2,0 [ 2 n)2
+ e oenr [ ola+ oRIRMI2,
tn

The assumption on p; and py; implies that ¢, and ¢; € C([0,T); L%(Q2)), which then
implies that there exist 7, € [tn,tnt1]sMn—1 € [tn—1,tn], and &, € [tn—1,tn41] such
that

( / cpdt) - (e", / sodt> — k(" (@)~ P(n-1)) = k(Tn—11n_1) (€7, 1(£n)).

Therefore using the above relation, we derive
(5.19)

tn+1 tn+1
5<e"+1 — e",/ cpdt) = f—:(e"“,/ cpdt)
tn tn
tn tn+1 tn
B T Ty
tn—1 tn tn—1
tn+l tn
<e (en—H"/ (pdt) —c e",/ pdt +2k2€|(€n’ p1(&n))l-
tn th-1

Taking the summation of (5.16) for n, using (5.18) and (5.19), we get

m tm+l
”em+1”2 + kfllqm+1”2 + kz I|ven+1||2 <eg (em+1’/ QOdt)
tm

n=0

tnt1 tm+1 m
40 [ fuulPade+ 02 [ e+ 2 Y le ()
0

tn n=0

Using the Schwarz inequality and (5.17), we derive

tm+1 1
(emet, [T pt) < glem IR + CeRptma)
tm

1
< Slle™ P + Ce*k?[lpe(mn) 1%,
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2k262| ", ¢:(€n))] < kz le™||? + Ck’e 22 lspe(€n))

<k Z le™|[* + Ck*e? Z [Ip2:(€n))]

n=0

Therefore using (A3) and Lemma 5.1, we derive

m m
le™ )12 + kellg™ M2 + kY [IVe™|? < Ok + k%) + k) [l
n=0 n=0
We then conclude by consistency the discrete Gronwall lemma. 0
Remark 5.2.
(a) Proposition 5.1 indicates that for the scheme (5.11)—(5.12), we can choose € to be
a constant independent of k while keeping the first-order accuracy. The result is
not surprising since the continuous form of (5.11)—(5.13) is

u; — vAu® 4+ Vp® = f,

diV’Urs + Ekpt = 0,
which is in fact a time discretization of the artificial compressibility method (see
for instance [19]) applied to the linearized equation (3.1). It has been shown (see

[19]) that when ek — 0, we have u® — w. In fact, using the techniques in §3, we
can prove, under the assumption of Proposition 5.1, that

lu(t) —u®(t)|| < Cek Vt<T.

(b) Higher-order time-discretization schemes can also be applied to the penalized
system. For instance, for the second-order scheme

un+1_un un+1+un ~ un+1+un un+1 + u™
S B (T ) — sy

one can show, by using similar procedures and under appropriate assumptions,
that the following error estimate holds:

lutn) — u™| < C(k* +¢) Vn < T/k.

Accordingly, one can also show that for the second-order version of (5.11)—(5.12),

utl —yr atl " R T IR VL VL YLy

divu™*! 4 ¢(p"tt —p") =0,

) V et -f(tn-i- )

we have the improved error estimate

llu(tn) — u™|| < C(k? +ek) Vn < T/k.

REFERENCES

[1] M. BERCOVIER, Perturbation of mized variational problems, applications to mized finite
element methods, RAIRO Anal. Numer., 12 (1978), pp. 221-236.

[2] M. BERCOVIER AND M. ENGELMAN, A finite element for the numerical solution of viscous
incompressible flows, J. Comp. Phys., 30 (1979), pp. 181-201.



(3]
(4

(5]
(6]
7]
(8]
(]
(10]

[11]

(12]
[13]
(14]
[15]
[16]
(17]
(18]
(19]

(20]

(21]

ERROR ESTIMATES OF THE PENALTY METHOD 403

B. BREFORT, J. M. GHIDAGLIA, AND R. TEMAM, Attractors for the penalized Navier-Stokes
equations, SIAM J. Math. Anal., 19 (1988), pp. 1-21.

F. BREZZI AND J. PITKARANTA, On the stabilization of finite element approzimation of
the Stokes problem, in Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid
Mechanics, Vol. 10, W. Hackbusch. ed., Viewig, 1984, pp. 11-19.

A. J. CHORIN, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968),
pp. 745-762.

, On the convergence of discrete approzimations to the Navier-Stokes equations, Math.
Comp., 23 (1969), pp. 341-353.

R. COURANT, Variational methods for the solution of problems of equilibrium and vibrations, -
Bull. Amer. Math. Soc., 49 (1943), pp. 1-23.

M. FORTIN AND R. GLOWINSKI, Augmented Lagrangian Methods, North-Holland, Amster-
dam, 1983.

V. GIRAULT AND P. A. RAVIART, Finite Element Methods for Navier-Stokes FEquations,
Springer-Verlag, New York-Heidelberg—Berlin, 1986.

F. K. HEBEKER, The penalty method applied to the instationary Stokes equations, Appl.
Anal., 14 (1982), pp. 137-154.

J. G. HEYWOOD AND R. RANNACHER, Finite element approzimation of the nonstationary
Nawer-Stokes problem. 1. Regularity of solutions and second order error estimates for spatial
discretization, SIAM J. Numer. Anal., 19 (1982), pp. 275-311.

T. J. R. HUGHES, W. T. LIU, AND A. J. BROOKS, Finite element analysis of incompressible
viscous flows by the penalty function formulation, J. Comp. Phys., 30 (1979), pp. 1-60.

J. T. ODEN AND O. P. JACQUOTTE, Stability of some mized finite element methods for
Stokesian flows, Comput. Methods Appl. Mech. Eng., 43 (1984), pp. 231-248.

J. T. ODEN AND N. KIKUCHI, Penalty method for constrained problems in elasticity, Internat.
J. Numer. Methods Engrg., 18 (1982), pp. 701-725.

J. SHEN, On error estimates of some higher order projection and penalty-projection schemes
for the Navier-Stokes equations, Numer. Math., 62 (1992), pp. 49-73.

, On error estimates of the projection method for the Navier-Stokes equations: First
order schemes, SIAM J. Numer. Anal., 29 (1992), pp. 57-77.

R. TEMAM, Une méthode d’approzimation des solutions des équations de Navier-Stokes, Bull.
Soc. Math. France, 98 (1968), pp. 115-152.

, Sur l'approzimation de la solution des équations de Navier-Stokes par la méthode des

pas fractionnaires I1, Arch. Rational Mech. Anal., 33 (1969), pp. 377-385.

, Sur Uapprozimation de la solution des équations de Navier-Stokes par la méthode des

pas fractionnaires I, Arch. Rational Mech. Anal., 32 (1969), pp. 135-153.

, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional

Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics,

Philadelphia, 1983.

, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amster-

dam, 1984.




