
Mathematics Monoqraph Series 3

Jie Shen Tao Tang

Spectral and High-Order Methods
with Applications

SCIENCE PRESS
Beijjng

Responsible Editor: Chen Yuzhuo

Copyright© 2006 by Science Press
Published by Science Press
16 Donghuangchenggen North Street
Beijing 100717, China

Printed in Beijing

All rights reserved. No part of this publication may be re-
produced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission
of the copyright owner.

ISBN 7-03-017722-3/0.2553(Beijing)

Preface

This book expands lecture notes by the authors for a course on Introduction of Spec-
tral Methods taught in the past few years at Penn State University, Simon Fraser
University, the Chinese University of Hong Kong, Hong Kong Baptist University,
Purdue University and the Chinese Academy of Sciences. Our lecture notes were
also used by Prof. Zhenhuan Teng in his graduate course at Peking University.

The overall emphasis of the present book is to present some basic spectral and
high-order algorithms together with applications to some linear and nonlinear prob-
lems that one frequently encounters in practice. The algorithms in the book are pre-
sented in a pseudocode format or with MATLAB or FORTRAN codes that contain
additional details beyond the mathematical formulas. The reader can easily write
computer routines based on the pseudocodes in any standard computer language. We
believe that the readers learn and understand numerical methods best by seeing how
algorithms are developed from the mathematical theory and then writing and testing
computer implementations of them. For those interested in the numerical analysis of
the spectral methods, we have also provided self-contained error analysis for some
basic spectral-Galerkin algorithms presented in the book. Our aim is to provide a
sufficient background on the implementation and analysis of spectral and high-order
methods so that the readers can approach the current research literature with the nec-
essary tools and understanding.

We hope that this book will be useful for people studying spectral methods on
their own. It may also serve as a textbook for advanced undergraduate/beginning
graduate students. The only prerequisite for the present book is a standard course in
Numerical Analysis.

This project has been supported by NSERC Canada, National Science Founda-
tion, Research Grant Council of Hong Kong, and International Research Team of
Complex System of the Chinese Academy of Sciences. In writing this book, we have
received much help from our friends and students. In particular, we would like to
thank Dr. Lilian Wang of Nanyang Technical University of Singapore for his many
contributions throughout the book. We are grateful to the help provided by Zhongzhi
Bai of the Chinese Academy of Sciences, Weizhu Bao of National University of Sin-
gapore, Raymond Chan of Chinese University of Hong Kong, Wai Son Don of Brown

ii Preface

University, Heping Ma of Shanghai University and Xuecheng Tai of Bergen Univer-
sity of Norway. Our gratitude also goes to Professor Hermann Brunner of Memorial
University of Newfoundland, Dr. Zhengru Zhang of Beijing Normal University, and
the following graduate students at Purdue, Qirong Fang, Yuen-Yick Kwan, Hua Lin,
Xiaofeng Yang and Yanhong Zhao, who have read the entire manuscripts and pro-
vided many constructive suggestions. Last but not the least, we would like to thank
our wives and children for their love and support.

A website relevant to this book can be found in

http://www.math.hkbu.edu.hk/∼ttang/PGteaching or

http://lsec.cc.ac.cn/∼ttang/PGteaching
We welcome comments and corrections to the book. We can be reached by

email to

shen@math.purdue.edu (Shen) and ttang@math.hkbu.edu.hk (Tang).

Jie Shen
Purdue University

Tao Tang
Hong Kong Baptist University

Contents

Preface

Chapter 1 Preliminaries . 1

1.1 Some basic ideas of spectral methods 2

1.2 Orthogonal polynomials . 6

1.3 Chebyshev and Legendre polynomials 15

1.4 Jacobi polynomials and generalized Jacobi polynomials 23

1.5 Fast Fourier transform . 27

1.6 Several popular time discretization methods 38

1.7 Iterative methods and preconditioning 48

1.8 Error estimates of polynomial approximations 61

Chapter 2 Spectral-Collocation Methods 68

2.1 Differentiation matrices for polynomial basis functions 69

2.2 Differentiation matrices for Fourier collocation methods 79

2.3 Eigenvalues of Chebyshev collocation operators 84

2.4 Chebyshev collocation method for two-point BVPs 91

2.5 Collocation method in the weak form and preconditioning 99

Chapter 3 Spectral-Galerkin Methods 105

3.1 General setup . 105

3.2 Legendre-Galerkin method . 109

3.3 Chebyshev-Galerkin method . 114

3.4 Chebyshev-Legendre Galerkin method 118

3.5 Preconditioned iterative method 121

3.6 Spectral-Galerkin methods for higher-order equations 126

3.7 Error estimates . 131

iv Contents

Chapter 4 Spectral Methods in Unbounded Domains 143

4.1 Hermite spectral methods . 144

4.2 Laguerre spectral methods . 158

4.3 Spectral methods using rational functions 170

4.4 Error estimates in unbounded domains 177

Chapter 5 Some applications in one space dimension 183

5.1 Pseudospectral methods for boundary layer problems 184

5.2 Pseudospectral methods for Fredholm integral equations 190

5.3 Chebyshev spectral methods for parabolic equations 196

5.4 Fourier spectral methods for the KdV equation 204

5.5 Fourier method and filters . 214

5.6 Essentially non-oscillatory spectral schemes 222

Chapter 6 Spectral methods in Multi-dimensional Domains 231

6.1 Spectral-collocation methods in rectangular domains 233

6.2 Spectral-Galerkin methods in rectangular domains 237

6.3 Spectral-Galerkin methods in cylindrical domains 243

6.4 A fast Poisson Solver using finite differences 247

Chapter 7 Some applications in multi-dimensions 256

7.1 Spectral methods for wave equations 257

7.2 Laguerre-Hermite method for Schrödinger equations 264

7.3 Spectral approximation of the Stokes equations 276

7.4 Spectral-projection method for Navier-Stokes equations 282

7.5 Axisymmetric flows in a cylinder 288

Appendix A Some online software . 299

A.1 MATLAB Differentiation Matrix Suite 300

A.2 PseudoPack . 308

Bibliography. 313

Index . 323

Chapter 1
Preliminaries

In this chapter, we present some preliminary materials which will be used through-
out the book. The first section set the stage for the introduction of spectral methods.
In Sections 1.2∼1.4, we present some basic properties of orthogonal polynomials,
which play an essential role in spectral methods, and introduce the notion of gen-
eralized Jacobi polynomials. Since much of the success and popularity of spectral
methods can be attributed to the invention of Fast Fourier Transform (FFT), an algo-
rithmic description of the FFT is presented in Section 1.5. In the next two sections,
we collect some popular time discretization schemes and iterative schemes which
will be frequently used in the book. In the last section, we present a concise error
analysis for several projection operators which serves as the basic ingredients for the
error analysis of spectral methods.

2 Chapter 1 Preliminaries

1.1 Some basic ideas of spectral methods

Comparison with the finite element method
Computational efficiency
Fourier spectral method
Phase error

Finite Difference (FD) methods approximate derivatives of a function by local argu-
ments (such as u′(x) ≈ (u(x+h)−u(x−h))/2h, where h is a small grid spacing) -
these methods are typically designed to be exact for polynomials of low orders. This
approach is very reasonable: since the derivative is a local property of a function, it
makes little sense (and is costly) to invoke many function values far away from the
point of interest.

In contrast, spectral methods are global. The traditional way to introduce them
starts by approximating the function as a sum of very smooth basis functions:

u(x) ≈
N∑
k=0

akΦk(x),

where the Φk(x) are polynomials or trigonometric functions. In practice, there are
many feasible choices of the basis functions, such as:

Φk(x) = eikx (the Fourier spectral method);
Φk(x) = Tk(x) (Tk(x) are the Chebyshev polynomials; the Chebyshev spec-
tral method);
Φk(x) = Lk(x) (Lk(x) are the Legendre polynomials; the Legendre spectral
method).

In this section, we will describe some basic ideas of spectral methods. For ease
of exposition, we consider the Fourier spectral method (i.e. the basis functions are
chosen as eikx). We begin with the periodic heat equation, starting at time 0 from
u0(x):

ut = uxx, (1.1.1)

with a periodic boundary condition u(x, 0) = u0(x) = u0(x+ 2π). Since the exact
solution u is periodic, it can be written as an infinite Fourier series. The approximate
solution uN can be expressed as a finite series. It is

uN (x, t) =
N−1∑
k=0

ak(t)eikx, x ∈ [0, 2π),

1.1 Some basic ideas of spectral methods 3

where each ak(t) is to be determined.

Comparison with the finite element method

We may compare the spectral method (before actually describing it) to the finite
element method. One difference is this: the trial functions τk in the finite element
method are usually 1 at the mesh-point, xk = kh with h = 2π/N , and 0 at the other
mesh-points, whereas eikx is nonzero everywhere. That is not such an important
distinction. We could produce from the exponentials an interpolating function like
τk, which is zero at all mesh-points except at x = xk:

Fk(x) =
1
N

sin
N

2
(x− xk) cot

1
2
(x− xk), N even, (1.1.2)

Fk(x) =
1
N

sin
N

2
(x− xk) csc

1
2
(x− xk), N odd. (1.1.3)

Of course it is not a piecewise polynomial; that distinction is genuine. A consequence
of this difference is the following:

Each function Fk spreads over the whole solution interval, whereas τk is zero
in all elements not containing xk. The stiffness matrix is sparse for the finite
element method; in the spectral method it is full.

The computational efficiency

Since the matrix associated with the spectral method is full, the spectral method
seems more time-consuming than finite differences or finite elements. In fact, the
spectral method had not been used widely for a long time. The main reason is the
expensive cost in computational time. However, the discovery of the Fast Fourier
Transform (FFT) by Cooley and Tukey[33] solves this problem. We will describe the
Cooley-Tukey algorithm in Chapter 5. The main idea is the following. Let wN =
e2πi/N and

(FN)jk = wjkN = cos
2πjk
N

+ i sin
2πjk
N

, 0 � j, k � N − 1.

Then for anyN -dimensional vector vN , the usualN2 operations in computing FNvN
are reduced to N log2N . The significant improvement can be seen from the follow-
ing table:

N N2 Nlog2N N N2 Nlog2N
16 256 64 256 65536 2048

4 Chapter 1 Preliminaries

32 1024 160 512 262144 4608
64 4096 384 1024 1048576 10240

128 16384 896 2048 4194304 22528

The Fourier spectral method

Unlike finite differences or finite elements, which replace the right-hand side
uxx by differences at nodes, the spectral method uses uNxx exactly. In the spectral
method, there is no ∆x. The derivatives with respect to space variables are computed
explicitly and correctly.

The Fourier approximation uN is a combination of oscillations eikx up to fre-
quency N − 1, and we simply differentiate them; hence

uNt = uNxx

becomes
N−1∑
k=0

a′k(t)e
ikx =

N−1∑
k=0

ak(t)(ik)2eikx.

Since frequencies are uncoupled, we have a′k(t) = −k2ak(t), which gives

ak(t) = e−k
2tak(0),

where the values ak(0) are determined by using the initial function:

ak(0) =
1
2π

∫ 2π

0
u0(x)e−ikxdx.

It is an easy matter to show that

|u(x, t) − uN (x, t)| =

∣∣∣∣∣
∞∑
k=N

ak(0)eikxe−k
2t

∣∣∣∣∣
�max

k
|ak(0)|

∞∑
k=N

e−k
2t

� max
0�x�2π

|u0(x)|
∫ ∞

N
e−tx

2
dx.

Therefore, the error goes to zero very rapidly as N becomes reasonably large. The

1.1 Some basic ideas of spectral methods 5

convergence rate is determined by the integral term

J(t,N) :=
∫ ∞

N
e−tx

2
dx =

√
π

4t
erfc(

√
tN),

where erfc(x) is the complementary error function (both FORTRAN and MAT-
LAB have this function). The following table lists the value of J(t,N) at several
values of t:

N J(0.1, N) J(0.5, N) J(1, N)
1 1.8349e+00 3.9769e-01 1.3940e-01
2 1.0400e+00 5.7026e-02 4.1455e-03
3 5.0364e-01 3.3837e-03 1.9577e-05
4 2.0637e-01 7.9388e-05 1.3663e-08
5 7.1036e-02 7.1853e-07 1.3625e-12
6 2.0431e-02 2.4730e-09 1.9071e-17
7 4.8907e-03 3.2080e-12 3.7078e-23
8 9.7140e-04 1.5594e-15 9.9473e-30

In more general problems, the equation in time will not be solved exactly. It needs a
difference method with time step ∆t, as Chapter 5 will describe. For derivatives with
respect to space variables, there are two ways:

(1) Stay with the harmonics eikx or sin kx or cos kx, and use FFT to go between
coefficients ak and mesh values uN (xj , t). Only the mesh values enter the difference
equation in time.

(2) Use an expansion U =
∑
Uk(t)Fk(x), where Fk(x) is given by (1.1.2) and

(1.1.3), that works directly with values Uk at mesh points (where Fk = 1). There is
a differentiation matrix D that gives mesh values of the derivatives, Djk = F ′

k(xj).
Then the approximate heat equation becomes Ut = D2U .

Phase error

The fact that x-derivatives are exact makes spectral methods free of phase error.
Differentiation of the multipliers eikx give the right factor ik while finite differences
lead to the approximate factor iK:

eik(x+h) − eik(x−h)

2h
= iKeikx, K =

sin kh
h

.

When kh is small and there are enough mesh points in a wavelength, K is close
to k. When kh is large, K is significantly smaller than k. In the case of the heat

6 Chapter 1 Preliminaries

equation (1.1.1) it means a slower wave velocity. For details, we refer to Richtmyer
and Morton[131] and LeVeque [101]. In contrast, the spectral method can follow even
the nonlinear wave interactions that lead to turbulence. In the context of solving high
Reynolds number flow, the low physical dissipation will not be overwhelmed by large
numerical dissipation.

Exercise 1.1

Problem 1 Consider the linear heat equation (1.1.1) with homogeneous Dirich-
let boundary conditions u(−1, t) = 0 and u(1, t) = 0. If the initial condition is
u(x, 0) = sin(πx), then the exact solution of this problem is given by u(x, t) =
e−π2t sin(πx). It has the infinite Chebyshev expansion

u(x, t) =
∞∑
n=0

bn(t)Tn(x),

where

bn(t) =
1
cn
Jn(π)e−π

2t,

with c0 = 2 and cn = 1 if n � 1.

a. Calculate

Jn(π) =
∫ 1

−1

1√
1 − x2

Tn(x) sin(πx)dx

by some numerical method (e.g. Simpson’s rule) ;

b. Plot Jn(π) against n for n � 25. This will show that the truncation series
converges at an exponential rate (a well-designed collocation method will do the
same).

1.2 Orthogonal polynomials

Existence
Zeros of orthogonal polynomials
Polynomial interpolations
Quadrature formulas
Discrete inner product and discrete transform

Hint: (a) Notice that Jn(π) = 0 when n is even; (b) a coordinate transformation like x = cos θ
may be used.

1.2 Orthogonal polynomials 7

Orthogonal polynomials play a fundamental role in the implementation and analysis
of spectral methods. It is thus essential to understand some general properties of
orthogonal polynomials. Two functions f and g are said to be orthogonal in the
weighted Sobolev space L2

ω(a, b) if

〈f, g〉 := (f, g)ω :=
∫ b

a
ω(x)f(x)g(x)dx = 0,

where ω is a fixed positive weight function in (a, b). It can be easily verified that 〈·, ·〉
defined above is an inner product in L2

ω(a, b).

A sequence of orthogonal polynomials is a sequence {pn}∞n=0 of polynomials
with deg(pn) = n such that

〈pi, pj〉 = 0 for i �= j. (1.2.1)

Since orthogonality is not altered by multiplying a nonzero constant, we may nor-
malize the polynomial pn so that the coefficient of xn is one, i.e.,

pn(x) = xn + a
(n)
n−1x

n−1 + · · · + a
(n)
0 .

Such a polynomial is said to be monic.

Existence

Our immediate goal is to establish the existence of orthogonal polynomials. Al-
though we could, in principle, determine the coefficients a(n)

j of pn in the natural
basis {xj} by using the orthogonality conditions (1.2.1), it is more convenient, and
numerically more stable, to express pn+1 in terms of lower-order orthogonal polyno-
mials. To this end, we need the following general result:

Let {pn}∞n=0 be a sequence of polynomials such that pn is exactly of degree n.
If

q(x) = anx
n + an−1x

n−1 + · · · + a0, (1.2.2)

then q can be written uniquely in the form

q(x) = bnpn + bn−1pn−1 + · · · + b0p0. (1.2.3)

In establishing this result, we may assume that the polynomials {pn} are monic.
We shall prove this result by induction. For n = 0, we have

q(x) = a0 = a0 · 1 = a0p0(x).

8 Chapter 1 Preliminaries

Hence we must have b0 = a0. Now assume that q has the form (1.2.2). Since pn is
the only polynomial in the sequence pn, pn−1, · · · , p0 that contains xn and since pn
is monic, it follows that we must have bn = an. Hence, the polynomial q − anpn is
of degree n − 1. Thus, by the induction hypothesis, it can be expressed uniquely in
the form

q − anpn = bn−1pn−1 + · · · + b0p0,

which establishes the result.

A consequence of this result is the following:

Lemma 1.2.1 If the sequence of polynomials {pn}∞n=0 is monic and orthogonal,
then the polynomial pn+1 is orthogonal to any polynomial q of degree n or less.

We can establish this by the following observation:

〈pn+1, q〉 = bn〈pn+1, pn〉 + bn−1〈pn+1, pn−1〉 + · · · + b0〈pn+1, p0〉 = 0,

where the last equality follows from the orthogonality of the polynomials {pn}.

We now prove the existence of orthogonal polynomials . Since p0 is monic and
of degree zero, we have

p0(x) ≡ 1.

Since p1 is monic and of degree one, it must have the form

p1(x) = x− α1.

To determine α1, we use orthogonality:

0 = 〈p1, p0〉 =
∫ b

a
ω(x)xdx− α1

∫ b

a
ω(x)dx.

Since the weight function is positive in (a, b), it follows that

α1 =
∫ b

a
ω(x)xdx

/∫ b

a
ω(x)dx.

In general we seek pn+1 in the form pn+1 = xpn−αn+1pn−βn+1pn−1−γn+1pn−2−
· · · . As in the construction of p1, we use orthogonality to determine the coefficients
above. To determine αn+1, write

0 = 〈pn+1, pn〉 = 〈xpn, pn〉 − αn+1〈pn, pn〉 − βn+1〈pn−1, pn〉 − · · · .

The procedure described here is known as Gram-Schmidt orthogonalization.

1.2 Orthogonal polynomials 9

By orthogonality, we have∫ b

a
xωp2

ndx− αn+1

∫ b

a
ωp2

ndx = 0,

which yields

αn+1 =
∫ b

a
xωp2

ndx
/∫ b

a
ωp2

ndx.

For βn+1, using the fact 〈pn+1, pn−1〉 = 0 gives

βn+1 =
∫ b

a
xωpnpn−1dx

/∫ b

a
ωp2

n−1dx.

The formulas for the remaining coefficients are similar to the formula for βk+1; e.g.

γn+1 =
∫ b

a
xωpnpn−2dx

/∫ b

a
ωp2

n−2dx.

However, there is a surprise here. The numerator 〈xpn, pn−2〉 can be written in the
form 〈pn, xpn−2〉. Since xpn−2 is of degree n − 1 it is orthogonal to pn. Hence
γn+1 = 0, and likewise the coefficients of pn−3, pn−4, etc. are all zeros.

To summarize:

The orthogonal polynomials can be generated by the following recurrence:⎧⎪⎪⎨⎪⎪⎩
p0 = 1,
p1 = x− α1,

· · · · · ·
pn+1 = (x− αn+1)pn − βn+1pn−1, n � 1,

(1.2.4)

where

αn+1 =
∫ b

a
xωp2

ndx
/∫ b

a
ωp2

ndx and βn+1 =
∫ b

a
xωpnpn−1dx

/∫ b

a
ωp2

n−1dx.

The first two equations in the recurrence merely start things off. The right-hand
side of the third equation contains three terms and for that reason is called the three-
term recurrence relation for the orthogonal polynomials.

10 Chapter 1 Preliminaries

Zeros of orthogonal polynomials

The zeros of the orthogonal polynomials play a particularly important role in the
implementation of spectral methods.

Lemma 1.2.2 The zeros of pn+1 are real, simple, and lie in the open interval (a, b).

The proof of this lemma is left as an exercise. Moreover, one can derive from the
three term recurrence relation (1.2.4) the following useful result.

Theorem 1.2.1 The zeros {xj}nj=0 of the orthogonal polynomial pn+1 are the eigen-
values of the symmetric tridiagonal matrix

An+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0
√
β1

√
β1 α1

√
β2

.√
βn−1 αn−1

√
βn

√
βn αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.2.5)

where

αj =
bj
aj
, for j � 0; βj =

cj
aj−1aj

, for j � 1, (1.2.6)

with {ak, bk, ck} being the coefficients of the three term recurrence relation (cf.
(1.2.4)) written in the form:

pk+1 = (akx− bk)pk − ckpk−1, k � 0. (1.2.7)

Proof The proof is based on introducing

p̃n(x) =
1√
γn
pn(x),

where γn is defined by

γn =
cnan−1

an
γn−1, n � 1, γ0 = 1. (1.2.8)

We deduce from (1.2.7) that

xp̃j =
cj
aj

√
γj−1

γj
p̃j−1 +

bj
aj
p̃j +

1
aj

√
γj+1

γj
p̃j+1, j � 0, (1.2.9)

1.2 Orthogonal polynomials 11

with p̃−1 = 0. Owing to (1.2.6) and (1.2.8), it can be rewritten as

xp̃j(x) =
√
βj p̃j−1(x) + αj p̃j(x) +

√
βj+1p̃j+1(x), j � 0. (1.2.10)

We now take j = 0, 1, · · · , n to form a system

xP̃(x) = An+1P̃(x) +
√
βn+1p̃n+1(x)En, (1.2.11)

where P̃(x) = (p̃0(x), p̃1(x), · · · , p̃n(x))T and En = (0, 0, · · · , 0, 1)T. Since
p̃n+1(xj) = 0, 0 � j � n, the equation (1.2.11) at x = xj becomes

xjP̃(xj) = An+1P̃(xj), 0 � j � n. (1.2.12)

Hence, the zeros {xj}nj=0 are the eigenvalues of the symmetric tridiagonal matrix
An+1.

Polynomial interpolations

Let us denote

PN = {polynomials of degree not exceeding N}. (1.2.13)

Given a set of points a = x0 < x1 · · · < xN = b (we usually take {xi} to be zeros
of certain orthogonal polynomials), we define the polynomial interpolation operator,
IN : C(a, b) → PN , associated with {xi}, by

INu(xj) = u(xj), j = 0, 1, · · · , N. (1.2.14)

The following result describes the discrepancy between a function u and its polyno-
mial interpolant INu. This is a standard result and its proof can be found in most
numerical analysis textbook.

Lemma 1.2.3 If x0, x1, · · · , xN are distinct numbers in the interval [a, b] and u ∈
CN+1[a, b], then, for each x ∈ [a, b], there exists a number ζ in (a, b) such that

u(x) − INu(x) =
u(N+1)(ζ)
(N + 1)!

N∏
k=0

(x− xk), (1.2.15)

where INu is the interpolating polynomial satisfying (1.2.14).

It is well known that for an arbitrary set of {xj}, in particular if {xj} are equally
spaced in [a, b], the error in the maximum norm, maxx∈[a,b] |u(x) − IN (x)|, may

12 Chapter 1 Preliminaries

not converge as N → +∞ even if u ∈ C∞[a, b]. A famous example is the Runge
function

f(x) =
1

25x2 + 1
, x ∈ [−1, 1], (1.2.16)

see Figure 1.1.

Figure 1.1 Runge function f and the equidistant interpolations I 5f and I9f for (1.2.16)

The approximation gets worse as the number of interpolation points increases.

Hence, it is important to choose a suitable set of points for interpolation. Good
candidates are the zeros of certain orthogonal polynomials which are Gauss-type
quadrature points, as shown below.

Quadrature formulas

We wish to create quadrature formulas of the type∫ b

a
f(x)ω(x)dx ≈

N∑
n=0

Anf(γn).

If the choice of nodes γ0, γ1, · · · , γn is made a priori, then in general the above
formula is exact for polynomials of degree � N . However, if we are free to choose
the nodes γn, we can expect quadrature formulas of the above form be exact for
polynomials of degree up to 2N + 1.

There are three commonly used quadrature formulas. Each of them is associated

1.2 Orthogonal polynomials 13

with a set of collocation points which are zeroes of a certain orthogonal polynomial.
The first is the well-known Gauss quadrature which can be found in any elementary
numerical analysis textbook.

Gauss Quadrature Let x0, x1, · · · , xN be the zeroes of pN+1. Then, the linear
system

N∑
j=0

pk(xj)ωj =
∫ b

a
pk(x)ω(x)dx, 0 � k � N, (1.2.17)

admits a unique solution (ω0, ω1, · · · , ωN)t, with ωj > 0 for j = 0, 1, · · · , N . Fur-
thermore,

N∑
j=0

p(xj)ωj =
∫ b

a
p(x)ω(x)dx, for all p ∈ P2N+1. (1.2.18)

The Gauss quadrature is the most accurate in the sense that it is impossible to find
xj, ωj such that (1.2.18) holds for all polynomials p ∈ P2N+2. However, by Lemma
1.2.1 this set of collocation points {xi} does not include the endpoint a or b, so it
may cause difficulties for boundary value problems.

The second is the Gauss-Radau quadrature which is associated with the roots of
the polynomial

q(x) = pN+1(x) + αpN (x), (1.2.19)

where α is a constant such that q(a) = 0. It can be easily verified that q(x)/(x−a) is
orthogonal to all polynomials of degree less than or equal to N − 1 in L2ω̃(a, b) with
ω̃(x) = ω(x)(x− a). Hence, the N roots of q(x)/(x− a) are all real, simple and lie
in (a, b).

Gauss-Radau Quadrature Let x0 = a and x1, · · · , xN be the zeroes of
q(x)/(x − a), where q(x) is defined by (1.2.19). Then, the linear system (1.2.17)
admits a unique solution (ω0, ω1, · · · , ωN)t with ωj > 0 for j = 0, 1, · · · , N . Fur-
thermore,

N∑
j=0

p(xj)ωj =
∫ b

a
p(x)ω(x)dx, for all p ∈ P2N . (1.2.20)

Similarly, one can construct a Gauss-Radau quadrature by fixing xN = b. Thus, the
Gauss-Radau quadrature is suitable for problems with one boundary point.

The third is the Gauss-Lobatto quadrature which is the most commonly used in

14 Chapter 1 Preliminaries

spectral approximations since the set of collocation points includes the two endpoints.
Here, we consider the polynomial

q(x) = pN+1(x) + αpN (x) + βpN−1(x), (1.2.21)

where α and β are chosen so that q(a) = q(b) = 0. One can verify that q(x)/((x −
a)(x − b)) is orthogonal to all polynomials of degree less than or equal to N − 2 in
L2
ω̂(a, b) with ω̂(x) = ω(x)(x − a)(x− b). Hence, the N − 1 zeroes of q(x)/((x −

a)(x− b)) are all real, simple and lie in (a, b).

Gauss-Lobatto Quadrature Let x0 = a, xN = b and x1, · · · , xN−1 be the
(N −1)-roots of q(x)/((x−a)(x− b)), where q(x) is defined by (1.2.21). Then, the
linear system (1.2.17) admits a unique solution (ω0, ω1, · · · , ωN)t, with ωj > 0, for
j = 0, 1, · · · , N . Furthermore,

N∑
j=0

p(xj)ωj =
∫ b

a
p(x)ω(x)dx, for all p ∈ P2N−1. (1.2.22)

Discrete inner product and discrete transform

For any of the Gauss-type quadratures defined above with the points and weights
{xj, ωj}Nj=0, we can define a discrete inner product in C[a, b] and its associated norm
by:

(u, v)N,ω =
N∑
j=0

u(xj)v(xj)ωj , ‖u‖N,ω = (u, u)
1
2
N,ω, (1.2.23)

and for u ∈ C[a, b], we can write

u(xj) = INu(xj) =
N∑
k=0

ũkpk(xj). (1.2.24)

One often needs to determine {ũk} from {u(xj)} or vice versa. A naive approach is
to consider (1.2.24) as a linear system with unknowns {ũk} and use a direct method,
such as Gaussian elimination, to determine {ũk}. This approach requires O(N3)
operations and is not only too expensive but also often unstable due to roundoff errors.
We shall now describe a stable O(N2)-approach using the properties of orthogonal
polynomials.

A direct consequence of Gauss-quadrature is the following:

1.3 Chebyshev and Legendre polynomials 15

Lemma 1.2.4 Let x0, x1, · · · , xN be the zeros of the orthogonal polynomial pN+1,
and let {ωj} be the associated Gauss-quadrature weights. Then

N∑
n=0

pi(xn)pj(xn)ωn = 0, if i �= j � N. (1.2.25)

We derive from (1.2.24) and (1.2.25) that

N∑
j=0

u(xj)pl(xj)ωj =
N∑
j=0

N∑
k=0

ũkpk(xj)pl(xj)ωj = ũl(pl, pl)N,ω. (1.2.26)

Hence, assuming the values of {pj(xk)} are precomputed and stored as an (N+1)×
(N + 1) matrix, the forward transform (1.2.24) and the backward transform (1.2.26)
can be performed by a simple matrix-vector multiplication which costs O(N2) oper-
ations. We shall see in later sections that the O(N2) operations can be improved to
O(N logN) if special orthogonal polynomials are used.

Exercise 1.2

Problem 1 Let ω(x) ≡ 1 and (a, b) = (−1, 1). Derive the three-term recurrence
relation and compute the zeros of the corresponding orthogonal polynomial P7(x).

Problem 2 Prove Lemma 1.2.2.

Problem 3 Prove Lemma 1.2.4.

1.3 Chebyshev and Legendre polynomials

Chebyshev polynomials
Discrete norm and discrete Chebyshev transform
Legendre polynomials
Zeros of the Legendre polynomials
Discrete norm and discrete Legendre transform

The two most commonly used sets of orthogonal polynomials are the Chebyshev and
Legendre polynomials. In this section, we will collect some of their basic properties.

Chebyshev polynomials

The Chebyshev polynomials {Tn(x)} are generated from (1.2.4) with ω(x) =
(1 − x2)−

1
2 , (a, b) = (−1, 1) and normalized with Tn(1) = 1. They satisfy the

16 Chapter 1 Preliminaries

following three-term recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x), n � 1,

T0(x) ≡ 1, T1(x) = x,
(1.3.1)

and the orthogonality relation∫ 1

−1
Tk(x)Tj(x)(1 − x2)−

1
2 dx =

ckπ

2
δkj , (1.3.2)

where c0 = 2 and ck = 1 for k � 1. A unique feature of the Chebyshev polynomials
is their explicit relation with a trigonometric function:

Tn(x) = cos
(
n cos−1 x

)
, n = 0, 1, · · · . (1.3.3)

One may derive from the above many special properties, e.g., it follows from (1.3.3)
that

2Tn(x) =
1

n+ 1
T ′
n+1(x) −

1
n− 1

T ′
n−1(x), n � 2,

T0(x) = T ′
1(x), 2T1(x) =

1
2
T ′

2(x).
(1.3.4)

One can also infer from (1.3.3) that Tn(x) has the same parity as n. Moreover, we
can derive from (1.3.4) that

T ′
n(x) = 2n

n−1∑
k=0

k+n odd

1
ck
Tk(x), T ′′

n (x) =
n−2∑
k=0

k+n even

1
ck
n(n2 − k2)Tk(x). (1.3.5)

By (1.3.3), it can be easily shown that

|Tn(x)| � 1, |T ′
n(x)| � n2, (1.3.6a)

Tn(±1) = (±1)n, T ′
n(±1) = (±1)n−1n2, (1.3.6b)

2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), m � n. (1.3.6c)

The Chebyshev polynomials {Tk(x)} can also be defined as the normalized eigen-
functions of the singular Sturm-Liouville problem(√

1 − x2T ′
k(x)

)′
+

k2

√
1 − x2

Tk(x) = 0, x ∈ (−1, 1). (1.3.7)

1.3 Chebyshev and Legendre polynomials 17

We infer from the above and (1.3.2) that∫ 1

−1
T ′
k(x)T

′
j(x)

√
1 − x2dx =

ckk
2π

2
δkj, (1.3.8)

i.e. the polynomials {T ′
k(x)} are mutually orthogonal with respect to the weight

function w(x) =
√

1 − x2.

An important feature of the Chebyshev polynomials is that the Gauss-type quadra-
ture points and weights can be expressed explicitly as follows:

Chebyshev-Gauss:

xj = cos
(2j + 1)π
2N + 2

, ωj =
π

N + 1
, 0 � j � N. (1.3.9)

Chebyshev-Gauss-Radau:

x0 = 1, ω0 =
π

2N + 1
, xj = cos

2πj
2N + 1

, ωj =
2π

2N + 1
, 1 � j � N.

(1.3.10)
Chebyshev-Gauss-Lobatto:

x0 =1, xN =−1, ω0 =ωN =
π

2N
, xj=cos

πj

N
, ωj=

π

N
, 1 � j � N − 1.

(1.3.11)

Discrete norm and discrete Chebyshev transform

For the discrete norm ‖ · ‖N,ω associated with the Gauss or Gauss-Radau quadra-
ture, we have ‖u‖N,ω = ‖u‖ω for all u ∈ PN . For the discrete norm ‖ · ‖N,ω
associated with the Chebyshev-Gauss-Lobatto quadrature, the following result holds.

Lemma 1.3.1 For all u ∈ PN ,

‖u‖L2
ω

� ‖u‖N,ω �
√

2‖u‖L2
ω
. (1.3.12)

Proof For u =
∑N

k=0 ũkTk, we have

‖u‖2
L2

ω
=

N∑
k=0

ũ2
k

ckπ

2
. (1.3.13)

On the other hand,

For historical reasons and for simplicity of notation, the Chebyshev points are often ordered
in descending order. We shall keep this convention in this book.

18 Chapter 1 Preliminaries

‖u‖2
N,ω =

N−1∑
k=0

ũ2
k

ckπ

2
+ ũ2

N 〈TN , TN 〉N,ω. (1.3.14)

The inequality (1.3.12) follows from the above results and the identity

(TN , TN)N,ω =
N∑
j=0

π

c̃jN
cos2 jπ = π, (1.3.15)

where c̃0 = c̃N = 2 and c̃k = 1 for 1 � k � N − 1.
Let {ξi}Ni=0 be the Chebyshev-Gauss-Lobatto points, i.e. ξi = cos(iπ/N), and

let u be a continuous function on [−1, 1]. We write

u(ξi) = INu(ξi) =
N∑
k=0

ũkTk(ξi) =
N∑
k=0

ũk cos (kiπ/N) , i = 0, 1, · · · , N.
(1.3.16)

One derives immediately from the Chebyshev-Gauss-quadrature that

ũk =
2

c̃kN

N∑
j=0

1
c̃j
u(ξj) cos (kjπ/N) . (1.3.17)

The main advantage of using Chebyshev polynomials is that the backward and for-
ward discrete Chebyshev transforms (1.3.16) and (1.3.17) can be performed in
O(N log2N) operations, thanks to the Fast Fourier Transform (FFT), see Section
1.5. The main disadvantage is that the Chebyshev polynomials are mutually orthogo-
nal with respect to a singular weight function (1−x2)− 1

2 which introduces significant
difficulties in the analysis of the Chebyshev spectral method.

Legendre polynomials

The Legendre polynomials {Ln(x)} are generated from (1.2.4) with ω(x) ≡ 1,
(a, b) = (−1, 1) and the normalization Ln(1) = 1. The Legendre polynomials
satisfy the three-term recurrence relation

L0(x) = 1, L1(x) = x,

(n+ 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x), n � 1,
(1.3.18)

and the orthogonality relation∫ 1

−1
Lk(x)Lj(x)dx =

1
k + 1

2

δkj. (1.3.19)

The Legendre polynomials can also be defined as the normalized eigenfunctions of
the singular Sturm-Liouville problem

1.3 Chebyshev and Legendre polynomials 19(
(1 − x2)L′

n(x)
)′ + n(n+ 1)Ln(x) = 0, x ∈ (−1, 1), (1.3.20)

from which and (1.3.19) we infer that∫ 1

−1
L′
k(x)L

′
j(x)(1 − x2)dx =

k(k + 1)
k + 1

2

δkj , (1.3.21)

i.e. the polynomials {L′
k(x)} are mutually orthogonal with respect to the weight

function ω(x) = 1 − x2.

Other useful properties of the Legendre polynomials include:∫ x

−1
Ln(ξ)dξ =

1
2n+ 1

(Ln+1(x) − Ln−1(x)), n � 1; (1.3.22a)

Ln(x) =
1

2n + 1
(L′

n+1(x) − L′
n−1(x)); (1.3.22b)

Ln(±1) = (±1)n, L′
n(±1) =

1
2
(±1)n−1n(n+ 1); (1.3.22c)

L′
n(x) =

n−1∑
k=0

k+n odd

(2k + 1)Lk(x); (1.3.22d)

L′′
n(x) =

n−2∑
k=0

k+n even

(
k +

1
2

)
(n(n+ 1) − k(k + 1))Lk(x). (1.3.22e)

For the Legendre series, the quadrature points and weights are

Legendre-Gauss: xj are the zeros of LN+1(x), and

ωj =
2

(1 − x2
j)[L

′
N+1(xj)]2

, 0 � j � N. (1.3.23)

Legendre-Gauss-Radau: xj are the N + 1 zeros of LN (x) + LN+1(x), and

ω0 =
2

(N + 1)2
, ωj =

1
(N + 1)2

1 − xj
[LN (xj)]2

, 1 � j � N. (1.3.24)

Legendre-Gauss-Lobatto: x0 = −1, xN = 1, {xj}N−1
j=1 are the zeros of L′

N (x), and

ωj =
2

N(N + 1)
1

[LN (xj)]2
, 0 � j � N. (1.3.25)

20 Chapter 1 Preliminaries

Zeros of Legendre polynomials

We observe from the last subsection that the three types of quadrature points for
the Legendre polynomials are related to the zeros of the LN+1, LN+1 +LN and L′

N .

Theorem 1.2.1 provides a simple and efficient way to compute the zeros of or-
thogonal polynomials, given the three-term recurrence relation. However, this method
may suffer from round-off errors as N becomes very large. As a result, we will
present an alternative method to compute the zeros of L(m)

N (x) numerically, where
m < N is the order of derivative.

We start from the left boundary −1 and try to find the small interval of width
H which contains the first zero z1. The idea for locating the interval is similar to
that used by the bisection method. In the resulting (small) interval, we use Newton’s
method to find the first zero. The Newton’s method for finding a root of f(x) = 0 is

xk+1 = xk − f(xk)/f ′(xk). (1.3.26)

After finding the first zero, we use the point z1 +H as the starting point and repeat
the previous procedure to get the second zero z2. This will give us all the zeros of
L

(m)
N (x). The parameter H , which is related to the smallest gap of the zeros, will be

chosen as N−2.

The following pseudo-code generates the zeros of L(m)
N (x).

CODE LGauss.1
Input N, ε, m %ε is the accuracy tolerence
H=N−2; a=-1
For k=1 to N-m do
%The following is to search the small interval containing
a root

b=a+H
while L

(m)
N (a)*L(m)

N (b) > 0
a=b; b=a+H

endwhile
%the Newton’s method in (a,b)

x=(a+b)/2; xright=b
while |x-xright|�ε

xright=x; x=x-L(m)
N (x)/L(m+1)

N (x)
endwhile
z(k)=x

a=x+H %move to another interval containing a root
endFor
Output z(1), z(2),· · ·,z(N-m)

1.3 Chebyshev and Legendre polynomials 21

In the above pseudo-code, the parameter ε is used to control the accuracy of the
zeros. Also, we need to use the recurrence formulas (1.3.18) and (1.3.22b) to obtain
L

(m)
n (x) which are used in the above code.

CODE LGauss.2
%This code is to evaluate L

(m)
n (x).

function r=Legendre(n,m,x)
For j=0 to m do

If j=0 then
s(0,j)=1; s(1,j)=x
for k=1 to n-1 do

s(k+1,j)=((2k+1)*x*s(k,j)-k*s(k-1,j))/(k+1)
endfor

else s(0,j)=0
if j=1 then s(1,j)=2

else s(1,j)=0
endif
for k=1 to n-1 do

s(k+1,j)=(2k+1)*s(k,j-1)+s(k-1,j)
endfor

endIf
endFor
r=s(n,m)

As an example, by setting N = 7,m = 0 and ε = 10−8 in CODE LGauss.1,
we obtain the zeros for L7(x):

z1 -0.94910791 z5 0.40584515
z2 -0.74153119 z6 0.74153119
z3 -0.40584515 z7 0.94910791
z4 0.00000000

By setting N = 6,m = 1 and ε = 10−8 in CODE LGauss.1, we obtain the
zeros for L′

6(x). Together with Z1 = −1 and Z7 = 1, they form the Legendre-Gauss-
Lobatto points:

Z1 -1.00000000 Z5 0.46884879
Z2 -0.83022390 Z6 0.83022390
Z3 -0.46884879 Z7 1.00000000
Z4 0.00000000

Discrete norm and discrete Legendre transform

As opposed to the Chebyshev polynomials, the main advantage of Legendre poly-

22 Chapter 1 Preliminaries

nomialsis that they are mutually orthogonal in the standard L2-inner product, so the
analysis of Legendre spectral methods is much easier than that of the Chebyshev
spectral method. The main disadvantage is that there is no practical fast discrete
Legendre transform available. However, it is possible to take advantage of both
the Chebyshev and Legendre polynomials by constructing the so called Chebyshev-
Legendre spectral methods; we refer to [41] and [141] for more details.

Lemma 1.3.2 Let ‖·‖N be the discrete norm relative to the Legendre-Gauss-Lobatto
quadrature. Then

‖u‖L2 � ‖u‖N �
√

3‖u‖L2 , for all u ∈ PN . (1.3.27)

Proof Setting u =
∑N

k=0 ũkLk, we have from (1.3.19) that ‖u‖2L2 =
∑N

k=0 2ũ2
k/(2k

+1). On the other hand,

‖u‖2
N =

N−1∑
k=0

ũ2
k

2
2k + 1

+ ũ2
N (LN , LN)N .

The desired result (1.3.27) follows from the above results, the identity

(LN , LN)N =
N∑
j=0

LN (xj)2ωj = 2/N, (1.3.28)

and the fact that 2
2N+1 � 2

N � 3 2
2N+1 .

Let {xi}0�i�N be the Legendre-Gauss-Lobatto points, and let u be a continuous
function on [−1, 1]. We may write

u(xj) = INu(xj) =
N∑
k=0

ũkLk(xj). (1.3.29)

We then derive from the Legendre-Gauss-Lobatto quadrature points that the discrete
Legendre coefficients ũk can be determined by the relation

ũk =
1

N + 1

N∑
j=0

u(xj)
Lk(xj)
LN (xj)

, k = 0, 1, · · · , N. (1.3.30)

The values {Lk(xj)} can be pre-computed and stored as a (N+1)×(N+1) matrix by
using the three-term recurrence relation (1.3.18). Hence, the backward and forward

1.4 Jacobi polynomials and generalized Jacobi polynomials 23

discrete Legendre transforms (1.3.30) and (1.3.29) can be performed by a matrix-
vector multiplication which costs O(N2) operations.

Exercise 1.3

Problem 1 Prove (1.3.22).

Problem 2 Derive the three-term recurrence relation for {Lk + Lk+1} and use the
method in Theorem 1.2.1 to find the Legendre-Gauss-Radau points with N = 16.

Problem 3 Prove (1.3.30).

1.4 Jacobi polynomials and generalized Jacobi polynomials

Basic properties of Jacobi polynomials
Generalized Jacobi polynomials

An important class of orthogonal polynomials are the so called Jacobi polynomials,
which are denoted by Jα,βn (x) and generated from (1.2.4) with

ω(x) = (1 − x)α(1 + x)β for α, β > −1, (a, b) = (−1, 1), (1.4.1)

and normalized by

Jα,βn (1) =
Γ(n+ α+ 1)
n!Γ(α+ 1)

, (1.4.2)

where Γ(x) is the usual Gamma function. In fact, both the Chebyshev and Legen-
dre polynomials are special cases of the Jacobi polynomials, namely, the Chebyshev
polynomials Tn(x) correspond to α = β = −1

2 with the normalization Tn(1) = 1,
and the Legendre polynomials Ln(x) correspond to α = β = 0 with the normaliza-
tion Ln(1) = 1.

Basic properties of Jacobi polynomials

We now present some basic properties of the Jacobi polynomials which will be
frequently used in the implementation and analysis of spectral methods. We refer to
[155] for a complete and authoritative presentation of the Jacobi polynomials.

The three-term recurrence relation for the Jacobi polynomials is:

Jα,βn+1(x) = (aα,βn x− bα,βn)Jα,βn (x) − cα,βn Jα,βn−1(x), n � 1,

Jα,β0 (x) = 1, Jα,β1 (x) =
1
2
(α+ β + 2)x+

1
2
(α− β),

(1.4.3)

24 Chapter 1 Preliminaries

where

aα,βn =
(2n+ α+ β + 1)(2n + α+ β + 2)

2(n + 1)(n + α+ β + 1)
, (1.4.4a)

bα,βn =
(β2 − α2)(2n + α+ β + 1)

2(n+ 1)(n + α+ β + 1)(2n + α+ β)
, (1.4.4b)

cα,βn =
(n+ α)(n + β)(2n + α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n + α+ β)
. (1.4.4c)

The Jacobi polynomials satisfy the orthogonality relation∫ 1

−1
Jα,βn (x)Jα,βm (x)(1 − x)α(1 + x)βdx = 0 for n �= m. (1.4.5)

A property of fundamental importance is the following:

Theorem 1.4.1 The Jacobi polynomials satisfy the following singular Sturm-
Liouville problem:

(1 − x)−α(1 + x)−β
d

dx

{
(1 − x)α+1(1 + x)β+1 d

dx
Jα,βn (x)

}
+ n(n+ 1 + α+ β)Jα,βn (x) = 0, −1 < x < 1.

Proof We denote ω(x) = (1− x)α(1 + x)β . By applying integration by parts twice,
we find that for any φ ∈ Pn−1,∫ 1

−1

d
dx

{
(1 − x)α+1(1 + x)β+1 dJ

α,β
n

dx

}
φdx = −

∫ 1

−1
ω(1 − x2)

dJα,βn

dx

dφ
dx

dx

=
∫ 1

−1
Jα,βn

{
[−(α+ 1)(1 + x) + (β + 1)(1 − x)]

dφ
dx

+ (1 − x2)
d2φ

dx2

}
ωdx = 0.

The last equality follows from the fact that
∫ 1
−1 J

α,β
n ψω(x)dx = 0 for any ψ ∈ Pn−1.

An immediate consequence of the above relation is that there exists λ such that

− d

dx

{
(1 − x)α+1(1 + x)β+1 d

dx
Jα,βn (x)

}
= λJα,βn (x)ω(x).

To determine λ, we take the coefficients of the leading term xn+α+β in the above
relation. Assuming that Jα,βn (x) = knx

n+{lower order terms}, we get knn(n+1+

1.4 Jacobi polynomials and generalized Jacobi polynomials 25

α+ β) = knλ, which implies that λ = n(n+ 1 + α+ β).

From Theorem 1.4.1 and (1.4.5), one immediately derives the following result:

Lemma 1.4.1 For n �= m,∫ 1

−1
(1 − x)α+1(1 + x)β+1 dJα,βn

dx
dJα,βm

dx
dx = 0. (1.4.6)

The above relation indicates that d
dxJ

α,β
n forms a sequence of orthogonal polyno-

mials with weight ω(x) = (1 − x)α+1(1 + x)β+1. Hence, by the uniqueness, we
find that d

dxJ
α,β
n is proportional to Jα+1,β+1

n−1 . In fact, we can prove the following
important derivative recurrence relation:

Lemma 1.4.2 For α, β > −1,

∂xJ
α,β
n (x) =

1
2
(n+ α+ β + 1)Jα+1,β+1

n−1 (x). (1.4.7)

Generalized Jacobi polynomials

Since for α � −1 and/or β � −1, the function ωα,β is not in L1(I) so it cannot
be used as a usual weight function. Hence, the classical Jacobi polynomials are only
defined for α, β > −1. However, as we shall see later, it is very useful to extend the
definition of Jα,βn to the cases where α and/or β are negative integers.

We now define the generalized Jacobi polynomials (GJPs) with integer indexes
(k, l). Let us denote

n0 := n0(k, l) =

⎧⎨⎩
−(k + l) if k, l � −1,
−k if k � −1, l > −1,
−l if k > −1, l � −1,

(1.4.8)

Then, the GJPs are defined as

Jk,ln (x) =

⎧⎪⎨⎪⎩
(1 − x)−k(1 + x)−lJ−k,−l

n−n0
(x) if k, l � −1,

(1 − x)−kJ−k,l
n−n0

(x) if k � −1, l > −1,
(1 + x)−lJk,−ln−n0

(x) if k > −1, l � −1,
n � n0.

(1.4.9)
It is easy to verify that Jk,ln ∈ Pn.

We now present some important properties of the GJPs. First of all, it is easy
to check that the GJPs are orthogonal with the generalized Jacobi weight ωk,l for all

26 Chapter 1 Preliminaries

integers k and l, i.e.,∫ 1

−1
Jk,ln (x)Jk,lm (x)ωk,l(x)dx = 0, ∀n �= m. (1.4.10)

It can be shown that the GJPs with negative integer indexes can be expressed as
compact combinations of Legendre polynomials.

Lemma 1.4.3 Let k, l � 1 and k, l ∈ Z. There exists a set of constants {aj} such
that

J−k,−l
n (x) =

n∑
j=n−k−l

ajLj(x), n � k + l. (1.4.11)

As some important special cases, one can verify that

J−1,−1
n =

2(n − 1)
2n − 1

(
Ln−2 − Ln

)
,

J−2,−1
n =

2(n − 2)
2n − 3

(
Ln−3 − 2n− 3

2n− 1
Ln−2 − Ln−1 +

2n − 3
2n − 1

Ln

)
,

J−1,−2
n =

2(n − 2)
2n − 3

(
Ln−3 +

2n− 3
2n− 1

Ln−2 − Ln−1 − 2n − 3
2n − 1

Ln

)
,

J−2,−2
n =

4(n− 1)(n − 2)
(2n − 3)(2n − 5)

(
Ln−4 − 2(2n − 3)

2n− 1
Ln−2 +

2n− 5
2n− 1

Ln

)
.

(1.4.12)

It can be shown (cf. [75]) that the generalized Jacobi polynomials satisfy the deriva-
tive recurrence relation stated in the following lemma.

Lemma 1.4.4 For k, l ∈ Z, we have

∂xJ
k,l
n (x) = Ck,ln Jk,ln−1(x), (1.4.13)

where

Ck,ln =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2(n+ k + l + 1) if k, l � −1,
−n if k � −1, l > −1,
−n if k > −1, l � −1,
1
2
(n+ k + l + 1) if k, l > −1.

(1.4.14)

Remark 1.4.1 Since ωα,β /∈ L1(I) for α � −1 and β � −1, it is necessary that the
generalized Jacobi polynomials vanish at one or both end points. In fact, an important
feature of the GJPs is that for k, l � 1, we have

1.5 Fast Fourier transform 27

∂ixJ
−k,−l
n (1) = 0, i = 0, 1, · · · , k − 1;

∂jxJ
−k,−l
n (−1) = 0, j = 0, 1, · · · , l − 1.

(1.4.15)

Thus, they can be directly used as basis functions for boundary-value problems with
corresponding boundary conditions.

Exercise 1.4

Problem 1 Prove (1.4.12) by the definition (1.4.9).

Problem 2 Prove Lemma 1.4.4.

1.5 Fast Fourier transform

Two basic lemmas
Computational cost
Tree diagram
Fast inverse Fourier transform
Fast Cosine transform
The discrete Fourier transform

Much of this section will be using complex exponentials. We first recall Euler’s
formula: eiθ = cos θ + i sin θ, where i =

√−1. It is also known that the functions
Ek defined by

Ek(x) = eikx, k = 0,±1, · · · (1.5.1)

form an orthogonal system of functions in the complex space L2[0, 2π], provided that
we define the inner-product to be

〈f, g〉 =
1
2π

∫ 2π

0
f(x)g(x)dx.

This means that 〈Ek, Em〉 = 0 when k �= m, and 〈Ek, Ek〉 = 1. For discrete values,
it will be convenient to use the following inner-product notation:

〈f, g〉N =
1
N

N−1∑
j=0

f (xj) g (xj), (1.5.2)

where
xj = 2πj/N, 0 � j � N − 1. (1.5.3)

The above is not a true inner-product because the condition 〈f, f〉N = 0 does not

28 Chapter 1 Preliminaries

imply f ≡ 0. It implies that f(x) takes the value 0 at each node xj .

The following property is important.

Lemma 1.5.1 For any N � 1, we have

〈Ek, Em〉N =
{

1 if k −m is divisible by N ,
0 otherwise.

(1.5.4)

A 2π-periodic function p(x) is said to be an exponential polynomial of degree at most
n if it can be written in the form

p(x) =
n∑
k=0

cke
ikx =

n∑
k=0

ckEk(x). (1.5.5)

The coefficients {ck} can be determined by taking the discrete inner-product of
(1.5.5) with Em. More precisely, it follows from (1.5.4) that the coefficients c0, c1,
· · · , cN−1 in (1.5.5) can be expressed as:

ck =
1
N

N−1∑
j=0

f(xj)e−ikxj , 0 � k � N − 1, (1.5.6)

where xj is defined by (1.5.3). In practice, one often needs to determine {ck} from
{f(xj)}, or vice versa. It is clear that a direct computation using (1.5.6) requires
O(N2) operations. In 1965, a paper by Cooley and Tukey [33] described a different
method of calculating the coefficients ck, 0 � k � N − 1. The method requires only
O(N log2N) multiplications and O(N log2N) additions, provided N is chosen in
an appropriate manner. For a problem with thousands of data points, this reduces the
number of calculations to thousands compared to millions for the direct technique.

The method described by Cooley and Tukey has become to be known either as
the Cooley-Tukey Algorithm or the Fast Fourier Transform (FFT) Algorithm, and has
led to a revolution in the use of interpolating trigonometric polynomials. We follow
the exposition of Kincaid and Cheney[92] to introduce the algorithm.

Two basic lemmas

Lemma 1.5.2 Let p and q be exponential polynomials of degree N −1 such that, for
the points yj = πj/N , we have

p(y2j) = f(y2j), q(y2j) = f(y2j+1), 0 � j � N − 1. (1.5.7)

1.5 Fast Fourier transform 29

Then the exponential polynomial of degree � 2N−1 that interpolates f at the points
yj, 0 � j � 2N − 1, is given by

P (x) =
1
2
(1 + eiNx)p(x) +

1
2
(1 − eiNx)q(x− π/N). (1.5.8)

Proof Since p and q have degrees � N − 1, whereas eiNx is of degree N , it is clear
that P has degree � 2N − 1. It remains to show that P interpolates f at the nodes.
We have, for 0 � j � 2N − 1,

P (yj) =
1
2
(1 + EN (yj))p(yj) +

1
2
(1 − EN (yj))q(yj − π/N).

Notice that EN (yj) = (−1)j . Thus for even j, we infer that P (yj) = p(yj) = f(yj),
whereas for odd j, we have

P (yj) = q(yj − π/N) = q(yj−1) = f(yj).

This completes the proof of Lemma 1.5.2.

Lemma 1.5.3 Let the coefficients of the polynomials described in Lemma 1.5.2 be
as follows:

p =
N−1∑
j=0

αjEj, q =
N−1∑
j=0

βjEj , P =
2N−1∑
j=0

γjEj .

Then, for 0 � j � N − 1,

γj =
1
2
αj +

1
2
e−ijπ/Nβj , γj+N =

1
2
αj − 1

2
e−ijπ/Nβj . (1.5.9)

Proof To prove (1.5.9), we will be using (1.5.8) and will require a formula for q(x−
π/N):

q(x− π/N) =
N−1∑
j=0

βjEj(x− π/N) =
N−1∑
j=0

βje
ij(x−π/N) =

N−1∑
j=0

βje
−iπj/NEj(x).

Thus, from equation (1.5.8),

P =
1
2

N−1∑
j=0

{
(1 + EN)αjEj + (1 − EN)βje−iπj/NEj

}

30 Chapter 1 Preliminaries

=
1
2

N−1∑
j=0

{
(αj + βje

−ijπ/N)Ej + (αj − βje
−ijπ/N)EN+j

}
.

The formulas for the coefficients γj can now be read from this equation. This com-
pletes the proof of Lemma 1.5.3.

Computational cost

It follows from (1.5.6), (1.5.7) and (1.5.8) that

αj =
1
N

N−1∑
j=0

f(x2j)e−2πij/N ,

βj =
1
N

N−1∑
j=0

f(x2j+1)e−2πij/N ,

γj =
1

2N

2N−1∑
j=0

f(xj)e−πij/N .

For the further analysis, let R(N) denote the minimum number of multiplications
necessary to compute the coefficients in an interpolating exponential polynomial for
the set of points {2πj/N : 0 � j � N − 1}.

First, we can show that

R(2N) � 2R(N) + 2N. (1.5.10)

It is seen thatR(2N) is the minimum number of multiplications necessary to compute
γj , and R(N) is the minimum number of multiplications necessary to compute αj
or βj . By Lemma 1.5.3, the coefficients γj can be obtained from αj and βj at the
cost of 2N multiplications. Indeed, we require N multiplications to compute 1

2αj for
0 � j � N−1, and another N multiplications to compute (12e

−ijπ/N)βj for 0 � j �
N − 1. (In the latter, we assume that the factors 1

2e
−ijπ/N have already been made

available.) Since the cost of computing coefficients {αj} is R(N) multiplications,
and the same is true for computing {βj}, the total cost for P is at most 2R(N) + 2N
multiplications. It follows from (1.5.10) and mathematical induction that R(2m) �
m 2m. As a consequence of the above result, we see that if N is a power of 2, say
2m, then the cost of computing the interpolating exponential polynomial obeys the
inequality

R(N) � N log2N.

1.5 Fast Fourier transform 31

The algorithm that carries out repeatedly the procedure in Lemma 1.5.2 is the fast
Fourier transform.

Tree diagram

The content of Lemma 1.5.2 can be interpreted in terms of two linear operators,
LN and Th. For any f , let LNf denote the exponential polynomial of degree N − 1
that interpolates f at the nodes 2πj/N for 0 � j � N − 1. Let Th be a translation
operator defined by (Thf)(x) = f(x+ h). We know from (1.5.4) that

LNf =
N−1∑
k=0

< f, Ek >N Ek.

Furthermore, in Lemma 1.5.2, P = L2Nf, p = LNf and q = LNTπ/Nf . The
conclusion of Lemmas 1.5.2 and 1.5.3 is that L2Nf can be obtained efficiently from
LNf and LNTπ/Nf .

Our goal now is to establish one version of the fast Fourier transform algorithm
for computing LNf , where N = 2m. We define

P
(n)
k = L2nT2kπ/Nf, 0 � n � m, 0 � k � 2m−n − 1. (1.5.11)

An alternative description of P(n)
k is as the exponential polynomial of degree 2n − 1

that interpolates f in the following way:

P
(n)
k

(
2πj
2n

)
= f

(
2πk
N

+
2πj
2n

)
, 0 � j � 2n − 1.

A straightforward application of Lemma 1.5.2 shows that

P
(n+1)
k (x) =

1
2

(
1 + ei2

nx
)
P

(n)
k +

1
2
(1 − ei2

nx)P (n)
k+2m−n−1

(
x− π

2n
)
. (1.5.12)

We can illustrate in a tree diagram how the exponential polynomials P(n)
k are

related. Suppose that our objective is to compute

P
(3)
0 = L8f =

7∑
k=0

< f, Ek >N Ek.

In accordance with (1.5.12), this function can be easily obtained from P
(2)
0 and P (2)

1 .
Each of these, in turn, can be easily obtained from four polynomials of lower order,

32 Chapter 1 Preliminaries

and so on. Figure 1.2 shows the connections.

Figure 1.2 An illustration of a tree diagram

Algorithm

Denote the coefficients of P(n)
k by A(n)

kj . Here 0 � n � m, 0 � k � 2m−n − 1,
and 0 � j � 2n − 1. We have

P
(n)
k (x) =

2n−1∑
j=0

A
(n)
kj Ej(x) =

2n−1∑
j=0

A
(n)
kj e

ijx.

By Lemma 1.5.3, the following equations hold:

A
(n+1)
kj =

1
2

[
A

(n)
kj + e−ijπ/2

n
A

(n)
k+2m−n−1, j

]
,

A
(n+1)
k,j+2n =

1
2

[
A

(n)
kj − e−ijπ/2

n
A

(n)
k+2m−n−1, j

]
.

For a fixed n, the array A(n) requires N = 2m storage locations in memory
because 0 � k � 2m−n − 1 and 0 � j � 2n − 1. One way to carry out the
computations is to use two linear arrays of length N , one to hold A(n) and the other
to holdA(n+1). At the next stage, one array will contain A(n+1) and the otherA(n+2).
Let us call these arrays C and D. The two-dimensional array A(n) is stored in C by
the rule

C(2nk + j) = A
(n)
kj , 0 � k � 2m−n − 1, 0 � j � 2n − 1.

It is noted that if 0 � k, k′ � 2m−n − 1 and 0 � j, j′ � 2n − 1 satisfying 2nk+ j =

1.5 Fast Fourier transform 33

2nk′ + j′, then (k, j) = (k′, j′). Similarly, the array A(n+1) is stored in D by the rule

D(2n+1k + j) = A
(n+1)
kj , 0 � k � 2m−n−1 − 1, 0 � j � 2n+1 − 1.

The factors Z(j) = e−2πij/N are computed at the beginning and stored. Then we use
the fact that

e−ijπ/2
n

= Z(j2m−n−1).

Below is the fast Fourier transform algorithm:

CODE FFT.1
% Cooley-Tukey Algorithm
Input m
N=2m, w=e−2πi/N

for k=0 to N-1 do
Z(k)=wk, C(k)=f(2πk/N)

endfor
For n=0 to m-1 do

for k=0 to 2m−n−1-1 do
for j=0 to 2n-1 do

u=C(2nk+j); v=Z(j2m−n−1)*C(2nk+2m−1+j)
D(2n+1k+j)=0.5*(u+v); D(2n+1k+j+2n)=0.5*(u-v)

endfor
endfor
for j=0 to N-1 do

C(j)=D(j)
endfor

endFor
Output C(0), C(1), · · ·, C(N-1).

By scrutinizing the pseudocode, we can also verify the bound N log2N for the
number of multiplications involved. Notice that in the nested loop of the code, n
takes on m values; then k takes on 2m−n−1 values, and k takes on 2n values. In this
part of the code, there is really just one command involving a multiplication, namely,
the one in which v is computed. This command will be encountered a number of
times equal to the product m × 2m−n−1 × 2n = m2m−1. At an earlier point in the
code, the computation of the Z-array involves 2m− 1 multiplications. On any binary
computer, a multiplication by 1/2 need not be counted because it is accomplished
by subtracting 1 from the exponent of the floating-point number. Therefore, the total
number of multiplications used in CODE FFT.1 is

m2m−1 + 2m − 1 � m2m = N log2N.

34 Chapter 1 Preliminaries

Fast inverse Fourier transform

The fast Fourier transform can also be used to evaluate the inverse transform:

dk =
1
N

N−1∑
j=0

g(xj)eikxj , 0 � k � N − 1.

Let j = N − 1 −m. It is easy to verify that

dk = e−ixk
1
N

N−1∑
m=0

g(xN−1−m)e−ikxm , 0 � k � N − 1.

Thus, we apply the FFT algorithm to get eixkdk. Then extra N operations give dk. A
pseudocode for computing dk is given below.

CODE FFT.2
% Fast Inverse Fourier Transform
Input m
N=2m, w=e−2πi/N

for k=0 to N-1 do
Z(k)=wk, C(k)=g(2π(N-1-k)/N)

end
For n=0 to m-1 do

for k=0 to 2m−n−1-1 do
for j=0 to 2n-1 do

u=C(2nk+j); v=Z(j2m−n−1)*C(2nk+2m−1+j)
D(2n+1k+j)=0.5*(u+v); D(2n+1k+j+2n)=0.5*(u-v)

endfor
endfor
for j=0 to N-1 do

C(j)=D(j)
endfor

endFor
for k=0 to N-1 do

D(k)=Z(k)*C(k)
endfor
Output D(0), D(1), · · ·, D(N-1).

Fast Cosine transform

The fast Fourier transform can also be used to evaluate the cosine transform:

ak =
N∑
j=0

f(xj) cos (πjk/N) , 0 � k � N,

1.5 Fast Fourier transform 35

where the f(xj) are real numbers. Let vj = f(xj) for 0 � j � N and vj = 0 for
N + 1 � j � 2N − 1. We compute

Ak =
1

2N

2N−1∑
j=0

vje
−ikxj , xj =

πj

N
, 0 � k � 2N − 1.

Since the vj are real numbers and vj = 0 for j � N +1, it can be shown that the real
part of Ak is

Re(Ak) =
1

2N

N∑
j=0

f(xj) cos (πjk/N) , 0 � k � 2N − 1.

In other words, the following results hold: ak = 2NRe(Ak), 0 � k � N . By the
definition of the Ak, we know that they can be computed by using the pseudocode
FFT.1. When they are multiplied by 2N , we have the values of ak.

Numerical examples

To test the the efficiency of the FFT algorithm, we compute the coefficients in
(1.5.6) using CODE FFT.1 and the direct method. A subroutine for computing the
coefficients directly from the formulas goes as follows:

CODE FFT.3
% Direct method for computing the coefficients
Input m
N=2m, w=e−2πi/N

for k=0 to N-1 do
Z(k)=wk, D(k)=f(2πk/N)

endfor
for n=0 to N-1 do

u=D(0)+
∑N−1
k=1 D(k)*Z(n)k

C(n)=u/N
endfor
Output C(0), C(1), · · ·, C(N-1)

The computer programs based on CODE FFT.1 and CODE FFT.2 are written
in FORTRAN with double precision. We compute the following coefficients:

ck =
1
N

N−1∑
j=0

cos(5xj)e−ikxj , 0 � k � N − 1,

36 Chapter 1 Preliminaries

where xj = 2πj/N . The CPU time used are listed in the following table.

m N CPU (FFT) CPU(direct)
9 512 0.02 0.5

10 1024 0.04 2.1
11 2048 0.12 9.0
12 4096 0.28 41.0
13 8192 0.60 180.0

The discrete Fourier transform

Again let f be a 2π-periodic function defined in [0, 2π]. The Fourier transform
of f(t) is defined as

H(s) = F{f(t)} =
1
2π

∫ 2π

0
f(t)e−istdt, (1.5.13)

where s is a real parameter and F is called the Fourier transform operator. The
inverse Fourier transform is denoted by F−1{H(s)},

f(t) = F−1{H(s)} =
∫ ∞

−∞
eistH(s)ds,

where F−1 is called the inverse Fourier transform operator. The following result is
important: The Fourier transform operator F is a linear operator satisfying

F{f (n)(t)} = (ik)nF{f(t)}, (1.5.14)

where f (n)(t) denotes the n-th order derivative of f(t). Similar to the continuous
Fourier transform, we will define the discrete Fourier transform below. Let the solu-
tion interval be [0, 2π]. We first transform u(x, t) into the discrete Fourier space:

û(k, t) =
1
N

N−1∑
j=0

u(xj , t)e−ikxj , −N
2

� k � N

2
− 1, (1.5.15)

where xj = 2πj/N . Due to the orthogonality relation (1.5.4),

1
N

N−1∑
j=0

eipxj =
{

1 if p = Nm,m = 0,±1,±2, · · · ,
0 otherwise,

1.5 Fast Fourier transform 37

we have the inversion formula

u(xj, t) =
N/2−1∑
k=−N/2

û(k, t)eikxj , 0 � j � N − 1. (1.5.16)

We close this section by pointing out there are many useful developments on fast
transforms by following similar spirits of the FFT methods; see e.g. [124], [126], [2],
[150], [21], [65], [123], [143].

Exercise 1.5

Problem 1 Prove (1.5.4).

Problem 2 One of the most important uses of the FFT algorithm is that it allows
periodic discrete convolutions of vectors of length n to be performed in O(n log n)
operations.

To keep the notation simple, let us consider n = 4 (the proof below carries
through in just the same way for any size). Use the fact that⎡⎢⎢⎣

1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

⎤⎥⎥⎦
⎡⎢⎢⎣
û0

û1

û2

û3

⎤⎥⎥⎦=

⎡⎢⎢⎣
u0

u1

u2

u3

⎤⎥⎥⎦,
is quivalent to

1
n

⎡⎢⎢⎣
1 1 1 1
1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9

⎤⎥⎥⎦
⎡⎢⎢⎣
u0

u1

u2

u3

⎤⎥⎥⎦=

⎡⎢⎢⎣
û0

û1

û2

û3

⎤⎥⎥⎦ ,
where ω = e2πi/n, prove that the linear system⎡⎢⎢⎣

z0 z3 z2 z1
z1 z0 z3 z2
z2 z1 z0 z3
z3 z2 z1 z0

⎤⎥⎥⎦
⎡⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎦=

⎡⎢⎢⎣
y0

y1

y2

y3

⎤⎥⎥⎦
where {z0, z1, z2, z3} is an arbitrary vector, can be transformed to a simple system of

38 Chapter 1 Preliminaries

the form ⎡⎢⎢⎣
ẑ0

ẑ1
ẑ2

ẑ3

⎤⎥⎥⎦
⎡⎢⎢⎣
x̂0

x̂1

x̂2

x̂3

⎤⎥⎥⎦=
1
n

⎡⎢⎢⎣
ŷ0

ŷ1

ŷ2

ŷ3

⎤⎥⎥⎦ .

1.6 Several popular time discretization methods

General Runge-Kutta methods
Stability of Runge-Kutta methods
Multistep methods
Backward difference methods (BDF)
Operator splitting methods

We present in this section several popular time discretization methods, which will be
repeatedly used in this book, for a system of ordinary differential equations

dU

dt
= F (U, t), (1.6.1)

where U ∈ Rd, F ∈ Rd. An initial condition is also given to the above problem:

U(t0) = U0. (1.6.2)

The simplest method is to approximate dU/dt by the finite difference quotient U′(t)
≈ [U(t+∆t)−U(t)]/∆t. Since the starting data is known from the initial condition
U0 = U0, we can obtain an approximation to the solution at t1 = t0 + ∆t: U1 =
U0 + ∆t F (U0, t0). The process can be continued. Let tk = t0 + k∆t, k � 1. Then
the approximation Uk+1 to the solution U(tk+1) is given by

Un+1 = Un + ∆t F (Un, tn), (1.6.3)

where Un ≈ U(·, tn). The above algorithm is called the Euler method. It is known
that if the function F has a bounded partial derivative with respect to its second
variable and if the solution U has a bounded second derivative, then the Euler method
converges to the exact solution with first order of convergence, namely,

max
1�n�N

|Un − U(tn)| � C∆t,

1.6 Several popular time discretization methods 39

where C is independent of N and ∆t.

The conceptually simplest approach to higher-order methods is to use more terms
in the Taylor expansion. Compared with the Euler method, one more term is taken so
that

U(tn+1) ≈ U(tn) + ∆t U ′(tn) +
∆t2

2
U ′′(tn), (1.6.4)

where the remainder of O(∆t3) has been dropped. It follows from (1.6.1) that U′(tn)
can be replaced by F (Un, tn). Moreover,

U ′′(t) =
d

dt
F (U(t), t) = FU (U, t)U ′(t) + Ft(U, t) ,

which yields

U ′′(tn) ≈ FU (Un, tn)F (Un, tn) + Ft(Un, tn).

Using this to replace U′′(tn) in (1.6.4) leads to the method

Un+1 = Un + ∆tF (Un, tn) +
∆t2

2
[Ft(Un, tn) + FU (Un, tn)F (Un, tn)]. (1.6.5)

It can be shown the above scheme has second-order order accuracy provided that F
and the underlying solution U are smooth.

General Runge-Kutta methods

Instead of computing the partial derivatives of F , we could also obtain higher-
order methods by making more evaluations of the function values of F at each step. A
class of such schemes is known as Runge-Kutta methods. The second-order Runge-
Kutta method is of the form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U = Un, G = F (U, tn),

U = U + α∆tG, G = (−1 + 2α− 2α2)G+ F (U, tn + α∆t),

Un+1 = U +
∆t
2α
G.

(1.6.6)

Only two levels of storage (U and G) are required for the above algorithm. The
choice α = 1/2 produces the modified Euler method, and α = 1 corresponds to the
Heun method.

40 Chapter 1 Preliminaries

The third-order Runge-Kutta method is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = Un, G = F (U, tn),

U = U +
1
3
∆tG, G = −5

9
G+ F

(
U, tn +

1
3
∆t
)
,

U = U +
15
16

∆tG, G = −153
128

G+ F

(
U, tn +

3
4
∆t
)
,

Un+1 = U +
8
15
G.

(1.6.7)

Only two levels of storage (U and G) are required for the above algorithm.

The classical fourth-order Runge-Kutta (RK4) method is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K1 = F (Un, tn), K2 = F

(
Un +

∆t
2
K1, tn +

1
2
∆t
)
,

K3 = F

(
Un +

∆t
2
K2, tn +

1
2
∆t
)
, K4 = F (Un + ∆tK3, tn+1),

Un+1 = Un +
∆t
6

(K1 + 2K2 + 2K3 +K4) .

(1.6.8)

The above formula requires four levels of storage, i.e. K1,K2,K3 and K4. An
equivalent formulation is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = Un, G = U, P = F (U, tn),

U = U +
1
2
∆tP, G = P, P = F

(
U, tn +

1
2
∆t
)
,

U = U +
1
2
∆t(P −G), G =

1
6
G, P = F (U, tn + ∆t/2) − P/2,

U = U + ∆tP, G = G− P, P = F (U, tn+1) + 2P,

Un+1 = U + ∆t (G+ P/6) .
(1.6.9)

This version of the RK4 method requires only three levels (U,G and P) of storage.

As we saw in the derivation of the Runge-Kutta method of order 2, a number of
parameters must be selected. A similar process occurs in establishing higher-order
Runge-Kutta methods. Consequently, there is not just one Runge-Kutta method for
each order, but a family of methods. As shown in the following table, the number
of required function evaluations increases more rapidly than the order of the Runge-
Kutta methods:

1.6 Several popular time discretization methods 41

Number of function evaluations 1 2 3 4 5 6 7 8
Maximum order of RK method 1 2 3 4 4 5 6 6

Unfortunately, this makes the higher-order Runge-Kutta methods less attractive than
the classical fourth-order method, since they are more expensive to use.

The Runge-Kutta procedure for systems of first-order equations is most easily
written down in the case when the system is autonomous; that is, it has the form

dU

dt
= F (U). (1.6.10)

The classical RK4 formulas, in vector form, are

Un+1 = Un +
∆t
6

(
K1 + 2K2 + 2K3 +K4

)
, (1.6.11)

where ⎧⎪⎪⎨⎪⎪⎩
K1 = F (Un), K2 = F

(
Un +

∆t
2
K1

)
,

K3 = F

(
Un +

∆t
2
K2

)
, K4 = F (Un + ∆tK3) .

For problems without source terms such as Examples 5.3.1 and 5.3.2, we will end up
with an autonomous system. The above RK4 method, or its equivalent form similar
to (1.6.9), can be used.

Stability of Runge-Kutta methods

The general s-stage explicit Runge-Kutta method of maximum order s has sta-
bility function

r(z) = 1 + z +
z2

2
+ · · · + zs

s!
, s = 1, 2, 3, 4. (1.6.12)

There are a few stability concepts for the Runge-Kutta methods:

a. The region of absolute stability R of an s-order Runge-Kutta method is the
set of points z = λ∆t ∈ C such that if z ∈ R, (Re(λ) < 0). Then the numerical
method applied to

du

dt
= λu (1.6.13)

gives un → 0 as n → ∞. It can be shown that the region of absolute stability of a

42 Chapter 1 Preliminaries

Runge-Kutta method is given by

R = {z ∈ C | |r(z)| < 1}. (1.6.14)

b. A Runge-Kutta method is said to be A-stable if its stability region contains the
left-half of the complex plane, i.e. the non-positive half-plane, C−.

c. A Runge-Kutta method is said to be L-stable if it isA-stable, and if its stability
function r(z) satisfies

lim
|z|→∞

|r(z)| = 0. (1.6.15)

In Figure 1.3, we can see that the stability domains for these explicit Runge-Kutta
methods consist of the interior of closed regions in the left-half of the complex plane.
The algorithm for plotting the absolute stability regions above can be found in the
book by Butcher [27]. Notice that all Runge-Kutta methods of a given order have the
same stability properties. The stability regions expand as the order increases.

Figure 1.3 Absolute stability regions of Runge-Kutta methods

Multistep methods

Another approach to higher-order methods utilizes information already computed
and does not require additional evaluations of F (U, t). One of the simplest such
methods is

Un+1 = Un +
∆t
2

[3F (Un, tn) − F (Un−1, tn−1)], (1.6.16)

for which the maximum pointwise error is O(∆t2), and is known as the second-order

1.6 Several popular time discretization methods 43

Adams-Bashforth method, or AB2 for short. Note that the method requires only the
evaluation of F (Un, tn) at each step, the value F (Un−1, tn−1) being known from the
previous step.

We now consider the general construction of Adams-Bashforth methods. Let
Un, Un−1, · · · , Un−s be the computed approximations to the solution at tn, tn−1,

· · · , tn−s. Let F i = F (U i, ti) and let p(t) be the interpolating polynomial of degree
s that satisfies

p(ti) = F i, i = n, n− 1, · · · , n− s.

We may then consider p(t) to be an approximation to F (U(t), t). Since the solution
U(t) satisfies

U(tn+1) − U(tn) =
∫ tn+1

tn

U ′(t)dt =
∫ tn+1

tn

F (U(t), t)dt ≈
∫ tn+1

tn

p(t)dt,

we obtain the so-called Adams-Bashforth (AB) methods as follows:

Un+1 = Un +
∫ tn+1

tn

p(t)dt. (1.6.17)

Below we provide a few special cases of the Adams-Bashforth methods:

• s = 0: p(t) = Fn for t ∈ [tn, tn+1), gives Euler method.

• s = 1:
p(t) = p1(t) = Un +

t− tn
∆t

(Fn − Fn−1),

which leads to the second-order Adams-Bashforth method (1.6.16).

• s = 2:

p2(t) = p1(t) +
(t− tn)(t− tn−1)

2∆t2
(Fn − 2Fn−1 + Fn−2),

which leads to the third-order Adams-Bashforth method

Un+1 = Un +
∆t
12

(23Fn − 16Fn−1 + 5Fn−2). (1.6.18)

• s = 3:

p3(t) = p2(t) − (t− tn)(t− tn−1)(t− tn−2)
3!∆t3

(Fn − 3Fn−1 + 3Fn−2 − Fn−3),

44 Chapter 1 Preliminaries

which leads to the fourth-order Adams-Bashforth method

Un+1 = Un +
∆t
24

(55Fn − 59Fn−1 + 37Fn−2 − 9Fn−3). (1.6.19)

In principle, we can continue the preceding process to obtain Adams-Bashforth meth-
ods of arbitrarily high-order, but the formulas become increasingly complex as d in-
creases. The Adams-Bashforth methods are multistep methods since two or more
levels of prior data are used. This is in contrast to the Runge-Kutta methods which
use no prior data and are called one-step methods. We will compute the numerical
solutions of the KdV equation using a multistep method (see Sect. 5.4).

Multistep methods cannot start by themselves. For example, consider the fourth-
order Adams-Bashforth method. The initial value U0 is given, but for k = 0, the
information is needed at t−1, t−2, t−3, which is not available. The method needs
“help” getting started. We cannot use the fourth-order multistep method until k � 3.
A common policy is to use a one-step method, such as a Runge-Kutta method of the
same order of accuracy at some starting steps.

Since the Adams-Bashforth methods of arbitrary order require only one evalua-
tion of F (U, t) at each step, the “cost” is lower than that of Runge-Kutta methods. On
the other hand, in Runge-Kutta methods it is much easier to change step-size; hence
they are more suitable for use in an adaptive algorithm.

Backward difference methods (BDF)

The Adams-Bashforth methods can be unstable due to the fact they are obtained
by integrating the interpolating polynomial outside the interval of the data that defines
the polynomial. This can be remedied by using multilevel implicit methods:

• Second-order backward difference method (BD2):

1
2∆t

(3Un+1 − 4Un + Un−1) = F (Un+1, tn+1). (1.6.20)

• Third-order backward difference method (BD3):

1
6∆t

(11Un+1 − 18Un + 9Un−1 − 2Un−2) = F (Un+1, tn+1). (1.6.21)

In some practical applications, F (u, t) is often the sum of linear and nonlinear terms.
In this case, some combination of the backward difference method and extrapolation
method can be used. To fix the idea, let us consider

ut = L(u) + N (u), (1.6.22)

1.6 Several popular time discretization methods 45

where L is a linear operator and N is a nonlinear operator. By combining a second-
order backward differentiation (BD2) for the time derivative term and a second-order
extrapolation (EP2) for the explicit treatment of the nonlinear term, we arrive at a
second-order scheme (BD2/EP2) for (1.6.22):

1
2∆t

(3Un+1 − 4Un + Un−1) = L(Un+1) + N (2Un − Un−1). (1.6.23)

A third-order scheme for solving (1.6.22) can be constructed in a similar manner,
which leads to the so-called BD3/EP3 scheme:

1
6∆t

(11Un+1−18Un+9Un−1−2Un−2) = L(Un+1)+N (3Un−3Un−1 +Un−2).
(1.6.24)

Operator splitting methods

In many practical situations, F (u, t) is often the sum of several terms with dif-
ferent properties. Then it is often advisable to use an operator splitting method (also
called fractional step method)[171, 119, 57, 154]. To fix the idea, let us consider

ut = f(u) = Au+Bu, u(t0) = u0, (1.6.25)

where f(u) is a nonlinear operator and the splitting f(u) = Au + Bu can be quite
arbitrary; in particular, A and B do not need to commute.

Strang’s operator splitting method For a given time step ∆t > 0,
let tn = n ∆t, n = 0, 1, 2, · · · and un be the approximation of u(tn). Let us formally
write the solution u(x, t) of (1.6.25) as

u(t) = et(A+B)u0 =: S(t)u0. (1.6.26)

Similarly, denote by S1(t) := etA the solution operator for ut = Au, and by S2(t) :=
etB the solution operator for ut = Bu. Then the first-order operator splitting is based
on the approximation

un+1 ≈ S2(∆t)S1(∆t)un, (1.6.27)

or on the one with the roles of S2 and S1 reversed. To maintain second-order accu-
racy, the Strang splitting[154] can be used, in which the solution S(tn)u0 is approxi-
mated by

un+1 ≈ S2(∆t/2)S1(∆t)S2(∆t/2)un, (1.6.28)

or by the one with the roles of S2 and S1 reversed. It should be pointed out that

46 Chapter 1 Preliminaries

first-order accuracy and second-order accuracy are based on the truncation errors for
smooth solutions. For discontinuous solutions, it is not difficult to show that both
approximations (1.6.27) and (1.6.28) are at most first-order accurate, see e.g. [35],
[159].

Fourth-order time-splitting method A fourth-order symplectic time
integrator (cf. [172], [99]) for (1.6.25) is as follows:

u(1) = e2w1A∆t un, u(2) = e2w2B∆t u(1), u(3) = e2w3A∆t u(2),

u(4) = e2w4B∆t u(3), u(5) = e2w3A∆t u(4), u(6) = e2w2B∆t u(5),

un+1 = e2w1A∆t u(6);

(1.6.29)

or, equivalently,

un+1 ≈S1(2w1∆t)S2(2w2∆t)S1(2w3∆t)S2(2w4∆t)
S1(2w3∆t)S2(2w2∆t)S1(2w1∆t)un,

where

w1 = 0.33780 17979 89914 40851, w2 = 0.67560 35959 79828 81702,

w3 = −0.08780 17979 89914 40851, w4 = −0.85120 71979 59657 63405.
(1.6.30)

Numerical tests

To test the Runge-Kutta algorithms discussed above, we consider Example 5.3.1
in Section 5.3. Let U = (U1, · · · , UN−1)T, namely the vector of approximation
values at the interior Chebyshev points. Using the definition of the differentiation
matrix to be provided in the next chapter, the Chebyshev pesudospectral method for
the heat equation (1.1.1) with homogeneous boundary condition leads to the system

dU

dt
= AU,

whereA is a constant matrix with (A)ij = (D2)ij . The matrixD2 = D1∗D1, where
D1 is given by CODE DM.3 in Sect 2.1. The following pseudo-code implements the
RK2 (1.6.6).

CODE RK.1
Input N, u0(x), ∆t, Tmax, α

%Form the matrix A

1.6 Several popular time discretization methods 47

call CODE DM.3 in Sect 2.1 to get D1(i,j), 0�i,j�N
D2=D1*D1;
A(i,j)=D2(i,j), 1�i,j�N-1
Set starting time: time=0
Set the initial data: U0=u0(x)
While time�Tmax do

%Using RK2 (1.6.6)
U=U0; G=A*U
U=U+α*∆t*G; G=(-1+2α-2α2)G+A*U
U0=U+∆t*G/(2*α)
Set new time level: time=time+∆t

endWhile
Output U0(1),U(2), · · ·, U(N-1)

Codes using (1.6.11), i.e., RK4 for autonomous system, can be written in a similar
way. Numerical results for Example 5.3.1 using RK2 with α = 1 (i.e., the Heun
method) and RK4 are given in the following table. Tmax in the above code is set to
be 0.5. It is seen that these results are more accurate than the forward Euler solutions
obtained in Section 5.3.

N Heun method (∆t=10−3) RK4 (∆t=10−3)
3 1.11e-02 1.11e-02
4 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05
8 1.23e-06 1.77e-06

10 5.92e-07 3.37e-08
11 5.59e-07 1.43e-09
12 5.80e-07 4.32e-10

The numerical errors for ∆t = 10−3, Tmax=0.5 and different values of s (the order
of accuracy) can be seen from the following table:

N s=2 s=3 s=4
3 1.11e-02 1.11e-02 1.11e-02
4 3.75e-03 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05 4.05e-05
8 1.23e-06 1.77e-06 1.77e-06

10 5.92e-07 3.23e-08 3.37e-08
11 5.59e-07 2.82e-09 1.43e-09
12 5.80e-07 1.70e-09 4.32e-10

Exercise 1.6

Problem 1 Solve the problem in Example 5.3.1 by using a pseudo-spectral ap-

48 Chapter 1 Preliminaries

proach (i.e. using the differential matrix to solve the problem in the physical space).
Take 3 � N � 20, and use RK4.

1.7 Iterative methods and preconditioning

BiCG algorithm
CGS algorithm
BiCGSTAB algorithm
GMRES method
Preconditioning techniques
Preconditioned GMRES

Among the iterative methods developed for solving large sparse problems, we will
mainly discuss two methods: the conjugate gradient (CG) method and the generalized
minimal residual (GMRES) method. The CG method proposed by Hestenes and
Stiefel in 1952 [82] is the method of choice for solving large symmetric positive definite
linear systems, while the GMRES method was proposed by Saad and Schultz in 1986
for solving non-symmetric linear systems [135].

Let the matrix A ∈ Rn×n be a symmetric positive definite matrix and b ∈ Rn

a given vector. It can be verified that x̂ is the solution of Ax = b if and only if x̂
minimizes the quadratic functional

J(x) =
1
2
xTAx− xTb. (1.7.1)

Let us consider the minimization procedure. Suppose xk has been obtained. Then
xk+1 can be found by

xk+1 = xk + αkpk, (1.7.2)

where the scalar αk is called the step size factor and the vector pk is called the
search direction. The coefficient αk in (1.7.2) is selected such that J(xk + αkpk) =
minα J(xk + αpk). A simple calculation shows that

αk = (rk, pk)/(Apk, pk) = pT
k rk/p

T
kApk.

The residual at this step is given by

rk+1 = b−Axk+1 = b−A(xk + αkpk)

= b−Axk − αkApk = rk − αkApk.

Select the next search direction pk+1 such that (pk+1, Apk) = 0, i.e,

pk+1 = rk+1 + βkpk, (1.7.3)

1.7 Iterative methods and preconditioning 49

where

βk = −(Apk, rk+1)
(Apk, pk)

= −r
T
k+1Apk

pT
kApk

.

It can be verified that

rTi rj = 0, pT
i Apj = 0, i �= j. (1.7.4)

Consequently, it can be shown that if A is a real n × n symmetric positive definite
matrix, then the iteration converges in at most n steps, i.e. xm = x̂ for some m � n.

The above derivations lead to the following conjugate gradient (CG) algorithm:

Choose x0, compute r0 = b−Ax0 and set p0 = r0.

For k = 0, 1, · · · do
Compute αk = (rk, rk)/(Apk, pk)

Set xk+1 = xk + αkpk

Compute rk+1 = rk − αkApk

If ‖rk+1‖2 � ε, continue,

Compute βk = (rk+1, rk+1)/(rk, rk)

Set pk+1 = rk+1 + βkpk

endFor

It is left as an exercise for the reader to prove that these coefficient formulas in the
CG algorithm are equivalent to the obvious expressions in the above derivations.

The rate of convergence of the conjugate gradient method is given by the follow-
ing theorem:

Theorem 1.7.1 If A is a symmetric positive definite matrix, then the error of the
conjugate gradient method satisfies

‖x̂− xk‖A � 2γk‖x̂− x0‖A, (1.7.5)

where
‖x‖A = (Ax, x) = xTAx, γ = (

√
κ− 1)/(

√
κ+ 1), (1.7.6)

and κ = ‖A‖2‖A−1‖2 is the condition number of A.

For a symmetric positive definite matrix, ‖A‖2 = λn, ‖A−1‖2 = λ−1
1 , where λn

and λ1 are the largest and smallest eigenvalues of A. It follows from Theorem 1.7.1

50 Chapter 1 Preliminaries

that a 2-norm error bound can be obtained:

‖x̂− xk‖2 � 2
√
κγk‖x− x0‖2. (1.7.7)

We remark that

• we only have matrix-vector multiplications in the CG algorithm. In case that
the matrix is sparse or has a special structure, these multiplications can be done effi-
ciently.

• unlike the traditional successive over-relaxation (SOR) type method, there is no
free parameter to choose in the CG algorithm.

BiCG algorithms

When the matrix A is non-symmetric, an direct extension of the CG algorithm is
the so called biconjugate gradient (BiCG) method.

The BiCG method aims to solve Ax = b and ATx∗ = b∗ simultaneously. The
iterative solutions are updated by

xj+1 = xj + αjpj, x∗j+1 = x∗j + αjp
∗
j (1.7.8)

and so
rj+1 = rj − αjApj, r∗j+1 = r∗j − αjA

Tp∗j . (1.7.9)

We require that (rj+1, r
∗
j) = 0 and (rj, r∗j+1) = 0 for all j. This leads to

αj = (rj , r∗j)/(Apj , p
∗
j). (1.7.10)

The search directions are updated by

pj+1 = rj+1 + βjpj , p∗j+1 = r∗j+1 + βjp
∗
j . (1.7.11)

By requiring that (Apj+1, p
∗
j) = 0 and (Apj, p∗j+1) = 0, we obtain

βj = (rj+1, r
∗
j+1)/(rj , r

∗
j). (1.7.12)

The above derivations lead to the following BiCG algorithm:

Choose x0, compute r0 = b−Ax0 and set p0 = r0.

Choose r∗0 such that (r0, r∗0) �= 0.

For j = 0, 1, · · · do

1.7 Iterative methods and preconditioning 51

Compute αj =
(rj ,r∗j)

(Apj ,p∗j).

Set xj+1 = xj + αjpj.

Compute rj+1 = rj − αjApj and r∗j+1 = r∗j − αjA
Tp∗j.

If ‖rk+1‖2 � ε, continue,

Compute βj =
(rj+1,r

∗
j+1)

(rj ,r∗j) .

Set pj+1 = rj+1 + βjpj and p∗j+1 = r∗j+1 + βjp
∗
j

endFor

We remark that

• The BiCG algorithm is particularly suitable for matrices which are positive
definite, i.e., (Ax, x) > 0 for all x �= 0, but not symmetric.

• the algorithm breaks down if (Apj , p∗j) = 0. Otherwise, the amount of work
and storage is of the same order as n the CG algorithm.

• if A is symmetric and r∗0 = r0, then the BiCG algorithm reduces to the CG
algorithm.

CGS algorithm

The BiCG algorithm requires multiplication by both A and AT at each step. Ob-
viously, this means extra work, and, additionally, it is sometimes cumbersome to
multiply by AT than it is to multiply by A. For example, there may be a special
formula for the product of A with a given vector when A represents, say, a Jacobian,
but a corresponding formula for the product of AT with a given vector may not be
available. In other cases, data may be stored on a parallel machine in such a way that
multiplication by A is efficient but multiplication by AT involves extra communica-
tion between processors. For these reasons it is desirable to have an iterative method
that requires multiplication only by A and that generates good approximate solutions.
A method that attempts to do this is the conjugate gradient squared (CGS) method.

For the recurrence relations of BiCG algorithms, we see that

rj = Φ1
j(A)r0 + Φ2

j(A)p0,

where Φ1
j(A) and Φ2

j(A) are j-th order polynomials of the matrix A. Choosing p0 =
r0 gives

rj = Φj(A)r0 (Φj = Φ1
j + Φ2

j),

52 Chapter 1 Preliminaries

with Φ0 ≡ 1. Similarly,
pj = πj(A)r0,

where πj is a polynomial of degree j. As r∗j and p∗j are updated, using the same
recurrence relation as for rj and pj , we have

r∗j = Φj(AT)r∗0, p∗j = πj(AT)r∗0. (1.7.13)

Hence,

αj =
(Φj(A)r0,Φj(AT)r∗0)
(Aπj(A)r0, πj(AT)r∗0)

=
(Φ2

j (A)r0, r∗0)
(Aπ2

j (A)r0, r∗0)
. (1.7.14)

From the BiCG algorithm:

Φj+1(t) = Φj(t) − αjtπj(t), πj+1(t) = Φj+1(t) + βjπj(t). (1.7.15)

Observe that

Φjπj = Φj(Φj + βj−1πj−1) = Φ2
j + βj−1Φjπj−1. (1.7.16)

It follows from the above results that

Φ2
j+1 = Φ2

j − 2αjt(Φ2
j + βj−1Φjπj−1) + α2

j t
2π2
j ,

Φj+1πj = Φjπj − αjtπ
2
j = Φ2

j + βj−1Φjπj−1 − αjtπ
2
j ,

π2
j+1 = Φ2

j+1 + 2βjΦj+1πj + β2
j π

2
j .

Define

rj = Φ2
j(A)r0, pj = π2

j (A)r0,

qj = Φj+1(A)πj(A)r0,

dj = 2rj + 2βj−1qj−1 − αjApj.

It can be verified that

rj = rj−1 − αjAdj ,

qj = rj + βj−1qj−1 − αjApj

pj+1 = rj+1 + 2βjqj + β2
j pj,

dj = 2rj + 2βj−1qj−1 − αjApj.

1.7 Iterative methods and preconditioning 53

Correspondingly,
xj+1 = xj + αjdj . (1.7.17)

This gives the CGS algorithm. It is true that xj may not be the same as that produced
by the BiCG.

The above derivations lead to the following the CGS algorithm:

Choose x0, compute r0 = b−Ax0 and set p0 =r0, u0 =r0, q0 =0.

Choose r∗0 such that (r0, r∗0) �= 0.

For j = 0, 1, · · · do
Compute αj = (rj ,r∗0)

(Apj ,r∗0) ; Compute qj+1 = uj − αjApj

Set xj+1 = xj + αj(uj + qj+1)

Compute rj+1 = rj − αjA(uj + qj+1)

If ‖rk+1‖2 � ε, continue,

Compute βj = (rj+1,r∗0)
(rj ,r∗0) ; Compute uj+1 = rj+1 + βjqj+1

Set pj+1 = uj+1 + βj(qj+1 + βjpj)

endFor

The CGS method requires two matrix-vector multiplications at each step but no
multiplications by the transpose. For problems where the BiCG method converges
well, the CGS typically requires only about half as many steps and, therefore, half the
work of BiCG (assuming that multiplication by A or AT requires the same amount
of work). When the norm of the BiCG residual increases at a step, however, that
of the CGS residual usually increases by approximately the square of the increase
of the BiCG residual norm. The CGS convergence curve may therefore show wild
oscillations that can sometimes lead to numerical instabilities.

BiCGSTAB algorithm

To avoid the large oscillations in the CGS convergence curve, one might try to
produce a residual of the form

rj = Ψj(A)Φj(A)r0, (1.7.18)

where Φj is again the BiCG polynomial but Ψj is chosen to keep the residual norm
small at each step while retaining the rapid overall convergence of the CGS method.

54 Chapter 1 Preliminaries

For example, Ψj(t) is of the form

Ψj+1(t) = (1 − wjt)Ψj(t). (1.7.19)

In the BiCGSTAB algorithm, the solution is updated in such a way that rj is of the
form (1.7.18), where Ψj(A) is a polynomial of degree j which satisfies (1.7.19). It
can be shown that

Ψj+1Φj+1 = (1 − wjt)Ψj(Φj − αjtπj)

= (1 − wjt)(ΨjΦj − αjtΨjπj),
(1.7.20)

Ψjπj = Ψj(Φj + βj−1πj−1)

= ΨjΦj + βj−1(1 − wj−1t)Ψj−1πj−1.
(1.7.21)

Let rj = Φj(A)Ψj(A)r0 and pj = Ψj(A)πj(A)r0. It can be verified that

rj+1 = (I − wjA)(rj − αjApj),

pj+1 = rj+1 + βj(I − wjA)pj .
(1.7.22)

By letting sj = rj − αjApj , we obtain

rj+1 = (I −wjA)sj . (1.7.23)

The parameter wj is chosen to minimize the 2-norm of rj+1, i.e.,

wj =
(Asj , sj)

(Asj , Asj)
. (1.7.24)

We also need to find an updating formula for αj and βj , only using rk, pk and sk; this
is rather complicated and the calculations for deriving them are omitted here.

The BiCGSTAB algorithm is given by

Choose x0, compute r0 = b−Ax0 and set p0 = r0.

Choose r∗0 such that (r0, r∗0) �= 0.

For j = 0, 1, · · · do
Compute αj = (rj ,r

∗
0)

(Apj ,r∗0)

Set sj = rj − αjApj ; Compute wj = (Asj ,sj)
(Asj ,Asj)

1.7 Iterative methods and preconditioning 55

Set xj+1 = xj + αjpj + wjsj; rj+1 = sj − wjAsj

If ‖rk+1‖2 � ε, continue,

Compute βj = (rj+1,r
∗
0)

(rj ,r∗0) · αj

wj

Set pj+1 = rj+1 + βj(pj − wjApj)

endFor

GMRES method

The GMRES method proposed by Saad and Schultz in 1986 is one of the most
important tools for a general non-symmetric system

Ax = b, with A non-symmetric. (1.7.25)

In the k-th iteration of the GMRES method, we need to find a solution of the least-
squares problem

min
x∈x0+‖(A,r0,k)

‖b−Ax‖2 , (1.7.26)

where r0 = b − Ax0 and ‖(A, r0, k) := {r0, Ar0, · · · , Ak−1r0}. Let x ∈ x0 +
‖(A, r0, k). We have

x = x0 +
k−1∑
j=0

γjA
jr0. (1.7.27)

Moreover, it can be shown that

r = b−Ax = r0 −
k∑
j=1

γj−1A
jr0. (1.7.28)

Like the CG method, the GMRES method will obtain the exact solution of Ax = b

within n iterations. Moreover, if b is a linear combination of k eigenvectors of A, say
b =

∑k
p=1 γpuip , then the GMRES method will terminate in at most k iterations.

Suppose that we have a matrix Vk = [vk1 , v
k
2 , · · · , vkk] whose columns form an

orthogonal basis of ‖(A, r0, k). Then any z ∈ ‖(A, r0, k) can be expressed as

z =
k∑
p=1

upv
k
p = Vku, (1.7.29)

56 Chapter 1 Preliminaries

where u ∈ Rk. Thus, once we have found Vk, we can convert the original least-
squares problem (1.7.26) into a least-squares problem in Rk, as to be described below.
Let xk be the solution after the k-th iteration. We then have xk = x0 + Vkyk, where
the vector yk minimizes

min
y∈Rk

‖b−A(x0 + Vky)‖2 = min
y∈Rk

‖r0 −AVky‖2. (1.7.30)

This is a standard linear least-squares problem that can be solved by a QR decompo-
sition.

One can use the modified Gram-Schmidt orthogonalization to find an orthonor-
mal basis of ‖(A, r0, k). The algorithm is given as follows:

Choose x0, set r0 = b−Ax0, v1 = r0/‖r0‖2.

For i = 1, 2, · · · , k − 1, do:

Compute vi+1 =
Avi−

∑i
j=1((Avi)Tvj)vj

‖Avi−
∑i

j=1((Avi)Tvj)vj‖2

,

endFor

This algorithm produces the columns of the matrix Vk which also form an orthonor-
mal basis for ‖(A, r0, k). Note that the algorithm breaks down when a division by
zero occurs.

If the modified Gram-Schmidt process does not break down, we can use it to
carry out the GMRES method in the following efficient way. Let hij = (Avj)Tvi.
By the modified Gram-Schmidt algorithm, we have a (k+1)×k matrix Hk which is
upper Hessenberg, i.e., its entries satisfy hij = 0 if i > j + 1. This process produces
a sequence of matrices {Vk} with orthonormal columns such that AVk = Vk+1Hk.
Therefore, we have

rk = b−Axk = r0 −A(xk − x0)

= βVk+1e1 −AVkyk = Vk+1(βe1 −Hkyk), (1.7.31)

where e1 is the first unit k-vector (1, 0, · · · , 0)T, and yk is the solution of

min
y∈Rk

‖βe1 −Hky‖2. (1.7.32)

Hence, xk = x0 + Vkyk. To find a minimizer for (1.7.32), we need to look at the

1.7 Iterative methods and preconditioning 57

linear algebraic system H̄ky = βe1, namely,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11 h21 · · · hk1
h12 h22 · · · hk2

h23 · · · hk3
...
hkk
hk+1,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4
...
yk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
β

0
...
0
0

⎞⎟⎟⎟⎟⎟⎠ .

This problem can be solved by using rotation matrices to do Gauss-elimination for

H̄k (see e.g. [134]), which yields Hk
(k)
y = gk, where

Hk
(k) =

⎛⎜⎜⎜⎜⎜⎜⎝
h

(k)
11 h

(k)
12 · · · h

(k)
1k

h
(k)
22 · · · h

(k)
2k

. . .
...

h
(k)
kk

hk+1,k

⎞⎟⎟⎟⎟⎟⎟⎠ , gk =

⎛⎜⎜⎜⎜⎜⎝
r1
r2
...
rk
rk+1

⎞⎟⎟⎟⎟⎟⎠ .

Moreover,
min
y∈Rk

‖Hky − βe1‖2 = min
y∈Rk

‖Hk
(k)
y − gk‖2. (1.7.33)

Define H(k)
k to be the matrix containing the first m rows of Hk

(k)
. It is easy to see

that the minimizer of (1.7.33) is the solution of H(k)
k yk = gk.

Below we give the GMRES algorithm for solving Ax = bwithA non-symmetric:

Choose x0, set r0 = b−Ax0, β = ‖r0‖2 and v1 = r0/β.

For j = 1, 2, · · · , k, · · · , do
Compute wj = Avj

for i = 1, 2, · · · , j do

Compute hij = wT
j vi.

Set wj = wj − hijvi.

endfor

Compute hj+1,j = ‖wj‖2

Set vj+1 = wj/hj+1,j

58 Chapter 1 Preliminaries

endFor

Compute H
(k)
k and gk

Solve H
(k)
k yk = gk

Set xk = x0 + Vkyk

Preconditioning techniques

It is seen from Theorem 1.7.1 that the rate of convergence of the conjugate gradi-
ent method depends on the condition number of A: the larger κ is, the closer γ will
be to 1 and the slower will be the rate of convergence. A good preconditioner is a
matrixM that is (i) easy to invert, and (ii) the condition number ofM−1A is small, or
the preconditioned system M−1Ax = M−1b can be solved efficiently by an iterative
method. This idea leads to the so-called preconditioned conjugate gradient (PCG)
method:

Choose x0, compute r0 = b−Ax0 and solve Mr̃0 = r0

Set p0 = r̃0

For k = 0, 1, · · · do

Compute αk = −(r̃k, rk)/(pk, Apk)

Set xk+1 = xk + αkpk; Set rk+1 = rk − αkApk

If ‖rk+1‖2 � ε, continue,

Solve Mr̃k+1 = rk+1

Compute βk = (r̃k+1, rk+1)/(r̃k, rk)

Set pk+1 = r̃k+1 + βkpk

endFor

In the above algorithm, we need to solve the system Mr̃ = r which may be as
complicated as the original system. The idea for reducing the condition number of
M−1A is to choose M such that M−1 is close to A−1, while the system Mr̃ = r is
easy to solve. The following theorem describes a way to choose M .

Theorem 1.7.2 Let A be an n × n nonsingular matrix and A = P −Q a splitting
of A such that P is nonsingular. If H = P−1Q and ρ(H) < 1, then

A−1 =

(∞∑
k=0

Hk

)
P−1.

1.7 Iterative methods and preconditioning 59

Based on this theorem, we can consider the matrices

M = P (I +H + · · · +Hm−1)−1,

M−1 = (I +H + · · · +Hm−1)P−1

to be approximations of A and A−1, respectively. Thus the solution of the system
Mr̃ = r becomes

r̃ = M−1r = (I +H + · · · +Hm−1)P−1r.

Equivalently, the solution r̃ = rm is the the result of applying m steps of the iterative
method

Pri+1 = Qri + r, i = 0, 1, · · · ,m− 1, r0 = 0.

If P = D, Q = L + U , the above iteration is the standard Jacobi iteration. Then
in the PCG method we replace the system Mr̃k+1 = rk+1 with do m Jacobi
iterations on Ar = rk+1 to obtain r̃k+1. The resulting method is called
the m-step Jacobi PCG Method.

In practice, we may just use the one-step Jacobi PCG Method: in this case M =
D. Similarly, the symmetric Gauss-Seidel and symmetric successive over-relaxation
(SSOR) methods can also be used as preconditioners:

• Symmetric Gauss-Seidel preconditioner:

M = (D − L)D−1(D − U), M−1 = (D − U)−1D(D − L)−1;

• SSOR preconditioner:

M =
ω

2 − ω
(ω−1D − L)D−1(ω−1D − U),

M−1 = (2 − ω)ω(D − ωU)−1D(D − ωL)−1.

Preconditioned GMRES

If we use M as a left preconditioner for the GMRES method, then we are trying
to minimize the residual in the space:

Km(A, r0) = span{r0,M−1Ar0, · · · (M−1A)m−1r0}. (1.7.34)

The resulting algorithm is exactly the same as the original GMRES, except that the
matrix A is replaced by M−1A.

Below is the preconditioned version of the GMRES method with left-

60 Chapter 1 Preliminaries

preconditioning:

Compute r0 = M−1(b−Ax0) and set β = ‖r0‖2, v1 = r0
/
β.

For j = 1, 2, · · · , k, · · · do:

Compute wj = M−1Avj.

for i = 1, 2, · · · , j, do:
Compute hij = (wj , vi);Set wj = wj − hijvi

endfor

Compute hj+1,j = ‖wj‖.
Set vj+1 = wj

/
hj+1,j.

endFor

Compute H
(k)
k and gk

Solve H
(k)
k yk = gk

Set xk = x0 + Vkyk

If M is used as a right preconditioner, we just need to replace A in the original
GMRES by AM−1. Also, in the last step, we need to update xk by

xk = x0 +M−1Vkyk. (1.7.35)

In practice, for the GMRES method, however, the Gauss-Seidel and SOR methods
can also be used as preconditioners:

• Gauss-Seidel preconditioner: M = D − L, M−1 = (D − L)−1;

• SOR preconditioner: M = ω−1D − L, M−1 = ω(D − ωL)−1.

The preconditioned CGS or BiCGSTAB algorithms can be constructed similarly. In
general, to use preconditioners for the CGS or BiCGSTAB, we just need to replace
the matrix A in the original algorithms by M−1A or AM−1.

Exercise 1.7

Problem 1 Prove (1.7.5) and (1.7.7).

Problem 2 Prove Theorem 1.7.2.

1.8 Error estimates of polynomial approximations 61

1.8 Error estimates of polynomial approximations

Orthogonal projection in L2
ωα,β(I)

Orthogonal projection in H1
0,ωα,β(I)

Interpolation error

The numerical analysis of spectral approximations relies on the polynomial approxi-
mation results in various norms. In this section, we present some of the basic approxi-
mation results for the Jacobi polynomials which include the Legendre and Chebyshev
polynomials as special cases. Some basic properties of the Jacobi polynomials are
introduced in Section 1.4.

We first introduce some notations. Let I = (−1, 1) and ω(x) > 0 be a weight
function (ω is not necessarily in L1(I)). We define the “usual” weighted Sobolev
spaces:

L2
ω(I) =

{
u :

∫
I
u2ωdx < +∞

}
,

H l
ω(I) =

{
u ∈ L2

ω(I) : ∂xu, · · · , ∂lxu ∈ L2
ω(I)

}
,

H l
0,ω(I) =

{
u ∈ H l

ω(I) : u(±1) = ∂xu(±1) = · · · = ∂l−1
x u(±1) = 0

}
.

(1.8.1)

The norms in L2
ω(I) and Hl

ω(I) will be denoted by ‖ · ‖ω and ‖ · ‖l,ω, respectively.
Furthermore, we shall use |u|l,ω = ‖∂lxu‖ω to denote the semi-norm inHl

ω(I). When
ω(x) ≡ 1, the subscript ω will often be omitted from the notations. Hereafter, we
denote the Jacobi weight function of index (α, β) by

ωα,β(x) = (1 − x)α(1 + x)β.

It turns out that the “uniformly” weighted Sobolev spaces in (1.8.1) are not the most
appropriate ones to describe the approximation error. Hence, we introduce the fol-
lowing non-uniformly weighted Sobolev spaces:

Hm
ωα,β ,∗(I) :=

{
u : ∂kxu ∈ L2

ωα+k,β+k(I), 0 � k � m
}
, (1.8.2)

equipped with the inner product and norm

(
u, v

)
m,ωα,β ,∗ =

m∑
k=0

(∂kxu, ∂
k
xv)ωα+k,β+k , ‖u‖m,ωα,β ,∗ =

(
u, u

) 1
2

m,ωα,β ,∗. (1.8.3)

62 Chapter 1 Preliminaries

Hereafter, we shall use the expression AN � BN to mean that there exists a positive
constant C , independent of N , such that AN � CBN .

Orthogonal projection in L2
ωα,β (I)

Since {Jα,βn } forms a complete orthogonal system in L2
ωα,β(I), we can write

u(x) =
∞∑
n=0

ûα,βn Jα,βn (x), with ûα,βn =
(u, Jα,βn)ωα,β

γα,βn

, (1.8.4)

where γα,βn = ‖Jα,βn ‖2
ωα,β . It is clear that

PN = span
{
Jα,β0 , Jα,β1 , · · · , Jα,βN

}
. (1.8.5)

We start by establishing some fundamental approximation results on the L2
ωα,β− or-

thogonal projection πN,ωα,β : L2
ωα,β (I) → PN , defined by

(πN,ωα,βu− u, v)ωα,β = 0, ∀v ∈ PN . (1.8.6)

It is clear that πN,ωα,βu is the best L2
ωα,β−approximate polynomial of u, and can be

expressed as

(πN,ωα,βu)(x) =
N∑
n=0

ûα,βn Jα,βn (x). (1.8.7)

First of all, we derive inductively from (1.4.7) that

∂kxJ
α,β
n (x) = dα,βn,kJ

α+k,β+k
n−k (x), n � k, (1.8.8)

where

dα,βn,k =
Γ(n+ k + α+ β + 1)
2kΓ(n+ α+ β + 1)

. (1.8.9)

As an immediate consequence of this formula and the orthogonality (1.4.5), we have∫ 1

−1
∂kxJ

α,β
n (x)∂kxJ

α,β
l (x)ωα+k,β+k(x)dx = hα,βn,k δn,l, (1.8.10)

where
hα,βn,k = (dα,βn,k)2γα+k,β+k

n−k . (1.8.11)

1.8 Error estimates of polynomial approximations 63

Let us recall first Stirling’s formula,

Γ(x) =
√

2πxx−1/2e−x
{

1 +
1

12x
+

1
288x2

+ O(x−3)
}
. (1.8.12)

In particular, we have

Γ(n+ 1) = n! ∼=
√

2πnn+1/2e−n, (1.8.13)

which can be used to obtain the following asymptotic behaviors for n� 1:

γα,βn ∼ n−1, dα,βn,k ∼ nk, hα,βn,k ∼ n2k−1. (1.8.14)

Here, we have adopted the conventional assumption that α, β and k are small con-
stants when compared with large n.

Below is the main result on the Jacobi projection error:

Theorem 1.8.1 Let α, β > −1. For any u ∈ Hm
ωα,β ,∗(I) and m ∈ N,

‖∂lx(πN,ωα,βu− u)‖ωα+l,β+l � N l−m‖∂mx u‖ωα+m,β+m, 0 � l � m. (1.8.15)

Proof Owing to (1.8.10)∼(1.8.11), we have

‖∂kxu‖2
ωα+k,β+k =

∞∑
n=k

(
ûα,βn

)2‖∂kxJα,βn ‖2
ωα+k,β+k , (1.8.16)

‖∂lx(πN,ωα,βu− u)‖2
ωα+l,β+l =

∞∑
n=N+1

(
ûα,βn

)2‖∂lxJα,βn ‖2
ωα+l,β+l (1.8.17)

=
∞∑

n=N+1

hα,βn,l

hα,βn,m

(
ûα,βn

)2‖∂mx Jα,βn ‖2
ωα+m,β+m.

Using the the asymptotic estimate (1.8.14) gives

hα,βn,l /h
α,β
n,m � n2(l−m), n� 1, l,m ∈ N,

which, together with (1.8.17), leads to

‖∂lx(πN,ωα,βu− u)‖2
ωα+l,β+l � (N + 1)2(l−m)

∞∑
n=N+1

(
ûα,βn

)2‖∂mx Jα,βn ‖2
ωα+m,β+m

� N2(l−m)‖∂mx u‖2
ωα+m,β+m.

64 Chapter 1 Preliminaries

This ends the proof.

We shall now extend the above result to the cases where α and/or β are negative
integers, using the properties of the generalized Jacobi polynomials. We point out
that like the classical Jacobi polynomials, the GJPs with negative integer indexes
form a complete orthogonal system in L2

ωk,l(I).

Hence, we define the polynomial space

Qk,lN := span{Jk,ln0
, Jk,ln0+1, · · · , Jk,lN }, k � −1 and/or l � −1, (1.8.18)

where n0 is defined in (1.4.8). According to Remark 1.4.1, we have that for k < −1
and/or l � −1,

Qk,lN = {φ ∈ PN : ∂ixφ(−1) = ∂jxφ(1) = 0, 0 � i � −k − 1, 0 � j � −l− 1}.

We now define the orthogonal projection πN,ωk,l : L2
ωk,l(I) → Qk,lN by

(u− πN,ωk,lu, vN)ωk,l = 0, ∀vN ∈ Qk,lN . (1.8.19)

Owing to the orthogonality (1.4.10) and the derivative relation (1.4.13), the following
theorem is a direct extension of Theorem 1.8.1.

Theorem 1.8.2 For any k, l ∈ Z, and u ∈ Hm
ωk,l,∗(I),

‖∂µx (πN,ωk,lu− u)‖ωk+µ,l+µ � Nµ−m‖∂mx u‖ωk+m,l+m , 0 � µ � m. (1.8.20)

Orthogonal projection in H1
0,ωα,β (I)

In order to carry out the error analysis of spectral methods for second-order ellip-
tic equations with Dirichlet boundary conditions, we need to study the orthogonal
projection error in the space H1

0,ωα,β(I). We define

P 0
N = {u ∈ PN : u(±1) = 0}. (1.8.21)

Definition 1.8.1 The orthogonal projector π1,0
N,ωα,β : H1

0,ωα,β(I) → P 0
N is defined

by
((u− π1,0

N,ωα,βu)
′, v′)ωα,β = 0, ∀ v ∈ P 0

N . (1.8.22)

Theorem 1.8.3 Let −1 < α, β < 1. Then for any u ∈ H1
0,ωα,β(I)∩Hm

ωα−1,β−1,∗(I),

‖∂x(u− π1,0
N,ωα,βu)‖ωα,β � N1−m‖∂mx u‖ωα+m−1,β+m−1 , m � 1.

1.8 Error estimates of polynomial approximations 65

Proof For any u ∈ H1
0,ωα,β(I), we set

uN =
∫ x

−1

{
πN−1,ωα,βu′ − 1

2

∫ 1

−1
πN−1,ωα,βu′dη

}
dξ. (1.8.23)

Therefore,

uN ∈ P 0
N and u′N = πN−1,ωα,βu′ − 1

2

∫ 1

−1
πN−1,ωα,βu′dη.

Hence,

‖u′ − u′N‖L2
ωα,β

� ‖u′ − πN−1,ωα,βu′‖L2
ωα,β

+
∣∣∣1
2

∫ 1

−1
πN−1,ωα,βu′dη

∣∣∣. (1.8.24)

On the other hand, since u(±1) = 0, we derive by using the Cauchy-Schwarz in-
equality that∣∣∣ ∫ 1

−1
πN−1,ωα,βu′dx

∣∣∣ =
∣∣∣ ∫ 1

−1
(πN−1,ωα,βu′ − u′)dx

∣∣∣
�
(∫ 1

−1
(ωα,β)−1dx

) 1
2‖πN−1,ωα,βu′ − u′‖L2

ωα,β
� ‖πN−1,ωα,βu′ − u′‖L2

ωα,β
,

(1.8.25)

for α, β < 1. We then conclude from (1.8.24), (1.8.25) and Theorem 1.8.1 that

‖∂x(u− π1,0
N,ωα,βu)‖ωα,β = inf

φN∈P 0
N

‖u′ − φ′N‖ωα,β � ‖u′ − u′N‖ωα,β

� ‖u′ − πN−1,ωα,βu′‖ωα,β � N1−m‖∂mx u‖ωα+m−1,β+m−1 .

This completes the proof of Theorem 1.8.3.

Interpolation error

We present below an optimal error estimate for the interpolation polynomials
based on the Gauss-Lobatto points.

Theorem 1.8.4 Let {xj}Nj=0 be the roots of (1−x2)∂xJ
α,β
N (x) with −1 < α, β < 1.

Let IN,ωα,β : C[−1, 1] → PN be the interpolation operator with respect to {xj}Nj=0.
Then, we have

‖∂lx(Iα,βN u− u)‖ωα+l,β+l � N l−m‖∂mx u‖ωα+m,β+m , 0 � l � m. (1.8.26)

66 Chapter 1 Preliminaries

The proof of the above lemma is rather technical. We refer to [3] for a complete
proof (see also [11] for a similar result for the special case α = β).

Theorem 1.8.4 indicates that error estimates for the interpolation polynomial
based on the Gauss-Lobatto points are optimal in suitable weighted Sobolev spaces.
One should note that an interpolation polynomial based on uniformly spaced points
is usually a very poor approximation unless the function is periodic in the concerned
interval.

As we can see from the estimates presented in this section, the convergence rates
of spectral projection/interpolation increase with the smoothness of the function, as
opposed to a fixed convergence rate for the finite difference or finite element approx-
imations. Moreover, it can be shown that the convergence rates of spectral projec-
tion/interpolation are exponential for analytical functions. We now provide a direct
proof of this statement in the Chebyshev case.

Let {xj} be the set of Chebyshev-Gauss-Lobatto points, i.e. x0 = 1, xN = −1
and T ′

N (xj) = 0, 1 � j � N − 1. This suggests that

T ′
N (x) = αN

N−1∏
j=1

(x− xj).

Since TN (x) = 2N−1T̂N (x), where T̂N (x) is monic, we have

TN (x) = 2N−1xN + lower order terms.

Combining the above two equations gives αN = N2N−1. Notice also that x0 = 1
and xN = −1, we obtain

N∏
k=0

(x− xk) =
21−N

N
(x2 − 1)T ′

N (x).

The above result, together with (1.3.6a), yields

∣∣∣ N∏
k=0

(x− xk)
∣∣∣ � N21−N . (1.8.27)

Let u be a smooth function in CN+1(−1, 1). Using Lemma 1.2.3, (1.8.27) and Stir-

1.8 Error estimates of polynomial approximations 67

ling’s formula (1.8.13), we obtain

max
x∈Ī

|u(x) − IN,ωα,βu(x)| � C‖u(N+1)‖∞
(e

2N

)N
, (1.8.28)

for large N , where C is a constant independent of N . This result implies that if u is
smooth, then the interpolations using the Chebyshev-Gauss-Lobatto points may lead
to exponential order of convergence.

Exercise 1.8

Problem 1 Prove Theorem 1.8.2.

Problem 2 Show that πN,ω−1,−1 = π1,0
N,ω0,0 .

Chapter 2
Spectral-Collocation Methods

Contents
2.1 Differentiation matrices for polynomial basis functions . . . 69

2.2 Differentiation matrices for Fourier collocation methods . . 79

2.3 Eigenvalues of Chebyshev collocation operators 84

2.4 Chebyshev collocation method for two-point BVPs 91

2.5 Collocation method in the weak form and preconditioning . 99

The collocation method is the most popular form of the spectral methods among
practitioners. It is very easy to implement, in particular for one-dimensional prob-
lems, even for very complicated nonlinear equations, and generally leads to satisfac-
tory results as long as the problems possess sufficient smoothness.

We present in this chapter some basic ingredients for the spectral collocation
methods. In the first two sections, we describe how to compute the differentiation
matrices associated with the Chebyshev and Fourier collocation. In Section 2.4, we
present in detail a Chebyshev collocation method for two-point boundary value prob-
lems with general boundary conditions. We study in Section 2.3 the spectral radius
and condition number of the Chebyshev collocation approximation to the advection

In the literature on spectral methods, the terms collocation and pseudospectral (PS) are often
used in a interchangeable fashion. Strictly speaking, a collocation method seeks an approximate solu-
tion to satisfy the underlying equation at a set of collocation points, while a method is pseudospectral if
not all parts of the algorithm are performed in a pure spectral fashion. Therefore, a collocation method is
always a pseudospectral method while a psudospectral method is not necessarily a collocation method.

2.1 Differentiation matrices for polynomial basis functions 69

and diffusion operators. In Section 2.5, we present a weak formulation of the col-
location method and discuss how to construct effective preconditioners for spectral-
collocation methods.

2.1 Differentiation matrices for polynomial basis functions

Polynomial basis functions
Finite-difference weights on arbitrary grids
Differentiation matrices using recursive formulas
Differentiation matrices using direct formulas

Differentiation matrices play an important role in the implementation of spectral col-
location method. In order to introduce the differentiation matrix idea, let us consider,
as an example, the differentiation matrix associated with the finite difference method
for the model problem

uxx = f, x ∈ (−1, 1); u(±1) = 0. (2.1.1)

Let us denote xj = −1 + jh, 0 � j � N , with h = 2/N . A finite difference method
for (2.1.1) is to approximate uxx by the central difference formula:

uxx(x) ≈ 1
h2

[u(x+ h) − 2u(x) + u(x− h)].

Since the solutions of the continuous problem (2.1.1) and the discrete problem are
different, we use U to denote the solution of the discrete problem. One can easily
verify that the discrete solution satisfies

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2/h2 1/h2 0 · · · 0

1/h2 −2/h2 1/h2 · · · 0

0 1/h2 −2/h2 · · · 0
...

...
...

...

0 0 0 · · · −2/h2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

U(x1)

U(x2)

U(x3)
...

U(xN−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(x1)

f(x2)

f(x3)
...

f(xN−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.1.2)

The matrix above is the so-called differentiation matrix (DM) of the finite-difference
method for the second-order derivative. In general, for a problem involving the m-th

70 Chapter 2 Spectral-Collocation Methods

derivative u(m), the differentiation matrix is defined by

Dm =
(
d
(m)
ij

)N
i,j=0

;

it satisfies ⎛⎜⎜⎜⎝
u(m)(x0)
u(m)(x1)

...
u(m)(xN)

⎞⎟⎟⎟⎠ = Dm

⎛⎜⎜⎜⎝
u(x0)
u(x1)

...
u(xN)

⎞⎟⎟⎟⎠ .

In this section, we will discuss how to find the DM for the spectral collocation
methods when the basis functions are polynomial (e.g. the Chebyshev polynomi-
als, Legendre polynomials, Hermite polynomials etc). The DM is dependent on the
collocation points and the chosen basis functions.

Polynomial basis functions

If the basis functions Φk(x) are polynomials, the spectral approximation is of the
form uN (x) =

∑N
k=0 akΦk(x), where the coefficients ak can be determined from a

given set of collocation points {xj}Nj=0 and the function values uN (xj). Since uN (x)
is a polynomial, it can also be written in the form

uN (x) =
N∑
k=0

uN (xk)Fk(x), (2.1.3)

where the Fk(x) are called Lagrange polynomials which satisfy

Fk(xj) =
{

0 if k �= j,

1 if k = j.

We will use (2.1.3), the equivalent form of uN (x), to obtain the differentiation ma-
trices for polynomial basis functions. If the basis functions are not polynomials (e.g.
trigonometric functions), the equivalent form does not exist and the codes given in
this section will not work.

Finite-difference weights on arbitrary grids

We now describe a simple recursive relation which gives the weights for any
order of derivative, approximated to any order of accuracy on an arbitrary grid in one
dimension. This simple recursive relation was introduced in [46].

2.1 Differentiation matrices for polynomial basis functions 71

Given M � 0, the order of the highest derivative we wish to approximate, and
a set of N + 1 grid points (at x-coordinates α0, · · · , αN ; N � 0), the problem is to
find all the weights such that the approximations

dmf

dxm

∣∣∣
x=ζ

≈
n∑
ν=0

cmn,ν(ζ)f(αν), m = 0, 1, · · · ,M ; n = m,m+ 1, · · · , N,

possess a (formal) optimal order of accuracy (in general of order n−m+1, although
it can be higher in special cases).

For simplicity, assume we seek to approximate the derivatives at the point ζ = 0
(for a nonzero point ζ a simple shift will work). Let {α0, α1, · · · , αN} be distinct
real numbers and define

γn(x) :=
n∏
k=0

(x− αk).

The polynomial

Fn,ν(x) :=
γn(x)

γ′n(αν)(x− αν)
(2.1.4)

is the one of minimal degree which takes the value 1 at x = αν and 0 at x = αk, k �=
ν. For an arbitrary function f(x) and nodes x = αν , Lagrange’s interpolation poly-
nomial becomes

p(x) :=
n∑
ν=0

Fn,ν(x)f(αν).

The desired weights express how the values of [dmp(x)/dxm]x=0 vary with changes
in f(αν). Since only one term in p(x) is influenced by changes in each f(αν), we
find

cmn,ν =
[
dm

dxm
Fn,ν(x)

]
x=0

. (2.1.5)

Therefore, the n-th degree polynomial Fn,ν(x) can also be expressed as

Fn,ν(x) =
n∑

m=0

cmn,ν
m!

xm. (2.1.6)

Noting that γn(x) = (x−αn)γn−1(x) implies γ′n(x) = (x−αn)γ′n−1(x)+γn−1(x).

72 Chapter 2 Spectral-Collocation Methods

It follows from (2.1.4) that

Fn,ν(x) =
x− αn
αν − αn

Fn−1,ν(x), for ν < n;

Fn,n(x) =
γn−1(x)
γn−1(αn)

=
γn−2(αn−1)
γn−1(αn)

(x− αn−1)Fn−1,n−1(x) (n > 1).
(2.1.7)

By substituting the expression (2.1.6) into the above two equations, and by equating
powers of x, the desired recursive relations for the weights are obtained:

cmn,ν =
1

αn − αν

(
αnc

m
n−1,ν −mcm−1

n−1,ν

)
for ν < n (2.1.8a)

cmn,n =
γn−2(αn−1)
γn−1(αn)

(
mcm−1

n−1,n−1 − αn−1c
m
n−1,n−1

)
. (2.1.8b)

The relation
n∑
ν=0

cmn,ν = 0 for m > 0;
n∑
ν=0

c0n,ν = 1, (2.1.9)

can be used instead of (2.1.8b) to obtain cmn,n. However, this would increase the oper-
ation count and might also cause a growth of errors in the case of floating arithmetic.

It is obvious that c00,0 = 1. Using this fact, together with (2.1.8a), we obtain

c01,0, c
1
1,0, · · · , cM1,0 .

Then, using c00,0 = 1 and (2.1.8b) leads to

c01,1, c
1
1,1, · · · , cM1,1 .

The above information, together with (2.1.8a), give

c02,0, c
1
2,0, · · · , cM2,0 ;

c02,1, c
1
2,1, · · · , cM2,1 .

Using (2.1.8b) or (2.1.9), we can find

c02,2, c
1
2,2, · · · , cM2,2 .

Repeating the above process will generate all the coefficients cmn,ν , for m � n �
N, 0 � ν � n.

In practice, we wish to use all of the information f(αν), 0 � ν � N . Therefore,

2.1 Differentiation matrices for polynomial basis functions 73

it is of interest to compute cMN,ν , 0 � ν � N , for given values of M and N . The
following pseudocode is designed for this purpose. We let α = (α0, α1, · · · , αN)T.

CODE DM.1
Function d=FDMx(M,N,ζ, α)
c00,0=1, c1=1
for n=1 to N do

c2=1
for ν=0 to n-1 do

c3=αn-αν, c2=c2*c3
for m=0 to M do

cmn,ν=
(
(αn-ζ)*cmn−1,ν-m*c

m−1
n−1,ν

)
/c3

endfor
endfor
for m=0 to M do

cmn,n=c1
(
mcm−1

n−1,n−1 − (αn−1 − ζ) ∗ cmn−1,n−1

)
/c2

endfor
c1=c2
endfor
for j=0 to N do

d(j)=cMN,j
endfor

Differentiation matrices using recursive formulas

For non-periodic problems, the algorithm in the last section can be used to gen-
erate DMs very conveniently. Assume that the collocation points xj, 0 � j � N are
provided. It is noted that

Dm =
(
cmN,ν(xj)

)N
ν,j=0

.

Let �x = (x0, x1, · · · , xN)T. A pseudocode to generate the matrix Dm is given
below:

CODE DM.2
Input m, N, �x

for j=0 to N do
ζ=xj
d=FDMx(m,N,ζ,�x)

for ν=0 to N do
Dm(j, ν)=d(ν)

endfor
endfor

As an example, we compute D1 and D2 with N = 4 and xj = cos(πj/N) (i.e.

74 Chapter 2 Spectral-Collocation Methods

the Chebyshev-Gauss-Lobatto points) by using CODE DM.2. The results are given
below:

D1 =

⎛⎜⎜⎜⎜⎜⎝
5.5000 −6.8284 2.0000 −1.1716 0.5000
1.7071 −0.7071 −1.4142 0.7071 −0.2929
−0.5000 1.4142 0.0000 −1.4142 0.5000
0.2929 −0.7071 1.4142 0.7071 −1.7071
−0.5000 1.1716 −2.0000 6.8284 −5.5000

⎞⎟⎟⎟⎟⎟⎠ ,

D2 =

⎛⎜⎜⎜⎜⎜⎝
17.0000 −28.4853 18.0000 −11.5147 5.0000
9.2426 −14.0000 6.0000 −2.0000 0.7574
−1.0000 4.0000 −6.0000 4.0000 −1.0000
0.7574 −2.0000 6.0000 −14.0000 9.2426
5.0000 −11.5147 18.0000 −28.4853 17.0000

⎞⎟⎟⎟⎟⎟⎠ .

(2.1.10)

It is observed from the above results that the following symmetry results hold:

D1
N−k,N−j = −D1

kj, D2
N−k,N−j = D2

kj , 0 � k, j � N.

In fact, this is true for any N if the collocation points are the Chebyshev-Gauss-
Lobatto points (1.3.11).

Differentiation matrices using direct formulas

For some choices of collocation points, D1 and D2 can be found explicitly. To
see this, we consider the Chebyshev points xj = cos(πj/N), 0 � j � N .

First we need the following results:

T ′
N (xj) = 0, 1 � j � N − 1, (2.1.11a)

T ′′
N (xj) = (−1)j+1N2 1

1 − x2
j

, 1 � j � N − 1, (2.1.11b)

T ′′′
N (xj) = (−1)j+13N2 xj

(1 − x2
j)2

, 1 � j � N − 1, (2.1.11c)

T ′
N (±1) = (±1)NN2, T ′′

N (±1) =
1
3
(±1)NN2(N2 − 1). (2.1.11d)

We briefly prove the above results. Let θ = cos−1 x. From the definition TN (x) =
cos(Nθ), we can show that

T ′
N (x) = N sinNθ

1
sin θ

; (2.1.12a)

2.1 Differentiation matrices for polynomial basis functions 75

T ′′
N (x) = −N2 cosNθ

1
sin2 θ

+N sinNθ
cos θ
sin3 θ

; (2.1.12b)

T ′′′
N (x) = N3 sinNθ

sin3 θ
− 3N2 cosNθ

cos θ
sin4 θ

−N
d

dθ

(
cos θ
sin3 θ

)
·
(

sinNθ
sin θ

)
.

(2.1.12c)

Using these expressions and the fact that sin(Nθj) = 0 (θj = πj/N), we obtain
(2.1.11a), (2.1.11b) and (2.1.11c). Letting θ → 0 and θ → π in (2.1.12a), respec-
tively, gives the first result in (2.1.11d). To obtain the second one, we use L’Hospital’s
rule for (2.1.12b):

T ′′
N (1)= lim

θ→0

1
sin3 θ

(
−N2 cosNθ sin θ +N sinNθ cos θ

)
= lim
θ→0

1
3 sin θ2 cos θ

(
(N3 −N) sinNθ sin θ

)
=
N2

3
(N2 − 1).

A similar procedure gives T ′′
N (−1). Let γN (x) =

∏N
k=0(x − xk). By (2.1.11a) we

derive
γN (x) = βN (x2 − 1)T ′

N (x),

where βN is a positive constant such that the coefficient of the xN+1 term on the
right-hand side of the above equality is 1. It follows from (2.1.11a) and (2.1.11d) that

γ′N (xj) = (−1)j c̃jN2βN , 0 � j � N,

where c̃0 = c̃N = 2 and c̃j = 1 for 1 � j � N − 1. Similar to (2.1.4), the Lagrange
polynomials associated with {xj}Nj=0 are of the form

Fj(x) =
γN (x)

γ′N (xj)(x− xj)
, 0 � j � N.

Using the expressions for γN (x) and γN (xj) given above yields

Fj(x) =
(−1)j(x2 − 1)T ′

N (x)
c̃jN2(x− xj)

, 0 � j � N. (2.1.13)

Now direct calculation gives

F ′
j(x) =

(−1)j

c̃jN2

1
(x− xj)2

(
(2xT ′

N (x)+(x2−1)T ′′
N (x))(x−xj)−(x2−1)T ′

N (x)
)
.

76 Chapter 2 Spectral-Collocation Methods

For k �= j, the above result, together with (2.1.11a) and (2.1.11d), leads to

F ′
j(xk) =

c̃k
c̃j

(−1)k+j

xk − xj
, 0 � k �= j � N.

For 1 � k = j � N − 1, it follows from (2.1.13) that

F ′
k(xk)= limx→xk

Fk(x) − 1
x− xk

(
Fk(xk) = 1

)
=limx→xk

αN,k(x2 − 1)T ′
N (x) − (x− xk)

(x− xk)2
,

where

αN,k := (−1)k/N2. (2.1.14)

Again using L’Hospital’s rule to the above result twice gives

F ′
k(xk)=

1
2
αN,k lim

x→xk

(
2T ′

N (x) + 4xT ′′
N (x) + (x2 − 1)T ′′′

N (x)
)

=
1
2
αN,k(−1)k+1N2

(
4xk

1 − x2
k

− 3xk
1 − x2

k

)
= − xk

2(1 − x2
k)
, 1�k�N−1,

where in the last step we have used (2.1.11a), (2.1.11b) and (2.1.11c). Further, using
(2.1.11d) shows that

F ′
0(x0) = −F ′

N (xN) = (2N2 + 1)/6.

Since the Lagrange’s interpolation polynomial is of the form p(x) =
∑N

j=0 Fj(x)
f(αj), we obtain by the definition of the differentiation matrix that(

D1
)
kj

= F ′
j(xk).

The above discussion gives

D1
kj =

c̃k
c̃j

(−1)k+j

xk − xj
, j �= k (2.1.15a)

D1
kk = − xk

2(1 − x2
k)
, k �= 0, N, (2.1.15b)

D1
00 = −D1

NN = (2N2 + 1)/6, (2.1.15c)

where c̃k = 1, except for c̃0 = c̃N = 2. Direct verification from (2.1.15a) also yields

D1
N−k,N−j = −Dkj. (2.1.16)

2.1 Differentiation matrices for polynomial basis functions 77

It has been observed that for large N the direct implementation of the above formulas
suffers from cancellation, causing errors in the elements of the matrix D1. Thus, it
is advisable to replace the first two formulas using trigonometric identities by the
formulas

D1
kj =

c̃k
c̃j

(−1)k+j

2

(
sin

(j + k)π
2N

sin
(j − k)π

2N

)−1

, k �= j, (2.1.17a)

D1
kk = − xk

2 sin2(kπ/N)
, k �= 0, N. (2.1.17b)

Finally, to avoid computing the sine of arguments larger than π/2 in absolute value
we take advantage of the symmetry property (2.1.16). Thus the most accurate method
of computing D1 is using formulas (2.1.17) to find the upper left triangle of D1 (i.e.,
compute Dkj with k + j � N), and then uses the relation (2.1.16) and (2.1.15c) for
the other elements.

Higher-order DMs can be computed easily by the following observation:

If the collocation points are the Chebyshev-Gauss-Lobatto points xj =
cos (πj/N), then higher derivative matrices can be obtained as matrix pow-
ers, i.e.,

Dm = (D1)m. (2.1.18)

The numerical results (2.1.10) obtained in the last subsection, i.e., D1 and D2

with N = 4, can be verified using the above explicit formulas.

A pseudocode for first order DM using the formula (2.1.15a)–(2.1.16) is given
below:

CODE DM.3
Input N
Compute collocation points x(j)=cos(πj/N) and c̃(j)
%first order differentiation matrix
for k=0 to N do

for j=0 to N-k do
if k=0 and j=0 then D1(k,j)=(2N2+1)/6
elseif k=N and j=N then D1(k,j)=-D1(0,0)

elseif k=j then D1(k,j)=-x(k)/
(
2*(1-x(k)2)

)
else then D1(k,j)=c̃(k)*(-1)j+k/

(
c̃(j)*(x(k)-x(j))

)
endif

endfor

78 Chapter 2 Spectral-Collocation Methods

endfor
for k=1 to N do

for j=N-k+1 to N do
D1(k,j)=-D1(N-k,N-j)

endfor
endfor

Since we will use the first-order differentiation matrix frequently, it is also necessary
to provide a MATLAB code for the above algorithm.

CODE DM.4
function d=DM1(N)
%collocation points, and c̃k
j=[0:1:N]; x=[cos(pi*j/N)];
c=[2 ones(1,N-1) 2];
%Differentiation matrix
for k=1:N+1

for j=1:N+2-k
if j==1 & k==1

d(j,k)=(2*Nˆ2+1)/6;
elseif j==N+1 & k==N+1

d(j,k)=-d(1,1);
elseif j==k

d(j,k)=-x(k)/(2*(1-x(k)ˆ2));
else

d(j,k)=c(j)*(-1)ˆ(j+k)/(c(k)*(x(j)-x(k)));
end

end
end
for k=2:N+1

for j=N+3-k:N+1
d(k,j)=-d(N-k+2,N-j+2);

end
end

Remark 2.1.1 It is noted that d(i, j) = D1
i−1,j−1 for 1 � i, j � N + 1 (since

MATLAB requires that the indexes i and j above are positive).

Exercise 2.1

Problem 1 Consider the Legendre polynomial described in Section 1.3, with the
Legendre-Gauss-Lobatto points (1.3.11). It can be verified that the Lagrange polyno-
mials are of the form

Fj(x) =
1

N(N + 1)LN (x)
(1 − x2)L′

N (x)
x− xj

.

2.2 Differentiation matrices for Fourier collocation methods 79

Use this result to verify that

D1
kj =

LN (xk)
LN (xj)

1
xk − xj

, k �= j,

D1
kk = 0, k �= 0, N,

D1
00 = −D1

NN = N(N + 1)/4.

Problem 2 Use CODE DM.1 and CODE DM.2 to compute D1 with the Legendre-
Gauss-Lobatto points, with N = 5. Compare your results with the direct formulas
given in Problem 1.

2.2 Differentiation matrices for Fourier collocation methods

Fourier series and differentiation
Differentiation matrices using direct formulas

The discussions in Section 2.1 are concentrated on the algebraic polynomial basis
functions. Another class of basis functions is the trigonometric functions which are
more suitable for representing periodic phenomena. For convenience, let us assume
that the function being interpolated is periodic with period 2π.

It is known from Section 1.5 that the functions Ek defined by Ek(x) = eikx form
an orthogonal system of functions in the complex space L2(0, 2π). An exponential
polynomial of degree at most n is any function of the form

p(x)=
n∑
k=0

dke
ikx =

n∑
k=0

dkEk(x)

=
n∑
k=0

dk(eix)k . (2.2.1)

The last expression in this equation explains the source of the terminology because it
shows p to be a polynomial of degree � n in the variable eix.

Lemma 2.2.1 The exponential polynomial that interpolates a prescribed function f
at xj = 2πj/N , 0 � j � N − 1, is given by

P (x) =
N−1∑
k=0

ckEk(x), with ck = 〈f,Ek〉N , (2.2.2)

80 Chapter 2 Spectral-Collocation Methods

where the inner product is defined by (1.5.2). In other words, P (xj) = f(xj), 0 �
j � N − 1.
Proof The above result can be obtained by the direct calculations: for 0 � m �
N − 1,

P (xm)=
N−1∑
k=0

ckEk(xm) =
N−1∑
k=0

1
N

N−1∑
j=0

f(xj)Ek(xj)Ek(xm)

=
N−1∑
j=0

f(xj)〈Em, Ej〉N = f(xm) ,

where in the last step we have used (1.5.4) and the fact 0 � |m− j| < N .

Fourier series and differentiation

It is well known that if f is 2π-periodic and has a continuous first derivative then
its Fourier series converges uniformly to f . In applications, we truncate the infinite
Fourier series

F(x) ∼
∞∑

k=−∞
f̂(k)eikx, (2.2.3)

to the following finite series:

F (x) =
N/2−1∑
k=−N/2

αke
ikx. (2.2.4)

Assume that F (xj) = f(xj), where xj = 2πj/N, 0 � j � N − 1. It can be shown
that

f(xj) =
N−1∑
k′=0

αk′−N/2(−1)jeik
′xj , 0 � j � N − 1.

This, together with (2.2.2), gives

αk′−N/2 =
1
N

N−1∑
j=0

(−1)jF (xj)e−ik
′xj , 0 � k′ � N − 1. (2.2.5)

We now differentiate the truncated Fourier series F (x) termwise to get the approxi-
mate derivatives. It follows from (2.2.4) that

F (m)(x) =
N/2∑

k=−N/2
αk(ik)meikx,

2.2 Differentiation matrices for Fourier collocation methods 81

where m is a positive integer. We can write F(m)(x) in the following equivalent
form:

F (m)(x) =
N−1∑
k′=0

αk′−N/2
(
i(k′ −N/2)

)m
ei(k

′−N/2)x. (2.2.6)

Using (2.2.5) and (2.2.6), we obtain

⎛⎜⎜⎜⎝
F (m)(x0)
F (m)(x1)

...
F (m)(xN−1)

⎞⎟⎟⎟⎠ =
(
(−1)jeikxj(i(k −N/2))m

)N−1

j,k=0

⎛⎜⎜⎜⎝
α−N/2
α−N/2+1

...
αN/2−1

⎞⎟⎟⎟⎠

=
1
N

(
(−1)jeikxj(i(k −N/2))m

)N−1

j,k=0

(
(−1)ke−ijxk

)N−1

j,k=0

⎛⎜⎜⎜⎝
F (x0)
F (x1)

...
F (xN−1)

⎞⎟⎟⎟⎠ .

This indicates that the m-th order differentiation matrix associated with Fourier
spectral-collocation methods is given by

Dm =
1
N

(
(−1)jeikxj (i(k −N/2))m

)N−1

j,k=0

(
(−1)ke−ijxk

)N−1

j,k=0
(2.2.7)

A pseudocode for computing Dm is given below:

CODE FPS.1
function Dm=FDMx(m,N)
%collocation points: x(j)=2*π*j/N, 1�j�N-1
for j=0 to N-1

for k=0 to N-1
A(j,k)=(-1)j*exp(i*k*x(j))*(i*(k-N/2))m

B(j,k)=(-1)k*exp(-i*j*x(k))
endfor

endfor
Dm=(1/N)*A*B

To test the above code, we consider a simple example. Let f(x) = 1/(2 + sinx).
Let F = (f(x0), f(x1), · · · , f(xN−1))T with xj = 2πj/N . The matrices D1 =

82 Chapter 2 Spectral-Collocation Methods

FDMx(1, N) and D2 = FDMx(2, N) are given by CODE FPS.1. We plot the L1 errors

err1 =
1
N

N−1∑
j=0

|(D1 ∗ F)j − f ′(xj)|, err2 =
1
N

N−1∑
j=0

|(D2 ∗F)j − f ′′(xj)|

in Fig. 2.1 (a). It is observed that the above L1 errors decay to zero very rapidly.

Figure 2.1

(a) f(x) = 1/(2 + sin x); (b) f(x) = e−2(x−π)2 . The solid line is for err1, and the dashed line is

for err2

It should be pointed out that the convergence holds only for periodic functions. If
we change the above f(x) to a non-periodic function, say f(x) = x2, then the errors
err1 and err2 defined above will diverge to infinity as N becomes large.

Apart from the periodic functions, the Fourier spectral methods can also handle
functions which decay to zero away from a finite interval. We can always use a
linear transform to change the finite interval to [0, 2π]. To see this, we consider
f(x) = e−2(x−π)2 . In Fig. 2.1(b), we plot err1 and err2 for this function. It is
noted that the errors will not decrease after a critical value of N , but the errors for
large N will be of the same magnitudes of f′(x) and f ′′(x) away from [0, 2π].

Differentiation matrices using direct formulas

Again choose xj = 2πj/N, 0 � j � N − 1. The corresponding interpolant is

2.2 Differentiation matrices for Fourier collocation methods 83

given by (Gottlieb et al.[36]; Henrici [81], Section 13.6)

tN (x) =
N∑
j=1

φj(x)fj,

where the Lagrange polynomials Fj(x) are of the form

Fj(x) =
1
N

sin
N

2
(x− xj) cot

1
2
(x− xj), N even, (2.2.8a)

Fj(x) =
1
N

sin
N

2
(x− xj) csc

1
2
(x− xj), N odd. (2.2.8b)

It can be shown that an equivalent form of tN (x) (barycentric form of interpolant) is
(see Henrici[81], Section 13.6):

tN (x) =
N∑
j=1

(−1)jfj cot
1
2
(x− xj)

/ N∑
j=1

(−1)j cot
1
2
(x− xj), N even,

(2.2.9a)

tN (x) =
N∑
j=1

(−1)jfj csc
1
2
(x− xj)

/ N∑
j=1

(−1)j csc
1
2
(x− xj), N odd.

(2.2.9b)

The differentiation matrix D(m) = (F (m)
j (xk)) is obtained by Gottlieb et al.. For N

even, 1 � k, j � N :

D1
kj =

⎧⎨⎩ 0 if k = j,
1
2
(−1)k−j cot

(k − j)h
2

if k �= j,
(2.2.10a)

D2
kj =

⎧⎪⎨⎪⎩ − π2

3h2
− 1

6
if k = j,

−(−1)k−j
1
2

csc2 (k − j)h
2

if k �= j.
(2.2.10b)

Similarly, for N odd, 1 � k, j � N :

D1
kj =

⎧⎨⎩ 0 if k = j,
1
2
(−1)k−j csc

(k − j)h
2

if k �= j,
(2.2.11a)

84 Chapter 2 Spectral-Collocation Methods

D2
kj =

⎧⎪⎨⎪⎩ − π2

3h2
− 1

12
if k = j,

−(−1)k−j
1
2

csc
(k − j)h

2
cot

(k − j)h
2

if k �= j.
(2.2.11b)

It can be shown that if N is odd then

Dm = (D1)m. (2.2.12)

If N is even, the above formula only holds for odd m.

Exercise 2.2

Problem 1 Use CODE FPS.1 to compute D2 and D3.

a. Let N = 6 and m = 3. Verify (2.2.12) by using (2.2.10a). Show also that
(2.2.12) does not hold for m = 2.

b. Let N = 5 and m = 2, 3. Verify (2.2.12) by using (2.2.11a).

Problem 2 Design an algorithm to compute the differentiation matrix D1 for the
Chebyshev collocation method that uses FFT.

Problem 3 Consider the eigenvalue problem

−u′′ + x2u = λu, x ∈ R.

This problem is related to a quantum harmonic oscillator, whose eigenvalues are
λ = 1, 3, 5, · · · and the eigenfunctions u are the Hermite functions e−x2/2Hn(x).
Since these solutions decay rapidly, for practical computations we can truncate the
infinite spatial domain to the periodic domain [−L,L], provided L is sufficiently
large. Using a Fourier collocation method to find the first 4 eigenvalues, with N =
6, 12, 18, 24 and 36.

2.3 Eigenvalues of Chebyshev collocation operators

Advection operator
Diffusion operator with Dirichlet boundary conditions
Diffusion operator with Neumann boundary conditions
Comparison with finite difference methods

The eigenvalues of a matrixA are the complex numbers λ for which the matrixA−λI
Hint: MATLAB has a code for finding the eigenvalues of Av = λv.

2.3 Eigenvalues of Chebyshev collocation operators 85

is not invertible. The spectral radius of A is defined by the equation

ρ(A) = max{|λ| : det(A− λI) = 0}.

Thus, ρ(A) is the smallest number such that a circle with that radius centered at 0 in
the complex plane will contain all the eigenvalues of A.

Using spectral methods to deal with time-dependent differential equations will
often result in a system of ODEs. For example, consider the linear heat equation
ut = uxx with appropriate initial and boundary conditions. If we use collocation
methods, we will obtain a system of ODE like U′(t) = AU + b, where the matrix
A is related to the second order differentiation matrix investigated in Section 2.1,
the vector b is related to the boundary conditions. Now the spectral radius of A is
important: it determines the maximum time step allowed by using an explicit scheme
for this ODE system through the relation ∆tρ(A) � 1.

The condition number of a matrix A is defined by

κ(A) = max{|λ| : det(A− λI) = 0}/min{|λ| : det(A− λI) = 0}.

A matrix with a large condition number is said to be ill conditioned while the matrix
is said to be well conditioned if the condition number of A is of moderate size. There
are two main numerical difficulties in dealing with Ill-conditioned matrices, first of
all, the solution of Ax = b is very sensitive to small changes in the vector b if A is ill
conditioned; secondly, the number of iterations needed for solving Ax = b using an
iterative method usually increases with the condition number of A.

Using spectral methods to solve differential equations will often require solving
a system of algebraic equations. In this case, information about the underlying ma-
trix such as spectral radius and condition number will be very useful. As we shall
see in Section 2.4, the underlying matrix is often formed by the differentiation ma-
trices. Therefore, it is helpful to study the eigenvalues of the differentiation matrices
associated with different spectral methods. In this section, we will investigate the
eigenvalues of the Chebyshev collocation operators. Some references related to this
section can be found in [164], [169].

Advection operator

We consider here the advection operator

Lu =
du

dx
, x ∈ (−1, 1), (2.3.1)

86 Chapter 2 Spectral-Collocation Methods

subject to the boundary condition u(1) = 0. We use the Chebyshev collocation
method with the collocation points xj = cos(πj/N). The eigenvalues of the collo-
cation operator are defined by the set of equations

dU(xj)
dx

= λU(xj), 1 � j � N ; U(x0) = 0, (2.3.2)

provided U is a non-trivial polynomial of degree N . It can be shown theoretically
that the real parts of λ are strictly negative, while the modulus satisfies a bound of the
form |λ| � N2. We will verify this by numerical experiments.

Since U(x0) = 0, it is easy to see that (2.3.2) leads to a standard eigenvalue
problem AU = λU , where A is formed by removing the first column and the first
row from D1, where D1 is given by CODE DM.3 in Section 2.1.

CODE Eigen.1
Input N
%first order differentiation matrix
call CODE DM.3 in Sect 2.1 to get D1(i,j), 0�i,j�N
%form the coefficient matrix: A(i,j)=D1(i,j), 1�i,j�N
compute the eigenvalues of A

find the largest and smallest |λ|
ρ(A)=the largest |λ|; κ(A)=ρ(A)/the smallest |λ|

In MATLAB, eig(A) is the vector containing the eigenvalues of matrix A;
max(abs(eig(A))) gives the spectral radius of A; min(abs(eig(A))) gives
the smallest |λ| of A. Numerical results show that the real parts of eig(A) are
strictly negative, and that

ρ(A) � 0.5N2, κ(A) � N2, (2.3.3)

as can be seen from Fig. 2.2.

Diffusion operator with Dirichlet boundary conditions

We now consider the diffusion operator

Lu =
d2u

dx2
, x ∈ (−1, 1), (2.3.4)

with homogeneous Dirichlet boundary conditions, i.e., u(±1) = 0. The eigenvalues
of the Chebyshev-collocation approximation to this operator are defined by the set of

2.3 Eigenvalues of Chebyshev collocation operators 87

equations

d2U(xj)
dx2

= λU(xj), 1 � j � N − 1,

U(x0) = 0, U(xN) = 0,
(2.3.5)

Figure 2.2 The spectral radius and condition number associated with the advection

operator.

where {xj} are the Chebyshev-Gauss-Lobatto points and U is a polynomial of degree
N . It was shown in [58] that there exist two positive constants c1, c2 independent of
N such that

0 < c1 � −λ � c2N
4. (2.3.6)

We will verify this by numerical experiments with the following code:

CODE Eigen.2
%Zero Dirichlet boundary conditions
Input N
%first order differentiation matrix
call CODE DM.3 in Section 2.1 to get D1(i,j), 0�i,j�N
D2=D1*D1
%form the coefficient matrix: A(i,j)=D2(i,j), 1�i,j�N-1
compute the eigenvalues of A

find the largest and smallest |λ|
ρ(A)=the largest |λ|; κ(A)=ρ(A)/the smallest |λ|

In Fig. 2.3, we plot the spectral radius and condition number for the Dirichlet prob-

88 Chapter 2 Spectral-Collocation Methods

lem. It can be seen from Fig. 2.3 that

Figure 2.3 The spectral radius and condition number associated with the Chebyshev

spectral methods.

ρ(A) ≈ 0.047N4, for N � 30,

κ(A) ≈ 0.019N4, for N � 15.
(2.3.7)

It is also observed from the numerical results that

min |λ| ≈ 2.467, for N � 5. (2.3.8)

Diffusion operator with Neumann boundary conditions

We now consider the diffusion operator (2.3.4) with the homogeneous Neumann
boundary conditions u′(±1) = 0. The eigenvalues of the Chebyshev-collocation
approximation to this operator are defined by the set of equations

d2U(xj)
dx2

= λU(xj), 1 � j � N − 1,

U ′(x0) = 0, U ′(xN) = 0,
(2.3.9)

where, once again, {xj} are the Chebyshev-Gauss-Lobatto points and U is a polyno-
mial of degree N . We follow the procedure in Section 2.4 to form the corresponding
matrix. Our boundary conditions are of the type (2.4.2) with a+ = b− = 0, b+ =
a− = 1, c− = c+ = 0. Using (2.4.13), the coefficient matrix A = (aij) is given by

aij = (D2)ij − (D2)i0α̃0j − (D2)iN α̃Nj , 1 � i, j � N − 1,

2.3 Eigenvalues of Chebyshev collocation operators 89

where

α̃0j =
(
(D1)0N (D1)Nj − (D1)NN (D1)0j

)
·(

(D1)N0(D1)0N − (D1)00(D1)NN
)−1

,

α̃Nj =
(
(D1)N0(D1)0j − (D1)00(D1)Nj

)
·(

(D1)N0(D1)0N − (D1)00(D1)NN
)−1

.

A pseudocode for computing the spectral radius and condition number of the Neu-
mann problem is given below.

CODE Eigen.3
%Zeor Neumann boundary conditions
Input N
%first order differentiation matrix
call CODE DM.3 in Sect 2.1 to get D1(i,j), 0�i,j�N
D2=D1*D1
%form the coefficient matrix
ss=D1(N,0)*D1(0,N)-D1(0,0)*D1(N,N)
for j=1 to N-1 do
α̃0j=(D1(0,N)*D1(N,j)-D1(N,N)*D1(0,j))/ss
α̃Nj=(D1(N,0)*D1(0,j)-D1(0,0)*D1(N,j))/ss

for i=1 to N-1 do
A(i,j)=D2(i,j)-D2(i,0)*α̃0j-D2(i,N)*α̃Nj

endfor
endfor
Compute the eigenvalues of A

Calculate the spectral radius of A and the condition number

Numerical results show that, except for the zero eigenvalue, the following inequalities
hold:

2.18 � −λ � 0.03N4. (2.3.10)

Also, it is observed that

ρ(A) ≈ 0.014N4, for N � 20. (2.3.11)

Comparison with finite difference methods

Let us first consider the eigenvalues of the following tridiagonal matrix:

90 Chapter 2 Spectral-Collocation Methods

D =

⎛⎜⎜⎜⎜⎜⎝
a c

b a c
.

b a c

b a

⎞⎟⎟⎟⎟⎟⎠ with b · c �= 0. (2.3.12)

The size of the matrix D is (N − 1) × (N − 1). We will show that the eigenvalues
of D are given by

λk = a+ 2
√
bc cos (πk/N) , 1 � k � N − 1. (2.3.13)

By definition, the eigenvalues of D satisfy

DV = λV, (2.3.14)

where V is the eigenvector associated with λ. Equivalently, (2.3.14) can be written
as

bVj−1 + aVj + cVj+1 = λVj , 1 � j � N − 1, (2.3.15a)

V0 = 0, VN = 0. (2.3.15b)

In analogy to solving a second-order ODE with constant coefficients, we assume a
special form of Vj , namely Vj = βj , where β �= 0 is a constant to be determined.
Substituting this into (2.3.15a) gives

b+ aβ + cβ2 = λβ. (2.3.16)

Since b · c �= 0, the above quadratic equation has two roots β1 and β2. If β1 �= β2,
then the general solution of (2.3.15a) is given by

Vj = c1β
j
1 + c2β

j
2, 1 � j � N − 1, (2.3.17)

where c1 and c2 are two constants. It follows from (2.3.15b) that c1 + c2 = 0 and
c1β

N
1 + c2β

N
2 = 0, which yields (β1/β2)N = 1. Therefore, we obtain

β1

β2
= ei2πk/N , 1 � k � N − 1. (2.3.18)

Since β1 and β2 are roots of (2.3.16), we have

β1 + β2 = −(a− λ)/c, β1β2 = b/c. (2.3.19)

Combining (2.3.18) and the second equation of (2.3.19) gives

2.4 Chebyshev collocation method for two-point BVPs 91

β1 =

√
b

c
eiπk/N , β2 =

√
b

c
e−iπk/N .

This, together with the first equation of (2.3.19), leads to (2.3.13).

We now consider the central-difference method for the diffusion operator (2.3.4)
with homogeneous (Dirichlet) boundary conditions. In this case, the correspond-
ing eigenvalue problem is AV = λV , where A is a tridiagonal matrix of the form
(2.3.12), with a = −2N2, b = c = N2. By (2.3.13), we see that the eigenvalues of
A satisfy

max |λ| ≈ 4N2, min |λ| ≈ π2 . (2.3.20)

The above results indicate that the spectral radius and condition number of the Cheby-
shev collocation method for first- and second-order operators grow like N2 and N4

respectively, while those of the finite difference method (at equally spaced points)
grow like N and N2 respectively. This rapid growth in spectral radius and condition
number of the Chebyshev collocation method is due to the fact that the smallest dis-
tance between neighboring collocation points behave like N−2 near the boundaries.
While this clustering of the collocation points near the boundaries provide extra res-
olution for problems with thin boundary layers which are present in many physical
situations, it does lead to severe time step restrictions if an explicit scheme is used.
Therefore, it is advised that second or higher derivative operators should be treated
implicitly to allow reasonable time steps.

Exercise 2.3

Problem 1 By computing λmax forN = 30, 40, 50, 60 and 70, show that in Cheby-
shev collocation method (using Gauss-Lobatto points) the growth of second-derivative
eigenvalues behaves like

λmax ≈ −0.047N4 Dirichlet, N � 30,

λmax ≈ −0.014N4 Neumann, N � 30.

Problem 2 What will be the corresponding growth of third-derivative eigenvalues?
Verify your results numerically.

2.4 Chebyshev collocation method for two-point BVPs

BVPs with Dirichlet boundary conditions
BVPs with general boundary conditions
Numerical experiments

92 Chapter 2 Spectral-Collocation Methods

In this section, we introduce the Chebyshev collocation method for the linear second-
order two-point boundary-value problem (BVP),

εu′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ I := (−1, 1), (2.4.1)

where ε is a (fixed) parameter that controls the singular behavior of the problem,
and p, q and f are given functions. If ε is of order 1, the problem is non-singular,
while for sufficiently small ε, the problem may exhibit singular behavior such as
sharp boundary and interior layers. In the latter case, the problem (2.4.1) is called a
singularly perturbed BVP. The boundary condition for (2.4.1) is given by

a−u(−1) + b−u′(−1) = c−, a+u(1) + b+u
′(1) = c+, (2.4.2)

Without loss of generality, we assume a± � 0. We also assume

a2
− + b2− �= 0, and a−b− � 0; a2

+ + b2+ �= 0, and a+b+ � 0;

q(x) − 1
2
p′(x) � 0, ∀x ∈ (I);

p(1) > 0 if b+ �= 0, p(−1) < 0 if b− �= 0.

(2.4.3)

It is easy to check that the above conditions ensure the well-posedness of (2.4.1)and
(2.4.2).

We now discuss how to solve the problem with ε = O(1) by using the Chebyshev
collocation method. The case with 0 < ε� 1 will be considered in Section 5.1.

BVPs with Dirichlet boundary conditions

We first consider the simplest boundary conditions:

u(−1) = c−, u(1) = c+. (2.4.4)

The Chebyshev interpolation polynomial can be written as

uN (x) =
N∑
j=0

UjFj(x), (2.4.5)

where xj = cos(jπ/N), 0 � j � N are the Chebyshev-Gauss-Lobatto collocation
points, {Uj}N−1

j=1 are the unknown coefficients to be determined, and Fj(x) is the
Lagrange interpolation polynomial associated with {xj}. The Chebyshev collocation
method is to seek uN in the form of (2.4.5) such that uN (−1) = c−, uN (1) = c+,

2.4 Chebyshev collocation method for two-point BVPs 93

and that the equation holds at the interior collocation points:

εuNxx(xj) + p(xj)uNx (xj) + q(xj)uN (xj) = f(xj), 1 � j � N − 1. (2.4.6)

Now using the definition of the differentiation matrix introduced in the Section 2.1,
we obtain a system of linear equations,

N−1∑
j=1

[
ε(D2)ij + p(xi)(D1)ij + q(xi)δij

]
Uj

= f(xi) −
[
ε(D2)i0 + p(xi)(D1)i0

]
c+ − [

ε(D2)iN + p(xi)(D1)iN
]
c−,

(2.4.7)

for the {Uj}N−1
j=1 , where δij is the Kronecker delta. In the above equations, we have

used the boundary conditions U0 = c+, UN = c− (notice that x0 = 1 and xN = −1).

To summarize: the spectral-collocation solution for the BVP (2.4.1) with the
Dirichlet boundary conditions (2.4.4) satisfies the linear system

AŪ = b̄, (2.4.8)

where Ū = [U1, · · · , UN−1]T; the matrix A = (aij) and the vector b̄ are given by

aij = ε(D2)ij + p(xi)(D1)ij + q(xi)δij , 1 � i, j � N − 1,

bi = f(xi) −
[
ε(D2)i0 + p(xi)(D1)i0

]
c+ − [ε(D2)iN

+ p(xi)(D1)iN]c−, 1 � i � N − 1.

(2.4.9)

The solution to the above system gives the approximate solution to (2.4.1) and (2.4.4)
at the collocation points. The approximation solution in the whole interval is deter-
mined by (2.4.5). A pseudo-code is given below:

CODE PSBVP.1
Input N, ε, p(x), q(x), f(x), c−, c+
%collocation points: x(j)=cos(πj/N), 0�j�N
%first order differentiation matrix
call CODE DM.3 in Sect 2.1 to get D1
%compute second order differentiation matrix: D2=D1*D1
% compute the stiffness matrix A
for i=1 to N-1 do

for j=1 to N-1 do
if i=j A(i,j)=ε*D2(i,j)+p(x(i))*D1(i,j)+q(x(i))
else A(i,j)=ε*D2(i,j)+p(x(i))*D1(i,j)
endif

94 Chapter 2 Spectral-Collocation Methods

endfor
% compute the right side vector b

ss1=ε*D2(i,0)+p(x(i))*D1(i,0); ss2=ε*D2(i,N)+p(x(i))
*D1(i,N)
b(i)=f(i)-ss1*c+-ss2*c−

endfor
% solve the linear system to get the unknown vector
u=A−1b
Output u(1), u(2), · · ·, u(N-1)

A MATLAB code is also provided below:

CODE PSBVP.2
Input N, eps, p(x), q(x), f(x), cminus, cplus
j=[1:1:N-1]; x=[cos(pi*j/N)]’;
D1=DM1(N); D2=D1ˆ2;
for i=1:N-1

s=x(i); p1=p(s); q1=q(s); f1=f(s);
for j=1:N-1
if i==j

A(i,j)=eps*D2(i+1,j+1)+p1*D1(i+1,j+1)+q1;
else

A(i,j)=eps*D2(i+1,j+1)+p1*D1(i+1,j+1);
end

end
ss1=eps*D2(i+1,1)+p1*D1(i+1,1);
ss2=eps*D2(i+1,N+1)+p1*D1(i+1,N+1);
b(i)=f1-ss1*cplus-ss2*cminus;

end
u=A\b’;

For test problems having exact solutions, a few more lines may be added to compute
the maximum errors:

%if the exact solution uexact(x) is given
for i=1:N-1

error(i)=abs(u(i)-uexact(i));
end
xx=N; err=max(error);
fprintf(1, ’%16.0f %13.3e \n’, [xx; err]);

The above MATLAB code will be used to compute the numerical solutions for Ex-
ample 2.4.1 in this section and Example 5.1.1 in Section 5.1.

2.4 Chebyshev collocation method for two-point BVPs 95

BVPs with general boundary conditions

We now consider the general boundary conditions (2.4.2). Without loss of gen-
erality, we assume b− �= 0 and b+ �= 0 (otherwise we will have simpler cases). It
follows from (2.4.2) that

a−UN + b−
N∑
j=0

(D1)NjUj = c−, a+U0 + b+

N∑
j=0

(D1)0jUj = c+,

which leads to

b−(D1)N0U0 +
(
a− + b−(D1)NN

)
UN = c− − b−

N−1∑
j=1

(D1)NjUj,

(
a+ + b+(D1)00

)
U0 + b+(D1)0NUN = c+ − b+

N−1∑
j=1

(D1)0jUj .

(2.4.10)

Solving the above equations we find

U0 = c̃+ −
N−1∑
j=1

α̃0jUj , UN = c̃− −
N−1∑
j=1

α̃NjUj , (2.4.11)

where the parameters c̃+, α̃0j , c̃−, α̃Nj are defined by

c̃+ =
(
d̃c− − b̃c+

)
/(ãd̃− c̃b̃), c̃− =

(
ãc+ − c̃c−

)
/(ãd̃− c̃b̃),

α̃0j =
(
d̃b−(D1)Nj − b̃b+(D1)0j

)
/(ãd̃− c̃b̃),

α̃Nj =
(
ãb+(D1)0j − c̃b−(D1)Nj

)
/(ãd̃− c̃b̃),

ã := b−(D1)N0, b̃ := a− + b−(D1)NN ,

c̃ := a+ + b+(D1)00, d̃ := b+(D1)0N .

To summarize: let the constants b− and b+ in (2.4.2) be nonzero. The spectral-
collocation solution for the BVP (2.4.1) with the general boundary condition (2.4.2)
satisfies the linear system

AŪ = b̄, (2.4.12)

whereA = (aij) is a (N−1)×(N−1) matrix and b̄ = (bj) is a (N−1)-dimensional

96 Chapter 2 Spectral-Collocation Methods

vector:

aij = ε(D2)ij + p(xi)(D1)ij + qiδij −
[
ε(D2)i0 + p(xi)(D1)i0

]
α̃0j

− [
ε(D2)iN + p(xi)(D1)iN

]
α̃Nj,

bi = f(xi) −
[
ε(D2)i0 + p(xi)(D1)i0

]
c̃+ − [

ε(D2)iN + p(xi)(D1)iN
]
c̃−.

(2.4.13)

A pseudo-code is given below:

CODE PSBVP.3
Input N, ε, p(x), q(x), f(x), c−, c+, a−, b−, a+, b+
%collocation points: x(j)=cos(πj/N), 0�j�N
%first order differentiation matrix
call CODE DM.3 in Sect 2.1 to get D1
%compute second order ifferentiation matrix
D2=D1*D1
% calculate some constants
ta=a+*D1(N,0); tb=a−+a+*D1(N,N)
tc=b−+b+*D1(0,0); td=b+*D1(0,N); te=ta*td-tc*tb
c̃+=(td*c−-tb*c+)/te; c̃−=(ta*c+-tc*c−)/te
% compute the stiffness matrix A
for i=1 to N-1 do
ss1=ε*D2(i,0)+p(x(i))*D1(i,0); ss2=ε*D2(i,N)+p(x(i))
*D1(i,N)

for j=1 to N-1 do
ss3=

(
td*a+*D1(N,j)-tb*b+*D1(0,j)

)
/te

ss4=
(
ta*b+*D1(0,j)-tc*a+*D1(N,j)

)
/te

ss5=ss1*ss3+ss2*ss4
if i=j A(i,j)=ε*D2(i,j)+p(x(i))*D1(i,j)
+q(x(i))-ss5
else A(i,j)=ε*D2(i,j)+p(x(i))*D1(i,j)-ss5
endif

endfor
%compute the right side vector b: b(i)=f(i)-ss1*̃c+-ss2*̃c−
endfor
% solve the linear system to get the unknown vector
u=A−1b
Output u(1), u(2), · · ·, u(N-1)

Numerical experiments

In this subsection we will consider two numerical examples. The numerical re-

2.4 Chebyshev collocation method for two-point BVPs 97

sults will be obtained by using CODE PSBVP.2 and CODE PSBVP.3, respectively.

Example 2.4.1 Consider the following problem

u′′+xu′(x)−u(x)=(24+5x)e5x+(2 + 2x2) cos(x2)−(4x2+1) sin(x2), (2.4.14)

u(−1) = e−5 + sin(1), u(1) = e5 + sin(1).

The exact solution for Example 2.4.1 is u(x) = e5x + sin(x2). We solve this
problem by using different values of N and compute the maximum error which is
defined by max1�j�N−1 |Uj − u(xj)|. It is the maximum error at the interior collo-
cation points. Here is the output.

N Maximum error N Maximum error
5 2.828e+00 13 6.236e-06
6 8.628e-01 14 9.160e-07
7 1.974e-01 15 1.280e-07
8 3.464e-02 16 1.689e-08
9 7.119e-03 17 2.135e-09

10 1.356e-03 18 2.549e-10
11 2.415e-04 19 2.893e-11
12 3.990e-05 20 3.496e-12

An exponential convergence rate can be observed from the above table. For com-
parison, we also solve Example 2.4.1 using the finite-difference method. We use the
central differences for the derivatives:

u′′ ≈ Uj+1 − 2Uj + Uj−1

h2
, u′ ≈ Uj+1 − Uj−1

2h
, h =

2
N
.

As usual the mesh points are given by xj = −1 + jh. The maximum errors given by
the finite-difference method are listed below:

N Maximum error N Maximum error
16 3.100e+00 128 4.968e-02
32 7.898e-01 256 1.242e-02
64 1.984e-01 512 3.106e-03

As expected, the convergence rate for the central difference method is 2. The
error obtained by the finite differences with N = 512 is almost the same as that
obtained by the spectral method with N = 10.

The following example deals with BVPs with the general boundary conditions.
We follow CODE PSBVP.3 and use MATLAB to get the following results.

98 Chapter 2 Spectral-Collocation Methods

Example 2.4.2 Consider the same problem as above, except with different boundary
conditions:

u(−1)−u′(−1) = −4e−5+sin(1)+2 cos(1), u(1)+u′(1) = 6e5+sin(1)+2 cos(1).

The exact solution is also u(x) = e5x + sin(x2).

The numerical results are given below:

N Maximum error N Maximum error
5 3.269e+01 13 3.254e-04
6 9.696e+00 14 4.903e-05
7 2.959e+00 15 8.823e-06
8 7.292e-01 16 1.164e-06
9 1.941e-01 17 1.884e-07

10 3.996e-02 18 2.204e-08
11 9.219e-03 19 3.225e-09
12 1.609e-03 20 3.432e-10

It is observed that the convergence rate for problems with general boundary con-
ditions is slower than that for problems with Dirichlet boundary conditions.

Exercise 2.4

Problem 1 Consider the following problem with one boundary layer,

εU ′′ +
1
2
U ′(x) = 0, x ∈ (−1, 1),

with U(−1) = 0 and U(1) = 1. This problem has the exact solution

U(x) =
(
1 − e−(x+1)/2ε

)(
1 − e−1/ε

)−1
.

(1) Solve this problem for ε = 10−3 with N = 64, 128 and ε = 10−4 with
N = 128, 256.

(2) Calculate the L1-error,
∑N−1

j=1 |uN (xj) − U(xj)|/(N − 1), and also plot the
point-wise errors.

Problem 2 Use the Chebyshev spectral method to solve the nonlinear Poisson-
Boltzmann equation[165]:

uxx = eu, −1 < x < 1, u(−1) = u(1) = 0. (2.4.15)

2.5 Collocation method in the weak form and preconditioning 99

(Hint: This is a nonlinear problem. A simple iterative method can be used to
solve the resulting nonlinear system. Namely, solve D̃2�vnew = exp(�vold, where D̃2

is an (N − 1) × (N − 1) matrix obtained by stripping D2 of its first and last rows
and columns. In MATLAB notation: D̃2 = D2(1 : N − 1, 1 : N − 1).)

2.5 Collocation method in the weak form and preconditioning

Collocation methods in the weak form
Finite difference preconditioning
Finite element preconditioning

The collocation method presented in Section 2.4 is derived by asking that the ap-
proximation solution satisfy exactly the boundary conditions and the equation at the
interior collocation points. Alternatively, we can also define an approximate solution
through a variational formulation which is more suitable for error analysis and for
designing effective preconditioners.

Collocation methods in the weak form

A variational method usually preserves essential properties of the continuous
problem such as coercivity, continuity and symmetry of the bilinear form, and leads
to optimal error estimates.

Consider (2.4.1) and (2.4.2). Without loss of generality, we shall assume c± = 0.
We introduce

H1

 (I) = {v ∈ H1(I) : u(−1) = 0 if b− = 0; u(1) = 0 if b+ = 0}, (2.5.1)

and

h− =

{
0 if a−b− = 0,

a−/b− if a−b− �= 0,
h+ =

{
0 if a+b+ = 0,

a+/b+ if a+b+ �= 0.
(2.5.2)

Then, the Galerkin method with numerical integration for (2.4.1) and (2.4.2) with
c± = 0 is: Find uN ∈ XN = PN ∩H1

 (I) such that

bN (uN , vN) = 〈f, v〉N , ∀vN ∈ XN , (2.5.3)

where

bN (uN , vN) := ε〈u′
N , v

′
N 〉N + εh+uN (1)vN (1) − εh−uN (−1)vN (−1)

100 Chapter 2 Spectral-Collocation Methods

+ 〈p(x)u′N , vN 〉N + 〈q(x)uN , vN 〉N ,
with 〈·, ·〉N denoting the discrete inner product associated with the Legendre-Gauss-
Lobatto quadrature. We note that an essential difficulty appears at the boundaries
with mixed boundary conditions if we want to use the Chebyshev-Gauss-Lobatto
quadrature. This difficulty can be overcome by replacing XN by X̃N = {u ∈ PN :
a±u(±1) + b±u(±1) = 0}, see Section 3.1.

We now attempt to re-interpret (2.5.3) into a collocation form. To fix the idea, we
assume b± �= 0 and denote

uN (x) =
N∑
k=0

uN (xk)hk(x), w̄ = (uN (x0), uN (x1), · · · , uN (xN))T,

akj = bN (hj , hk), A = (akj)Nk,j=0,

f̄ = (f(x0), f(x1), · · · , f(xN))T, W = diag(ω0, ω1, · · · , ωN),

where {ωk}Nk=0 are the weights in the Legendre-Gauss-Lobatto quadrature. Then,
(2.5.3) is equivalent to the linear system

Aw̄ = Wf̄. (2.5.4)

The entries akj can be determined as follows. Using (1.2.22) and integration by parts,
we have

〈h′j , h′k〉N = (h′j , h
′
k) = −(h′′j , hk) + h′jhk|±1

= −(D2)kjωk + d0jδ0k − dNjδNk.
(2.5.5)

Consequently,

akj =[−ε(D2)kj + p(xk)dkj + q(xk)δkj]ωk + ε(d0j + h+δ0j)δ0k
− ε(dNj + h−δNj)δNk, 0 � k, j � N.

(2.5.6)

Note that here the matrix A is of order (N + 1) × (N + 1), instead of order (N −
1) × (N − 1) as in the pure collocation case. We observe that

〈u′N , h′k〉N = −u′′N (xk)ωk + u′
N (1)δ0k − u′N (−1)δNk.

Thus, taking vN = hj(x) in (2.5.3) for j = 0, 1, · · · , N , and observing that ω0 =
ωN = 2/N(N + 1), we find

−εu′′N (xj) + p(xj)u′
N (xj) + q(xj)uN (xj) = f(xj), 1 � j � N − 1,

2.5 Collocation method in the weak form and preconditioning 101

a±uN (±1) + b±u′
N (±1) =

b±
ε

2
N(N + 1)

τ±, (2.5.7)

where

τ± = f(±1) − {−εu′′
N (±1) + p(±1)u′

N (±1) + q(±1)uN (±1)}.

We see that the solution of (2.5.3) satisfies (2.4.1) exactly at the interior collocation
points {xj}N−1

j=1 , but the boundary condition (2.4.2) (with c± = 0) is only satisfied
approximately with an error proportional to the residue of the equation (2.4.1), with
u replaced by the approximate solution uN , at the boundary. Thus, (2.5.3) does not
correspond exactly to a collocation method and is referred to as collocation method
in the weak form. We note however that in the Dirichlet case (i.e. b± = 0), the
collocation method in the weak form (2.5.7) is equivalent to the usual collocation
method.

The collocation methods, either in the strong form or weak form, lead to a full
and ill-conditioned linear system. Hence, a direct solution method such as Gaussian
elimination is only feasible for one-dimensional problems with a small to moderate
number of unknowns. For multi-dimensional problems and/or problems with large
number of unknowns, an iterative method with an appropriate preconditioner should
be used. To this end, it is preferable to first transform the problem (2.4.1) and (2.4.2)
into a self-adjoint form. We observe first that without loss of generality we may
assume c± = 0 by modifying the right-hand side function f . Then, multiplying the
function

a(x) = exp
(
−1
ε

∫
p(x)dx

)
(2.5.8)

to (2.4.1) and noting that −εa′(x) = a(x)p(x), we find that (2.4.1) and (2.4.2) with
c± = 0 can be written as

− (a(x)u′(x))′ + b(x)u = g(x), x ∈ (−1, 1),

a−u(−1) + b−u′(−1) = 0, a+u(1) + b+u
′(1) = 0,

(2.5.9)

where b(x) = a(x)q(x)/ε and g(x) = a(x)f(x)/ε.

Finite difference preconditioning

The collocation method in the strong form for (2.5.9) is: Find uN ∈ PN such
that

− (au′N)′(xj) + b(xj)uN (xj) = g(xj), 1 � j � N − 1,

a−uN (−1) + b−u′N (−1) = 0, a+uN (1) + b+u
′
N (1) = 0.

(2.5.10)

102 Chapter 2 Spectral-Collocation Methods

As demonstrated earlier, (2.5.10) can be rewritten as an (N − 1) × (N − 1) linear
system

Aw̄ = f̄ , (2.5.11)

where the unknowns are {wj = uN (xj)}N−1
j=1 , w̄ = (w1, · · · , wN−1)T and f̄ =

(f(x1), · · · , f(xN−1))T. The entries of A are given in Section 2.1.

As suggested by Orszag [125], we can build a preconditioner for A by using a
finite difference approximation to (2.5.9). Let us define

hk = xk−1 − xk, h̃k =
1
2
(xk−1 − xk+1),

xk+ 1
2

=
1
2
(xk+1 + xk), ak+ 1

2
= a(xk+ 1

2
).

(2.5.12)

Then, the second-order finite difference scheme for (2.5.9) with first-order one-sided
difference at the boundaries reads:

−
ai− 1

2

h̃ihi
wi−1 +

(ai− 1
2

h̃ihi
+

ai+ 1
2

h̃ihi+1

)
wi

−
ai+ 1

2

h̃ihi+1

wi+1 + b(xi)wi = g(xi), 1 � i � N − 1,

a−wN + b−(wN−1 − wN)/hN = 0, a+w0 + b+(w0 − w1)/h1 = 0.

(2.5.13)

We can rewrite (2.5.13) in the matrix form

Afdw̄ = f̄ , (2.5.14)

where Afd is a non-symmetric tridiagonal matrix. It has been shown (cf. [125],
[80], [91]) that in the Dirichlet case, A−1

fd is an optimal preconditioner for A, but

cond(A−1
fdA) deteriorates with other boundary conditions. The main reason for this

deterioration is that the collocation method in the strong form with non-Dirichlet
boundary conditions cannot be cast into a variational formulation.

Remark 2.5.1 The above discussion is valid for both the Legendre and Chebyshev
collocation methods.

Finite element preconditioning

A more robust preconditioner can be constructed by using a finite element ap-
proximation, which is always based on a variational formulation. Thus, it can only
be used for the preconditioning of collocation methods which can be cast into a varia-
tional formulation. Namely, the collocation method for the Dirichlet boundary condi-

2.5 Collocation method in the weak form and preconditioning 103

tions or the collocation method in the weak form for the general boundary conditions.

We consider first the treatment of the general boundary conditions. Let us denote

Xh = {u ∈ H1

 (I) : u|[xi+1,xi] ∈ P1, i = 0, 1, · · · , N − 1}. (2.5.15)

Then,the piecewise linear finite element approximation to (2.5.9) is: Find uh ∈ Xh

such that for all vh ∈ Xh,
bh(uh, vh) = 〈f, vh〉h, (2.5.16)

where

bh(uh, vh) :=〈au′h, v′h〉h + a(1)h+uh(1)vh(1)

− a(−1)h−uh(−1)vh(−1) + 〈buh, vh〉h,

and 〈·, ·〉h is an appropriate discrete inner product associated with the piecewise linear
finite element approximation.

To demonstrate the idea, we assume b± �= 0. Let us denote for k = 1, · · · , N−1,

ĥk(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x− xk+1

xk − xk+1
, x ∈ [xk+1, xk],

xk−1 − x

xk−1 − xk
, x ∈ [xk, xk−1],

0, otherwise;

(2.5.17)

ĥ0(x) =

⎧⎨⎩
x− x1

x0 − x1
, x ∈ [x1, x0],

0, otherwise;
(2.5.18)

ĥN (x) =

⎧⎨⎩
xN−1 − x

xN−1 − xN
, x ∈ [xN , xN−1],

0, otherwise.
(2.5.19)

It can be verified that Xh = span{ĥ0, ĥ1, · · · , ĥN}. We further set

uh(x) =
N∑
k=0

uh(xk)ĥk(x), w = (uh(x0), · · · , uh(xN))T,

bkj = bh(ĥj , ĥk), Bfe = (bkj)Nk,j=0, mkj = 〈ĥj , ĥk〉h,

Mfe = (mkj)Nk,j=0, f = (f(x0), · · · , f(xN))T.

104 Chapter 2 Spectral-Collocation Methods

Then, (2.5.16) is equivalent to the linear system

Bfew̄ = Mfef̄ or M−1
fe Bfew̄ = f̄ . (2.5.20)

On the other hand, as demonstrated earlier, we can formulate the linear system asso-
ciated with the Legendre-collocation method for (2.4.5)–(2.5.9) in the weak form

Aw̄ = Wf̄ or W−1Aw̄ = f̄ . (2.5.21)

Since both (2.5.21) and (2.5.20) provide approximate solutions to (2.5.9), it is known
(cf. [127]) that M−1

fe Bfe is a good preconditioner for W−1A.

Exercise 2.5

Problem 1 Consider the problem

−uxx + u = f, u(−1) = 0, u′(1) = 0.

Compute the condition number of the preconditioner matrix B−1
feMfeW

−1A de-
scribed above for N = 8, 16, 32, 64.

Problem 2 Solve the Poisson-Boltzmann equation described in Problem 2 of Sec-
tion 2.4 by using a preconditioned iterative method using a finite element precondi-
tioner.

Chapter 3
Spectral-Galerkin Methods

Contents
3.1 General setup . 105

3.2 Legendre-Galerkin method 109

3.3 Chebyshev-Galerkin method 114

3.4 Chebyshev-Legendre Galerkin method 118

3.5 Preconditioned iterative method 121

3.6 Spectral-Galerkin methods for higher-order equations 126

3.7 Error estimates . 131

An alternative approach to spectral-collocation is the so called spectral-Galerkin
method which is based on a variational formulation and uses, instead of Lagrange
polynomials, compact combinations of orthogonal polynomials as basis functions. It
will be shown that by choosing proper basis functions, the spectral-Galerkin method
may lead to well conditioned linear systems with sparse matrices for problems with
constant or polynomial coefficients. In this chapter, we present the Legendre- and
Chebyshev-Galerkin algorithms and their error analysis for a class of one-dimensional
problems.

3.1 General setup

Reformulation of the problem
(Weighted) Galerkin formulation

106 Chapter 3 Spectral-Galerkin Methods

We will demonstrate the ideas of spectral-Galerkin methods for the two-point boundary-
value problem:

−εU ′′ + p(x)U ′ + q(x)U = F, x ∈ I = (−1, 1), (3.1.1)

with the general boundary condition

a−U(−1) + b−U ′(−1) = c−, a+U(1) + b+U
′(1) = c+. (3.1.2)

This includes in particular the Dirichlet (a± = 1 and b± = 0), the Neumann (a± = 0
and b± = 1), and the mixed (a− = b+ = 0 or a+ = b− = 0) boundary conditions.
Whenever possible, we will give a uniform treatment for all these boundary condi-
tions. We assume that a±, b± and c± satisfy (2.4.3) so that the problem (3.1.1) and
(3.1.2) is well-posed.

Unlike the pseudospectral or collocation methods which require the approximate
solution to satisfy (3.1.1), the Galerkin method is based on variational formulation.
Hence, it is desirable, whenever possible, to reformulate the problem (3.1.1) and
(3.1.2) into a self-adjoint form.

Reformulation of the problem

Let us first reduce the problem (3.1.1) and (3.1.2) to a problem with homogeneous
boundary conditions:

• Case 1 a± = 0 and b± �= 0. We set ũ = βx2 + γx, where β and γ are
uniquely determined by asking ũ to satisfy (3.1.2), namely,

−2b−β + b−γ = c−, 2b+β + b+γ = c+. (3.1.3)

• Case 2 a2− + a2
+ �= 0. We set ũ = βx + γ, where β and γ can again be

uniquely determined by asking that ũ to satisfy (3.1.2). Indeed, we have

(−a− + b−)β + a−γ = c−, (a+ + b+)β + a+γ = c+, (3.1.4)

whose determinant is

DET = −a−a+ + b−a+ − a−a+ − b+a−.

Thus, (2.4.3) implies that b− � 0 and b+ � 0 which imply that DET < 0.

3.1 General setup 107

We now set u = U − ũ and f = F − (−εũ′′ + p(x)ũ′ + q(x)ũ). Then u satisfies the
equation

−εu′′ + p(x)u′ + q(x)u = f, in I = (−1, 1), (3.1.5)

with the homogeneous boundary conditions

a−u(−1) + b−u′(−1) = 0, a+u(1) + b+u
′(1) = 0. (3.1.6)

Next, we transform the above equation into a self-adjoint form which is more suitable
for error analysis and for developing efficient numerical schemes. To this end, mul-
tiplying the function (2.5.8)–(3.1.5) and noting −εa′(x) = a(x)p(x), we find that
(3.1.5) is equivalent to

−(a(x)u′(x))′ + b(x)u = g(x), (3.1.7)

where b(x) = a(x)q(x)/ε and g(x) = a(x)f(x)/ε.

(Weighted) Galerkin formulation

We shall look for approximate solutions of (3.17) and (3.16) in the space

XN = {v ∈ PN : a±v(±1) + b±v′(±1) = 0}. (3.1.8)

Note that we require the approximate solution satisfies the exact boundary condi-
tions. This is different from a usual finite element approach where only the Dirichlet
boundary conditions are enforced while the general boundary conditions (3.1.6) are
treated as natural boundary conditions. The main advantage of our approach is that
it leads to sparse matrices for problems with constant or polynomial coefficients (see
the next two sections), while the disadvantage is that a stronger regularity on the
solution is required for convergence.

Let ω(x) be a positive weight function and IN : C(−1, 1) → PN be the interpo-
lating operator associated with Gauss-Lobatto points. Then, the (weighted) spectral-
Galerkin method for (3.17) and (3.16) is to look for uN ∈ XN such that

−([IN (a(x)u ′
N)]′, vN)ω + (IN (b(x)uN), vN)ω = (INf, vN)ω ∀ vN ∈ XN ,

(3.1.9)

Remark 3.1.1 We note that (3.1.9) is actually a hybrid of a Galerkin and a pseu-
dospectral method since a pure Galerkin method would not use any interpolation
operator in (3.1.9). However, since, for example, the integral

∫
I fvN dx cannot be

computed exactly so f , and other products of two functions, are always replaced by

108 Chapter 3 Spectral-Galerkin Methods

their interpolants in practical computations. We shall take this approach throughout
this book and still call it a Galerkin method.

Given a set of basis functions {φk}k=0,1,··· ,N−2 for XN , we define

fk = (INf, φk)ω, f̄ = (f0, f1, · · · , fN−2)T;

uN (x) =
N−2∑
n=0

ûnφn(x), ū = (û0, û1, · · · , ûN−2)T,

skj = −([IN (a(x)φ′j)]
′, φk)ω, mkj = (IN (b(x)φj), φk)ω.

(3.1.10)

Hence, the stiffness and mass matrices are

S = (skj)0�k,j�N−2 , M = (mkj)0�k,j�N−2 . (3.1.11)

By setting uN (x) =
∑N−2

n=0 ûnφn(x) and vN (x) = φj(x), 0 � j � N−2, in (3.1.9),
we find that the equation (3.1.9) is equivalent to the linear system

(S +M)ū = f̄ . (3.1.12)

Unfortunately, for problems with variable coefficients a(x) and b(x), S and M are
usually full matrices, and it is very costly to compute them and to solve (3.1.12).
However, as we shall demonstrate in the next two sections, S and M will be sparse
(or have very special structures) for problems with constant coefficients. Then, in
Section 3.5, we shall show how to use preconditioned iterative approach to solve
(3.1.12) with variable coefficients.

Exercise 3.1

Problem 1 Let H1

 (I) and h± be defined as in (2.5.1) and (2.5.2). Then, the usual

variational formulation for (3.1.7) with (3.1.6) is: Find u ∈ H1

 (I) such that

(au′, v′) + a(1)h+u(1)v(1) − a(−1)h−u(−1)v(−1) + (bu, v)

=(g, v), ∀v ∈ H1

 (I). (3.1.13)

1. Show that a sufficiently smooth solution of (3.1.13) is a classical solution of
(3.1.7) with (3.2.2).

2. LetXN = PN ∩H1

 (I). Write down the (non-weighted) Galerkin approxima-

tion in XN for (3.1.13) and determine the corresponding linear system as in (3.1.12)

3.2 Legendre-Galerkin method 109

with (3.1.10) and (3.1.11).

3. Attempt to construct a weighted Galerkin approximation in XN to (3.1.13)
and explain the difficulties.

3.2 Legendre-Galerkin method

Basis functions, stiffness and mass matrices
Algorithm

To illustrate the essential features of the spectral-Galerkin methods, we shall consider,
here and in the next two sections, the model problem

−u′′ + αu = f, inI = (−1, 1), (3.2.1)

a±u(±1) + b±u′(±1) = 0. (3.2.2)

We assume that α is a non-negative constant. Extension to more general problems
(2.4.1) and (2.4.2) will be addressed in Section 3.5.

In this case, the spectral Galerkin method becomes: Find uN ∈ XN such that∫
I
u′
Nv

′
Ndx+ α

∫
I
uN vN dx =

∫
I
INf vN dx, ∀ vN ∈ XN , (3.2.3)

which we refer to as the Legendre-Galerkin method for (3.2.1) and (3.2.2).

Basis functions, stiffness and mass matrices

The actual linear system for (3.2.3) will depend on the basis functions ofXN . Just
as in the finite-element methods, neighboring points are used to form basis functions
so as to minimize their interactions in the physical space, neighboring orthogonal
polynomials should be used to form basis functions in a spectral-Galerkin method so
as to minimize their interactions in the frequency space. Therefore, we look for basis
functions of the form

φk(x) = Lk(x) + akLk+1(x) + bkLk+2(x). (3.2.4)

Lemma 3.2.1 For all k � 0, there exist unique {ak, bk} such that φk(x) of the form
(3.2.4) satisfies the boundary condition (3.2.2).

Proof Since Lk(±1) = (±1)k and L′
k(±1) = 1

2 (±1)k−1k(k + 1), the boundary

110 Chapter 3 Spectral-Galerkin Methods

condition (3.2.2) leads to the following system for {ak, bk}:

{a+ + b+(k + 1)(k + 2)/2}ak + {a+ + b+(k + 2)(k + 3)/2}bk
= − a+ − b+k(k + 1)/2,

− {a− − b−(k + 1)(k + 2)/2}ak + {a− − b−(k + 2)(k + 3)/2}bk
= − a− + b−k(k + 1)/2.

(3.2.5)

The determinant of the above system is

DETk = 2a+a− +a−b+(k+2)2 −a+b−(k+2)2 − b−b+(k+1)(k+2)2(k+3)/2.

We then derive from (2.4.3) that the four terms (including the signs before them) of
DETk are all positive for any k. Hence, {ak, bk} can be uniquely determined from
(3.2.5), namely:

ak = −
{(
a+ +

b+
2

(k + 2)(k + 3)
)(

− a− +
b−
2
k(k + 1)

)
−
(
a− − b−

2
(k + 2)(k + 3)

)(
− a+ − b+

2
k(k + 1)

)}/
DETk,

bk =
{(
a+ +

b+
2

(k + 1)(k + 2)
)(

− a− +
b−
2
k(k + 1)

)
+
(
a− − b−

2
(k + 1)(k + 2)

)(
− a+ − b+

2
k(k + 1)

)}/
DETk.

This completes the proof of this lemma.

Remark 3.2.1 We note in particular that

• if a± = 1 and b± = 0 (Dirichlet boundary conditions), we have ak = 0 and
bk = −1. Hence, we find from (1.4.12) that

φk(x) = Lk(x) − Lk+2(x) =
2k + 3

2(k + 1)
J−1,−1
k+2 (x).

• if a± = 0 and b± = 1 (Neumann boundary conditions), we have ak = 0 and
bk = −k(k + 1)/((k + 2)(k + 3)).

It is obvious that {φk(x)} are linearly independent. Therefore, by a dimension argu-
ment we have

XN = span{φk(x) : k = 0, 1, · · · , N − 2}.
Remark 3.2.2 In the very special case −uxx = f , ux(±1) = 0, with the condition

3.2 Legendre-Galerkin method 111∫ 1
−1 fdx = 0, since the solution is only determined up to a constant, we should use

XN = span{φk(x) : k = 1, · · · , N − 2}.

This remark applies also to the Chebyshev-Galerkin method presented below.

Lemma 3.2.2 The stiffness matrix S is a diagonal matrix with

skk = −(4k + 6)bk, k = 0, 1, 2, · · · . (3.2.6)

The mass matrix M is a symmetric penta-diagonal matrix whose nonzero elements
are

mjk = mkj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
2k + 1

+ a2
k

2
2k + 3

+ b2k
2

2k + 5
, j = k,

ak
2

2k + 3
+ ak+1bk

2
2k + 5

, j = k + 1,

bk
2

2k + 5
, j = k + 2.

(3.2.7)

Proof By integration by parts and taking into account the boundary condition (3.2.2),
we find that

sjk = −
∫
I
φ′′k(x)φj(x)dx

=
∫
I
φ′k(x)φ

′
j(x)dx+

a+

b+
φk(1)φj(1) − a−

b−
φk(−1)φj(−1)

= −
∫
I
φk(x)φ′′j (x)dx = skj,

(3.2.8)

where a+/b+ (resp. a−/b−) should be replaced by zero when b+ = 0 (resp. b− = 0).
It is then obvious from (3.2.8) and the definition of {φk(x)} that S is a diagonal
matrix. Thanks to (1.3.22e) and (1.3.19), we find

skk = −bk
∫
I
L′′
k+2(x)Lk(x)dx

= −bk
(
k +

1
2

)
(4k + 6)

∫
I
L2
kdx = −bk(4k + 6).

The nonzero entries for M can be easily obtained using (1.3.19).

112 Chapter 3 Spectral-Galerkin Methods

Remark 3.2.3 An immediate consequence is that {φk}N−2
k=0 form an orthogonal basis

in XN with respect to the inner product −(u′′N , vN). Furthermore, an orthonormal
basis of XN is given by {φ̃k := − 1

bk(4k+6)φk}N−2
k=0 .

Algorithm

Hence, by setting uN =
∑N−2

k=0 ũkφk, ū = (ũ0, ũ1, · · · , ũN−2)T, and

f̃k = (INf, ψk), f̄ = (f̃0, f̃1, · · · , f̃N−2)T, (3.2.9)

the linear system (3.2.3) becomes

(αM + S)ū = f̄ , (3.2.10)

whereM and S are (N−2)×(N−2) matrices with entries mij and sij , respectively.

In summary: given the values of f at LGL points {xi}0�i�N , we determine the
values of uN , solution of (3.2.3), at these LGL points as follows:

1. (Pre-computation) Compute LGL points, {ak, bk} and nonzero elements of S
and M ;

2. Evaluate the Legendre coefficients of INf(x) from {f(xi)}Ni=0 (backward Leg-
endre transform) and evaluate f̄ in (3.2.9);

3. Solve ū from (3.2.10);
4. Determine {ûj}Nj=0 such that

∑N−2
j=0 ũjφj(x) =

∑N
j=0 ûjLj(x);

5. Evaluate uN (xj) =
∑N

i=0 ûiLi(xj), j = 0, 1, · · · , N (forward Legendre
transform).

A pseudo-code outlines the above solution procedure is provided below:

CODE LG-PSN-1D
Input N, collocation points xk and f(xk) for k = 0, 1, · · · , N
Compute ak, bk, skk, mkj

%Backward Legendre transform
for k=0 to N-1 do

gk=
2k+1

N(N+1)

∑N
j=0 f(xj)

Lk(xj)
LN (xj)2

endfor
gN=

1
N+1

∑N
j=0 f(xj) 1

LN (xj)

%Evaluate f̄ from fk=(
∑N
j=0 gjLj(x), φk(x))

for k=0 to N-2 do
fk=gk/(k+ 1

2)+akgk+1/(k+ 3
2)+bkgk+2/(k+ 5

2)
endfor
Solve (S+αM)ū=f̄

3.2 Legendre-Galerkin method 113

%Evaluate gk from
∑N−2
j=0 ûjφj(x)=

∑N
j=0 gjLj(x)

g0=û0, g1=û1+a0û0

for k=2 to N-2 do
gk=ûk+ak−1ûk−1+bk−2ûk−2

endfor
gN−1=aN−2ûN−2+bN−3ûN−3, gN=bN−2ûN−2

%forward Legendre transform
for k=0 to N do

ûk=
∑N
j=0 gjLj(xk)

endfor
Output û0, û1, . . . , ûN

Although the solution of the linear system (3.1.12) can be found in O(N) flops,
the two discrete Legendre transforms in the above procedure cost about 2N2 flops.
To reduce the cost of the discrete transforms between physical and spectral spaces,
a natural choice is to use Chebyshev polynomials so that the discrete Chebyshev
transforms can be accelerated by using FFT.

Exercise 3.2

Problem 1 Continue with the Problem 1 in Section 3.1. Let a± = 0 and take
a(x) = b(x) ≡ 1. Construct a set of basis functions for XN and derive the corre-
sponding matrix system. Compare with the Legendre-Galerkin method in this sec-
tion.

Problem 2 Consider the problem

u− uxx = f ; u(−1) = 0, u(1) = 1,

with the exact solution:

u(x) =

{
0, x ∈ [−1, 0],

xγ , x ∈ (0, 1],

where γ = 4, 5, 6, and define

‖u− uN‖2
N,ω = 〈u− uN , u− uN 〉N,ω =

N∑
i=0

(u− uN)2(xi)ωi ,

where {xi} are the (Legendre or Chebyshev) Gauss-Lobatto points and {ωi} are the
associated weights.

Solve the above problem using the Legendre-Galerkin method. Take N = 2i

114 Chapter 3 Spectral-Galerkin Methods

with i = 4, 5, 6, 7, 8, 9. Plot log10 ‖u − uN‖N/ log10N for each γ. Explain your
results.

3.3 Chebyshev-Galerkin method

Basis function, stiffness and mass matrices
Algorithm

We set ω(x) = (1 − x2)−
1
2 and fN = INf which is the Chebyshev interpolation

polynomial of f relative to the Chebyshev-Gauss-Lobatto points. Then (3.1.9) be-
comes

−
∫
I
u′′N vN ωdx+ α

∫
I
uN vN ω(x)dx =

∫
I
INfvNω(x) dx, ∀ vN ∈ XN ,

(3.3.1)
which we refer to as the Chebyshev-Galerkin method for (3.2.1) and (3.2.2).

Basis functions, stiffness and mass matrices

As before, we would like to seek the basis functions of XN of the form

φk(x) = Tk(x) + akTk+1(x) + bkTk+2(x). (3.3.2)

Lemma 3.3.1 Let us define

ak = − {
(a+ + b+(k + 2)2)(−a− + b−k2)

−(a− − b−(k + 2)2)(−a+ − b+k
2)
}
/DETk,

bk =
{
(a+ + b+(k + 1)2)(−a− + b−k2)

+(a− − b−(k + 1)2)(−a+ − b+k
2)
}
/DETk,

(3.3.3)

with

DETk = 2a+a− + (k + 1)2(k + 2)2(a−b+ − a+b− − 2b−b+). (3.3.4)

Then

φk(x) = Tk(x) + akTk+1(x) + bkTk+2(x) (3.3.5)

satisfies the boundary condition (3.2.2).

Proof Since Tk(±1) = (±1)k and T ′
k(±1) = (±1)k−1k2, we find from (3.2.2) that

3.3 Chebyshev-Galerkin method 115

{ak, bk} must satisfy the system

(a+ + b+(k + 1)2)ak+(a+ + b+(k + 2)2)bk = −a+ − b+k
2,

−(a− − b−(k + 1)2)ak+(a− − b−(k + 2)2)bk = −a− + b−k2,
(3.3.6)

whose determinant DETk is given by (3.3.4). As in the Legendre case, the condition
(2.4.3) implies that DETk �= 0. Hence, {ak, bk} are uniquely determined by (3.3.3).

Therefore, we have by a dimension argument that XN = span{φk(x) : k = 0,
1, · · · , N−2}. One easily derives from (1.3.2) that the mass matrixM is a symmetric
positive definite penta-diagonal matrix whose nonzero elements are

mjk = mkj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ck
π

2
(1 + a2

k + b2k), j = k,

π

2
(ak + ak+1bk), j = k + 1,

π

2
bk, j = k + 2,

(3.3.7)

where c0 = 2 and ck = 1 for k � 1. However, the computation of skj is much more
involved. Below, we derive explicit expressions of skj for two special cases.

Lemma 3.3.2 For the case a± = 1 and b± = 0 (Dirichlet boundary conditions), we
have ak = 0, bk = −1 and

skj =

⎧⎪⎪⎨⎪⎪⎩
2π(k + 1)(k + 2), j = k

4π(k + 1), j = k + 2, k + 4, k + 6, · · ·
0, j < k or j + k odd

. (3.3.8)

For the case a± = 0 and b± = 1 (Neumann boundary conditions), we have ak = 0,
bk = −k2/(k + 2)2, and

skj =

⎧⎪⎪⎨⎪⎪⎩
2π(k + 1)k2/(k + 2), j = k,

4πj2(k + 1)/(k + 2)2, j = k + 2, k + 4, k + 6, · · · ,
0, j < k or j + k odd.

(3.3.9)

Proof One observes immediately that skj = − ∫I φ′′jφkω dx = 0 for j < k. Hence,
S is an upper triangular matrix. By the odd-even parity of the Chebyshev polynomi-
als, we have also skj = 0 for j + k odd.

116 Chapter 3 Spectral-Galerkin Methods

Owing to (1.3.5), we have

T ′′
k+2(x) =

1
ck

(k + 2)((k + 2)2 − k2)Tk(x)

+
1

ck−2
(k + 2)((k + 2)2 − (k − 2)2)Tk−2(x) + · · ·

(3.3.10)

We consider first the case a± = 1 and b± = 0. From (3.3.3), we find φk(x) =
Tk(x) − Tk+2(x). It follows immediately from (3.3.10) and (1.3.2) that

− (φ′′k(x), φk(x))ω = (T ′′
k+2(x), Tk(x))ω

=(k + 2)((k + 2)2 − k2)(Tk(x), Tk(x))ω = 2π(k + 1)(k + 2).
(3.3.11)

Setting φ′′j (x) =
∑j

n=0 dnTn(x), we derive, by a simple computation using (3.3.10),

dn =

{
4(j + 1)(j + 2)/cj , n = j,

{(j + 2)3 − j3 − 2n2}/cn, n < j.

Hence for j = k + 2, k + 4, · · · , we find

−(φ′′j (x), φk(x))ω = dk(Tk(x), Tk(x))ω − dk+2(Tk+2(x), Tk+2(x))ω
= 4π(k + 1).

The case a± = 0 and b± = 1 can be treated in a similar way.

Algorithm

The Chebyshev-Galerkin method for (3.2.1) and (3.2.2) involves the following
steps:

1. (Pre-computation) Compute {ak, bk} and nonzero elements of S andM ;

2. Evaluate the Chebyshev coefficients of INf(x) from {f(xi)}Ni=0 (back-
ward Chebyshev transform) and evaluate f̄ ;

3. Solve ū from (3.1.12);

4. Evaluate uN (xj) =
∑N−2

i=0 ûiφi(xj), j = 0, 1, · · · , N (forward Cheby-
shev transform).

Note that the forward and backward Chebyshev transforms can be performed by us-
ing the Fast Fourier Transform (FFT) in O(N log2N) operations. However, the cost
of Step 3 depends on the boundary conditions (3.2.2). For the special but important

3.3 Chebyshev-Galerkin method 117

cases described in the above Lemma, the special structure of S would allow us to
solve the system (3.1.12) in O(N) operations. More precisely, in (3.3.8) and (3.3.9),
the nonzero elements of S take the form skj = a(j)∗ b(k), hence, a special Gaussian
elimination procedure for (3.1.12) (cf. [139]) would only require O(N) flops instead
of O(N3) flops for a general full matrix.

Therefore, thanks to the FFT which can be used for the discrete Chebyshev
transforms, the computational complexity of the Chebyshev-Galerkin method for the
above cases is O(N logN), which is quasi-optimal (i.e., optimal up to a logarithmic
term).

The following pseudo-code outlines the solution procedure for (3.1.5) by the
Chebyshev-Galerkin method:

CODE CG-PSN-1D
Input N
Set up collocation points xk: x(j)=cos(πj/N), 0�j�N
Set up the coefficients c̃k: c̃(0)=2, c̃(N)=2, c̃(j)=1, 1�j
�N-1
Input f(xk)
Compute ak, bk, skj, mkj

%Backward Chebyshev transform
for k=0 to N do

gk=
2

c̃kN

∑N
j=0

1
c̃j
f(xj) cos (kjπ/N)

endfor
%Evaluate f̄ from fk=(

∑N
j=0 gjTj(x), φk(x))

f0=
π
2 (2g0+a0g1+b0g2)

for k=1 to N-2 do
fk=

π
2 (gk+akgk+1+bkgk+2)

endfor
Solve (S+αM)ū=f̄
%Evaluate gk from

∑N−2
j=0 ûjφj(x)=

∑N
j=0 gjTj(x)

g0=û0, g1=û1+a0û0

for k=2 to N-2 do
gk=ûk+ak−1ûk−1+bk−2ûk−2

endfor
gN−1=aN−2ûN−2+bN−3ûN−3, gN=bN−2ûN−2

%forward Chebyshev transform
for k=0 to N do

ûk=
∑N
j=0 gj cos (kjπ/N)

end
Output û0, û1, . . . , ûN

118 Chapter 3 Spectral-Galerkin Methods

Exercise 3.3

Problem 1 Repeat the Problem 2 in Section 3.2 with the Chebyshev-Galerkin
method.

3.4 Chebyshev-Legendre Galerkin method

The main advantage of using Chebyshev polynomials is that the discrete Chebyshev
transforms can be performed in O(N log2N) operations by using FFT. However, the
Chebyshev-Galerkin method leads to non-symmetric and full stiffness matrices. On
the other hand, the Legendre-Galerkin method leads to symmetric sparse matrices,
but the discrete Legendre transforms are expensive (O(N2) operations). In order to
take advantages and overcome disadvantages of both the Legendre and Chebyshev
polynomials, one may use the so called Chebyshev-Legendre Galerkin method:

α

∫
I
uN vN dx+

∫
I
u′N v

′
N dx =

∫
I
IcNfvN dx, (3.4.1)

where IcN denotes the interpolation operator relative to the Chebyshev-Gauss-Lobatto
points. So the only difference with (3.2.3) is that the Chebyshev interpolation oper-
ator IcN is used here instead of the Legendre interpolation operator in (3.2.3). Thus,
as in the Legendre-Galerkin case, (3.4.1) leads to the linear system (3.1.12) with ū,
S and M defined in (3.1.10) and (3.2.6) and (3.2.7), but with f̄ defined by

fk =
∫
I
IcNf φkdx, f̄ = (f0, f1, · · · , fN−2)T. (3.4.2)

The solution procedure of (3.4.1) is essentially the same as that of (3.2.3) except
that Chebyshev-Legendre transforms (between the value of a function at the CGL
points and the coefficients of its Legendre expansion) are needed instead of the Leg-
endre transforms. More precisely, given the values of f at the CGL points {xi =
cos(iπ/N)}0�i�N , we determine the values of uN (solution of (3.1.9)) at the CGL
points as follows:

1. (Pre-computation) Compute {ak, bk} and nonzero elements of S andM ;

2. Evaluate the Legendre coefficients of IcNf(x) from {f(xi)}Ni=0 (back-
ward Chebyshev-Legendre transform);

3. Evaluate f̄ from (3.4.2) and solve ū from (3.1.12);

4. Evaluate uN (xj) =
∑N−2

i=0 ûiφi(xj), j = 0, 1, · · · , N (“modified” for-
ward Chebyshev-Legendre transform).

3.4 Chebyshev-Legendre Galerkin method 119

The backward and forward Chebyshev-Legendre transforms can be efficiently imple-
mented. Indeed, each Chebyshev-Legendre transform can be split into two steps:

1. The transform between its values at Chebyshev-Gauss-Lobatto points and the
coefficients of its Chebyshev expansion. This can be done in O(N log2N) operations
by using FFT.

2. The transform between the coefficients of the Chebyshev expansion and that of
the Legendre expansion. Alpert and Rohklin[2] have developed an O(N)-algorithm
for this transform, given a prescribed precision.

Therefore, the total computational cost for (3.4.1) is of order O(N log2N). The
algorithm in [2] is based on the fast multipole method (cf. [65]). Hence, it is most
attractive for very large N . For moderate N , the algorithm described below appears
to be more competitive.

Let us write

p(x) =
N∑
i=0

fiTi(x) =
N∑
i=0

giLi(x),

f = (f0, f1, · · · , fN)T, g = (g0, g1, · · · , gN)T.

What we need is to transform between f and g. The relation between f and g can
be easily obtained by computing (p, Tj)ω and (p, Lj). In fact, let us denote

aij =
2
ciπ

(Ti, Lj)ω, bij =
(
i+

1
2

)
(Li, Tj),

where c0 = 2 and ci = 1 for i � 1, and

A = (aij)Ni,j=0, B = (bij)Ni,j=0.

Then we have

f = Ag, g = Bf , AB = BA = I. (3.4.3)

By the orthogonality and parity of the Chebyshev and Legendre polynomials, we
observe immediately that

aij = bij = 0, for i > j or i+ j odd.

Hence, both A and B only have about 1
4N

2 nonzero elements, and the cost of each

120 Chapter 3 Spectral-Galerkin Methods

transform between f and g is about 1
2N

2 operations. Consequently, the cost of each
Chebyshev-Legendre transform is about (52N log2N + 4N) + 1

2N
2 operations as

opposed to 2N2 operations for the Legendre transform. In pure operational counts,
the cost of the two transforms is about the same at N = 8, and the Chebyshev-
Legendre transform costs about one third of the Legendre transform atN = 128 (see
[141] for computational comparisons of the three methods).

The one-dimensional Chebyshev-Legendre transform can be done in about(
5
2
N log2N + 4N

)
+ min

(
1
2
N2, CN

)
∼ O(N log2N)

operations, where C is a large constant in Alpert and Rohklin’s algorithm[2]. Since
multi-dimensional transforms in the tensor product form are performed through a
sequence of one-dimensional transforms, the d-dimensional Chebyshev-Legendre
transform can be done in O(Nd log2N) operations and it has the same speedup as in
the 1-D case, when compared with the d-dimensional Legendre transform.

The nonzero elements of A and B can be easily determined by the recurrence
relations

Ti+1(x) = 2xTi(x) − Ti−1(x), i � 1,

Li+1(x) =
2i+ 1
i+ 1

xLi(x) − i

i+ 1
Li−1(x), i � 1.

(3.4.4)

Indeed, for j � i � 1,

ai,j+1 =(Ti, Lj+1)ω

=
(
Ti,

2j + 1
j + 1

xLj − j

j + 1
Lj−1

)
=

2j + 1
j + 1

(xTi, Lj)ω − j

j + 1
ai,j−1

=
2j + 1
2j + 2

(Ti+1 + Ti−1, Lj)ω − j

j + 1
ai,j−1

=
2j + 1
2j + 2

(ai+1,j + ai−1,j) − j

j + 1
ai,j−1.

Similarly, we have for j � i � 1,

3.5 Preconditioned iterative method 121

bi,j+1 =
2i+ 2
2i+ 1

bi+1,j +
2i

2i+ 1
bi−1,j − bi,j−1.

Thus, each nonzero element of A and B can be obtained by just a few operations.
Furthermore, the Chebyshev-Legendre transform (3.4.3) is extremely easy to imple-
ment, while the algorithm in [2] requires considerable programming effort.

Remark 3.4.1 Note that only for equations with constant or polynomial (and rational
polynomials in some special cases) coefficients, one can expect the matrices resulting
from a Galerkin method to be sparse or have special structure. In the more general
cases such as (3.1.5), the Galerkin matrices are usually full, so a direct application
of the Galerkin methods is not advisable. However, for many practical situations,
the Galerkin system for a suitable constant coefficient problems provides an optimal
preconditioner for solving problems with variable coefficients; see Section 3.5 for
further details.

Exercise 3.4

Problem 1 Implement the Chebyshev-Legendre transform and find the Legendre
expansion coefficients of T8(x).

Problem 2 Repeat the Problem 2 in Section 3.2 with the Chebyshev-Legendre-
Galerkin method.

3.5 Preconditioned iterative method

Preconditioning in frequency space
Condition number estimate —— a special case
Chebyshev case

We now consider the problem with variable coefficients:

Au := −(a(x)u′(x))′ + b(x)u = g(x), (3.5.1)

subject to the homogeneous boundary conditions:

a−u(−1) + b−u′(−1) = 0, a+u(1) + b+u
′(1) = 0, (3.5.2)

where a± and b± satisfy (2.4.3). We assume that there are three constants c1, c2 and
c3 such that

0 � c1 � a(x) � c2, 0 � b(x) � c3. (3.5.3)

122 Chapter 3 Spectral-Galerkin Methods

The (weighted) spectral-Galerkin method (3.1.9), including the Legendre- and
Chebyshev-Galerkin methods, leads to full stiffness and mass matrices. Hence, it
is preferable to solve (3.1.12) using a (preconditioned) iterative method.

Preconditioning in frequency space

Let us take, for example,

ā =
1
2
(max
x∈I

a(x) + min
x∈I

a(x)), b̄ =
1
2
(max
x∈I

b(x) + min
x∈I

b(x))

and define Bu := −āu′′ + b̄u. Let S and M be the stiffness and mass matrices
associated with A defined in (3.1.10) and (3.1.11), and S̄ and M̄ be the stiffness and
mass matrices associated with B, i.e., with a(x) = ā and b(x) = b̄ in (3.1.10) and
(3.1.11). Then, it can be argued that S + M and S̄ + M̄ are spectrally equivalent,
in the sense that the condition number of (S̄ + M̄)−1(S +M) is uniformly bounded
with respect to the discretization parameter N (see below for a proof of this fact
in the Legendre case). Hence, instead of applying a suitable iterative method, e.g,
conjugate gradient (CG) in the Legendre case and BiCGSTAB or CGS (cf. [134]; see
also Section 1.7) in the Chebyshev case, directly to (3.1.12), we can apply it to the
preconditioned system

(S̄ + M̄)−1(S +M)ū = (S̄ + M̄)−1f̄ . (3.5.4)

Thus, to apply a (preconditioned) iterative method for solving (3.5.4), we need to
perform the following two processes:

1. Given a vector ū, compute (S +M)ū.

2. Given a vector f̄ , find ū by solving (S̄ + M̄)ū = f̄ .

It has been shown in the previous two sections that for both Legendre or Cheby-
shev Galerkin approximations, the second task can be performed in O(N) flops.

We now describe how to perform the first task efficiently. Given ū = (u0, u1, · · · ,
uN−2)T, we set uN =

∑N−2
k=0 ũkφk. Hence,

(Sū)j = −([IN (au′N)]′, φj)ω, 0 � j � N − 2,

and they can be computed as follows (recall that φk = pk + akpk+1 + bkpk+2 where
{pk} are either the Legendre or Chebyshev polynomials):

3.5 Preconditioned iterative method 123

1. Use (1.3.5) or (1.3.22d) to determine ũ (1)
k from

u′
N (x) =

N−2∑
k=0

ũkφ
′
k(x) =

N∑
k=0

ũ
(1)
k pk(x);

2. (Forward discrete transform.) Compute

u′
N (xj) =

N∑
k=0

ũ
(1)
k pk(xj), j = 0, 1, · · · , N ;

3. (Backward discrete transform.) Determine {w̃k} from

IN (au′
N)(xj) =

N∑
k=0

w̃kpk(xj), j = 0, 1, · · · , N ;

4. Use (1.3.5) or (1.3.22d) to determine {w̃ (1)
k } from

[IN (au′
N)]′(x) =

N∑
k=0

w̃kp
′
k(x) =

N∑
k=0

w̃
(1)
k pk(x);

5. For j = 0, 1, · · · , N − 2, compute

−([IN (au′
N)]′, φj)ω = −

N∑
k=0

w̃
(1)
k (pk, φj)ω.

Note that the main cost in the above procedure is the two discrete transforms in Steps
2 and 3. The cost for Steps 1, 4 and 5 are all O(N) flops.

Similarly, (Mū)j = (IN (buN), φj)ω can be computed as follows:

1. Compute

uN (xj) =
N∑
k=0

ũkφk(xj), j = 0, 1, · · · , N ;

2. Determine {w̃k} from

IN (buN)(xj) =
N∑
k=0

w̃kpk(xj), j = 0, 1, · · · , N ;

3. Compute
(IN (buN), φj)ω, j = 0, 1, · · · , N − 2.

124 Chapter 3 Spectral-Galerkin Methods

Hence, if b(x) is not a constant, two additional discrete transforms are needed.

In summary, the total cost for evaluating (S +M)ū is dominated by four (only
two if b(x) is a constant) discrete transforms, and is O(N2) (resp. O(N logN))
flops in the Legendre (resp. the Chebyshev) case. Since the condition number of
(S̄+ M̄)−1(S +M) is uniformly bounded, so is the number of iterations for solving
(3.5.4). Hence, the total cost of solving (3.1.12) will be O(N2) (and O(N logN))
flops in the Legendre (and the Chebyshev) case, respectively.

Remark 3.5.1 In the case of Dirichlet boundary conditions, we have φk(x) =
Lk(x) − Lk+2(x) which, together with (1.3.22a), implies that φ′k(x) = −(2k +
3)Lk+1(x). Therefore, from u =

∑N−2
k=0 ũkφk(x), we can easily obtain the deriva-

tive

u′ = −
N−2∑
k=0

(2k + 3)ũkLk+1(x)

in the frequency space.

Condition number estimate —— a special case

We now show that the condition number of (S̄ + M̄)−1(S + M) is uniformly
bounded in the Legendre case with the Dirichlet boundary condition. The proof for
the general case is similar and left as an exercise.

To simplify the proof, we shall replace (IN (buN), φj)ω in the Legendre case
by the symmetric form (buN , φj)N . Due to the exactness of the Legendre-Gauss-
Lobatto quadrature, only the term with j = N is slightly changed.

We first remark that −([IN (au′
N)]′, vN) = (au′

N , v
′
N)N . Hence, the matrices S

and M (with the above modification) are symmetric. With the notations in (3.1.10),
we find

〈(S +M)ū, ū〉l2 = (au′N , v
′
N)N + (buN , uN)N

� 2ā(u′
N , v

′
N)N + 2b̄(uN , uN)N = 2〈(S̄ + M̄)ū, ū〉l2 .

(3.5.5)

By the Poincaré inequality, there exists c4 > 0 such that

〈(S +M)ū, ū〉l2 � c4
(
ā(u′N , v

′
N)N + 2b̄(uN , uN)N

)
= c4〈(S̄ + M̄)ū, ū〉l2 .

(3.5.6)

Since (S̄+M̄)−1(S+M) is symmetric with respect to the inner product 〈ū, v̄〉S̄+M̄ :
= 〈(S̄ + M̄)ū, v̄〉l2 , we derive immediately that

3.5 Preconditioned iterative method 125

cond((S̄ + M̄)−1(S +M)) � 2
c4
. (3.5.7)

In other words, (S̄ + M̄)−1 is an optimal preconditioner for B, and the convergence
rate of the conjugate gradient method applied to (3.5.4) will be independent of N .

Remark 3.5.2 We make three relevant remarks:

• We recall from Section 3.2 that (S̄+ M̄) can be efficiently inverted so the main
cost is the evaluation of (S +M)ū;

• Due to the Poincaré inequality, (3.5.7) holds if we replace S̄ + M̄ by S̄. In this
case, inversion of S̄ is negligible since S̄ is diagonal;

• Suppose we use the normalized basis function

φ̃k :=
√

−bk(4k + 6)
−1
φk with (φ̃′j , φ̃

′
i) = δij.

In this case, no preconditioner is needed since cond(S + M) is uniformly bounded
under this basis. However, if b̄ is relatively large with respect to ā, it is more efficient
to use S̄ + M̄ as a preconditioner.

Chebyshev case

In the Chebyshev case, an appropriate preconditioner for the inner product
bN,ω(uN , vN) in XN × XN is (u′N , ω

−1(vNω)′)ω for which the associated linear
system can be solved in O(N) flops as shown in Section 3.2. Unfortunately, we do
not have an estimate similar to (3.5.7) since no coercivity result for bN,ω(uN , vN) is
available to the authors’ knowledge. However, ample numerical results indicate that
the convergence rate of a conjugate gradient type method for non-symmetric systems
such as Conjugate Gradient Square (CGS) or BICGSTAB is similar to that in the
Legendre case.

The advantage of using the Chebyshev polynomials is of course that the evalua-
tion of Bū can be accelerated by FFT.

The preconditioning in the frequency space will be less effective if the coefficients
a(x) and b(x) have large variations, since the variation of the coefficients is not taken
into account in the construction of the preconditioner.

Exercise 3.5

Problem 1 Consider the problem:

x2u− (exux)x = f

126 Chapter 3 Spectral-Galerkin Methods

(where f is determined by the exact solution in Problem 2 of Section 3.2) with the
following two sets of boundary conditions

u(−1) = 0, u(1) = 1,

and

u(−1) − u′(−1) = 0, u(1) = 1.

For each set of the boundary conditions, solve the above equation using the
Chebyshev-collocation method (in the strong form). Take N = 2i with i = 4, 5, 6, 7,
8, 9. Plot log10 ‖u− uN‖N/ log10N for each γ. Explain your results.

Problem 2 Consider the problem:

−(a(x)ux)x = f, u(−1) − ux(−1) = 0, u(1) + ux(1) = 0,

with a(x) = x2 + 10k .

• (a) Construct the matrix BN of the Legendre-collocation method in the weak
form and the matrix AN of the piecewise linear finite element method.

• (b) For each k = 0, 1, 2, list the ratio of the maximum eigenvalue and minimum
eigenvalue for A−1

N BN as well as its condition number with N = 16, 32, 64, 128.

• (c) Consider the exact solution u(x) = sin 3πx + 3πx/2. Use the conjugate
gradient iterative method with and without preconditioning to solve the linear sys-
tem associated with the Legendre-collocation method in the weak form. For each
k = 0, 1, 2 and N = 16, 32, 64, 128, list the iteration numbers needed (for 10-digit
accuracy) and the maximum errors at the Gauss-Lobatto points, with and without
preconditioning.

3.6 Spectral-Galerkin methods for higher-order equations

Fourth-order equation
Third-order equation

In this section we shall consider spectral-Galerkin methods for two typical higher-
order equations with constant coefficients. Problems with variable coefficients can
be treated by a preconditioned iterative method, similarly to second-order equations.

3.6 Spectral-Galerkin methods for higher-order equations 127

Fourth-order equation

Let us consider

u(4) − αu′′ + βu = f, α, β > 0, x ∈ I,

u(±1) = u′(±1) = 0,
(3.6.1)

where α, β are two non-negative constants. This equation can serve as a model
for the clamped rod problem. A semi-implicit time discretization of the important
Kuramoto-Sivashinsky equation modeling a flame propagation is also of this form.

The variational formulation for (3.6.1) is: Find u ∈ H2
0 (I) such that

a(u, v) := (u′′, v′′) + α(u′, v′) + β(u, v) = (f, v), ∀v ∈ H2
0 (I). (3.6.2)

Let us define

VN := PN ∩H2
0 (I) = {v ∈ PN : v(±1) = vx(±1) = 0}. (3.6.3)

Then, the spectral-Galerkin approximation to (3.6.2) is to find uN ∈ VN such that

(u′′N , v
′′
N) + α(u′N , v

′
N) + β(uN , vN) = (INf, vN), ∀vN ∈ VN , (3.6.4)

where IN is the interpolation operator based on the Legendre-Gauss-Lobatto points.

We next give a brief description of the numerical implementation of the above
scheme. As we did before, we choose a compact combination of Legendre polyno-
mials{φk}N−4

k=0 as basis function for VN , i.e.,

φk(x) := dk

(
Lk(x) − 2(2k + 5)

2k + 7
Lk+2(x) +

2k + 3
2k + 7

Lk+4

)
, (3.6.5)

with the normalization factor dk = 1/
√

2(2k + 3)2(2k + 5). One can verify from
(1.3.22c) that φk(±1) = φ′k(±1) = 0. Therefore,

VN = span {φ0, φ1, · · · , φN−4} .

By using the recurrence relation and the orthogonality of the Legendre polynomials,
we can prove the following results.

Lemma 3.6.1 We have
akj = (φ′′j , φ

′′
k) = δkj, (3.6.6)

and the only non-zero elements of bkj = (φj , φk), ckj = (φ′j , φ
′
k) are:

bkk = d2
k(ek + h2

kek+2 + g2
kek+4),

128 Chapter 3 Spectral-Galerkin Methods

bk,k+2 = bk+2,k = dkdk+2(hkek+2 + gkhk+2ek+4),

bk,k+4 = bk+4,k = dkdk+4gkek+4,

ckk = −2(2k + 3)d2
khk,

ck,k+2 = ck+2,k = −2(2k + 3)dkdk+2,

(3.6.7)

where

ek =
2

2k + 1
, gk =

2k + 3
2k + 7

, hk = −(1 + gk).

Hence, setting

B = (bkj)0�k,j�N−4, C = (ckj)0�k,j�N−4,

fk = (INf, φk), f̄ = (f0, f1, · · · , fN−4)T,

uN =
N−4∑
n=0

ũnφn(x), ū = (ũ0, ũ1, · · · , ũN−4)T,

(3.6.8)

the system (3.6.4) is equivalent to the matrix equation

(αB + βC + I)ū = f̄ , (3.6.9)

where the non-zero entries of B and C are given in (3.6.7).

It is obvious that B and C are symmetric positive definite matrices. Furthermore,
B can be split into two penta-diagonal sub-matrices, and C can be split into two
tridiagonal sub-matrices. Hence, the system can be efficiently solved. In particular,
there is no equation to solve when α = β = 0.

In summary: given the values of f at LGL points {xi}0�i�N , we determine the
values of uN , solution of (3.6.4), at these LGL points as follows:

1. (Pre-computation) Compute LGL points, and nonzero elements of B
and C;

2. Evaluate the Legendre coefficients of INf(x) from {f(xi)}Ni=0 (back-
ward Legendre transform)and evaluate f̄ in (3.6.8);

3. Solve ū from (3.6.9);

4. Determine {ûj}Nj=0 such that
∑N−4

j=0 ũjφj(x) =
∑N

j=0 ûjLj(x);

5. Evaluate uN (xj) =
∑N

i=0 ûiφi(xj), j = 0, 1, · · · , N (forward Legen-
dre transform).

3.6 Spectral-Galerkin methods for higher-order equations 129

Since this process is very similar to that of the Legendre-Galerkin scheme (3.2.3),
a pseudo-code can be easily assembled by modifying the pseudo-code LG-PSN-1D.

Third-order equation

Consider the third-order equation

αu− βux − γuxx + uxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(1) = 0,
(3.6.10)

where α, β, γ are given constants. Without loss of generality, we only consider ho-
mogeneous boundary conditions, for non-homogeneous boundary conditions u(−1) =
c1, u(1) = c2 and ux(1) = c3 can be easily handled by considering v = u−û, where
û is the unique quadratic polynomial satisfying the non-homogeneous boundary con-
ditions.

Since the leading third-order differential operator is not symmetric, it is natural
to use a Petrov-Galerkin method, in which the trial and test functions are chosen
differently. In this context, we define the spaces

VN = {u ∈ PN : u(±1) = ux(1) = 0},
V ∗
N = {u ∈ PN : u(±1) = ux(−1) = 0},

(3.6.11)

and consider the following Legendre dual-Petrov-Galerkin (LDPG) approximation
for (3.6.10): Find uN ∈ VN such that

α(uN , vN) − β(∂xuN , vN) + γ(∂xuN , ∂xvN) + (∂xuN , ∂2
xvN)

= (INf, vN), ∀vN ∈ V ∗
N .

(3.6.12)

The particular choice of V ∗
N allows us to integrate by parts freely, without introduc-

ing non-zero boundary terms. This is the key for the efficiency of the numerical
algorithm.

Let us first take a look at the matrix form of the system (3.6.12). We choose the
basis functions:

φn(x) = Ln(x) − 2n+ 3
2n+ 5

Ln+1(x) − Ln+2(x) +
2n+ 3
2n+ 5

Ln+3(x);

ψn(x) = Ln(x) +
2n+ 3
2n+ 5

Ln+1(x) − Ln+2(x) − 2n+ 3
2n+ 5

Ln+3(x),
(3.6.13)

130 Chapter 3 Spectral-Galerkin Methods

which satisfy φn(±1) = ψn(±1) = φ′n(1) = ψ′
n(−1) = 0. For N � 3, we have

VN = span{φ0, φ1, · · · , φN−3};

V ∗
N = span{ψ0, ψ1, · · · , ψN−3}.

(3.6.14)

Hence, by setting

uN =
N−3∑
k=0

ũkφk, ū = (ũ0, ũ1, · · · , ũN−3)T,

f̃k = (INf, ψk), f̄ = (f̃0, f̃1, · · · , f̃N−3)T,

mij = (φj , ψi), pij = −(φ′j, ψi), qij = (φ′j , ψ
′
i), sij = (φ′j , ψ

′′
i),

(3.6.15)

the linear system (3.6.12) becomes

(αM + βP + γQ+ S)ū = f̄ , (3.6.16)

where M, P, Q and S are (N − 3)× (N − 3) matrices with entries mij , pij , qij and
sij , respectively.

Owing to the orthogonality of the Legendre polynomials, we have mij = 0 for
|i− j| > 3. Therefore, M is a seven-diagonal matrix. We note that the homogeneous
“dual” boundary conditions satisfied by φj and ψi allow us to integrate by parts freely,
without introducing additional boundary terms. In other words, we have

sij = (φ′j , ψ
′′
i) = (φ′′′j , ψi) = −(φj , ψ′′′

i).

Because of the compact form of φj and ψi, we have sij = 0 for i �= j. So S is
a diagonal matrix. Similarly, we see that P is a penta-diagonal matrix and Q is a
tridiagonal matrix. It is an easy matter to show that

sii = 2(2i + 3)2. (3.6.17)

The non-zero elements of M, P, Q can be easily determined from the properties of
Legendre polynomials. Hence, the linear system (3.6.16) can be readily formed and
inverted.

In summary: given the values of f at LGL points {xi}0�i�N , we determine the
values of uN , solution of (3.6.12) at these LGL points as follows:

3.7 Error estimates 131

1. (Pre-computation) Compute the LGL points, and the nonzero elements
of M , P , Q and S;

2. Evaluate the Legendre coefficients of INf(x) from {f(xi)}Ni=0 (back-
ward Legendre transform) and evaluate f̄ in (3.6.15);

3. Solve ū from (3.6.16);

4. Determine {ûj}Nj=0 such that
∑N−3

j=0 ũjφj(x) =
∑N

j=0 ûjLj(x);

5. Evaluate uN (xj) =
∑N

i=0 ûiφi(xj), j = 0, 1, · · · , N (forward Legen-
dre transform).

Once again, this process is very similar to that of the Legendre-Galerkin scheme
(3.2.3), so a pseudo-code can be easily assembled by modifying the pseudo-code
LG-PSN-1D.

One can verify that the basis functions (3.6.13) are in fact generalized Jacobi
polynomials:

φn(x) =
2n + 3

2(n + 1)
j−2,−1
n+3 (x); (3.6.18a)

ψn(x) =
2n+ 3

2(n + 1)
j−1,−2
n+3 (x). (3.6.18b)

Exercise 3.6

Problem 1 Solve the equation (3.6.1) using the Legendre-Galerkin method (3.6.4).
Take α = β = 1 and the exact solution u(x) = sin2(4πx).

Problem 2 Design a Chebyshev-Galerkin method for (3.6.1).

Problem 3 Determine the non-zero entries of M , P and Q in (3.6.15).

Problem 4 Design a dual-Petrov Legendre Galerkin method for the first-order equa-
tion

αu+ ux = f, x ∈ (−1, 1); u(−1) = 0. (3.6.19)

3.7 Error estimates

Legendre-Galerkin method with Dirichlet boundary conditions
Chebyshev-collocation method with Dirichlet boundary conditions
Legendre-Galerkin method for a fourth-order equation
Dual-Petrov Legendre-Galerkin method for a third-order equation

132 Chapter 3 Spectral-Galerkin Methods

In this section, we present error analysis for four typical cases of the spectral-Galerkin
methods presented in previous sections. The error analysis for other cases may be
derived in a similar manner. We refer to the books[11, 29, 146] for more details.

The error analysis below relies essentially on the optimal error estimates for var-
ious projection/interpolation operators presented in Section 1.8.

Legendre-Galerkin method with Dirichlet boundary conditions

We consider the Legendre-Galerkin approximation of (3.2.1) with homogeneous
Dirichlet boundary conditions.

Theorem 3.7.1 Let u and uN be respectively the solutions of (3.2.1) and (3.2.3)
with homogeneous Dirichlet boundary conditions. Then, for u ∈ Hmω−1,−1,∗(I) with

m � 1 and f ∈ Hk
ω0,0,∗(I) with k � 1, we have

‖∂x(u− uN)‖ � N1−m‖∂mx u‖ωm−1,m−1 +N−k‖∂kxf‖ωk,k ; (3.7.1)

‖u− uN‖ � N−m‖∂mx u‖ωm−1,m−1 +N−k‖∂kxf‖ωk,k . (3.7.2)

Proof In this case, we have

XN = {u ∈ PN : u(±1) = 0}.
We observe from the definition of πN,ω−1,−1 in (1.8.19) that for u ∈ H1

0 (I) ∩
L2
ω−1,−1(I) we have

(∂x(u− πN,ω−1,−1u), ∂xvN) = −(u− πN,ω−1,−1u, ∂2
xvN)

= − (u− πN,ω−1,−1u, ω1,1∂2
xvN)ω−1,−1 = 0, ∀vN ∈ XN .

(3.7.3)

In other words, πN,ω−1,−1 is also the orthogonal projector from H1
0 (I) to XN asso-

ciated with the bilinear form (∂x·, ∂x·). Hence, we derive from (3.2.1) and (3.2.3)
that

α(πN,ω−1,−1u− uN , vN) + (∂x(πN,ω−1,−1u− uN), ∂xvN)

=(f − INf, vN) + α(πN,ω−1,−1u− u, vN), ∀vN ∈ XN .
(3.7.4)

Taking vN = πN,ω−1,−1u− uN in the above, we find

α‖πN,ω−1,−1u− uN‖2 + ‖∂x(πN,ω−1,−1u− uN)‖2

=(f − INf, πN,ω−1,−1u− uN) + α(πN,ω−1,−1u− u, πN,ω−1,−1u− uN).
(3.7.5)

3.7 Error estimates 133

Using the Cauchy-Schwarz inequality and Poincaré inequality, we get

α‖πN,ω−1,−1u− uN‖2 +
1
2
‖∂x(πN,ω−1,−1u− uN)‖2

�‖f − INf‖2 + ‖πN,ω−1,−1u− u‖2.
(3.7.6)

Then (3.7.1) and (3.7.2) in the case of α > 0, can be derived from the triangle
inequality and Theorems 1.8.2 and 1.8.4. If α = 0, we need to use a standard duality
argument which we now describe.

First of all, we derive from (3.2.1) and (3.2.3) with α = 0 that

((u− uN)x, (vN)x) = (f − INf, vN), ∀vN ∈ XN . (3.7.7)

Now, consider the dual problem

−wxx = u− uN , w(±1) = 0. (3.7.8)

Taking the inner product of the above with u − uN , thanks to (3.7.7), (3.7.3) and
Theorem 1.8.2, we obtain

‖u− uN‖2 = (wx, (u− uN)x) = ((w − πN,ω−1,−1w)x, (u− uN)x)

+ (f − INf, πN,ω−1,−1w)

� ‖(w − πN,ω−1,−1w)x‖‖(u− uN)x‖ + ‖f − INf‖‖πN,ω−1,−1w‖
� N−1‖wxx‖‖(u − uN)x‖ + ‖f − INf‖(‖w − piN,ω−1,−1w‖ + ‖w‖)
= ‖u− uN‖(N−1‖(u− uN)x‖ + ‖f − INf‖),

which implies that ‖u − uN‖ � N−1‖(u − uN)x‖ + ‖f − INf‖. Then (3.7.2) is a
direct consequence of the above and (3.7.1).

Chebyshev-collocation method with Dirichlet boundary conditions

To simplify the notation, we shall use ω to denote the Chebyshev weight
(1 − x2)−

1
2 in this part of the presentation. An essential element in the analysis

of the Chebyshev method for the second-order equations with Dirichlet boundary
conditions is to show that the bilinear form

aω(u, v) := (ux, ω−1(vω)x)ω =
∫ 1

−1
ux(vω)xdx (3.7.9)

is continuous and coercive in H1
0,ω(I)×H1

0,ω(I). To this end, we first need to estab-

134 Chapter 3 Spectral-Galerkin Methods

lish the following inequality of Hardy type:

Lemma 3.7.1 For any u ∈ H1
0,ω(I) with ω = (1 − x2)−

1
2 , we have∫ 1

−1
u2(1 + x2)ω5dx �

∫ 1

−1
u2
xωdx. (3.7.10)

Proof For any u ∈ H1
0,ω(I), we find by integration by parts that

2
∫ 1

−1
uxuxω

3dx =
∫ 1

−1
(u2)xxω3dx

= −
∫ 1

−1
u2(xω3)xdx = −

∫ 1

−1
u2(1 + 2x2)ω5dx.

(3.7.11)

Hence,

0 �
∫ 1

−1
(ux + uxω2)2ωdx

=
∫ 1

−1
u2
xωdx+

∫ 1

−1
u2x2ω5dx+ 2

∫ 1

−1
uxuxω

3dx

=
∫ 1

−1
u2
xωdx−

∫ 1

−1
u2(1 + x2)ω5dx.

This completes the proof of this lemma.

Lemma 3.7.2 We have

aω(u, v) � 2‖ux‖ω‖vx‖ω, ∀u, v ∈ H1
0,ω(I),

aω(u, u) � 1
4
‖ux‖2

ω, ∀u ∈ H1
0,ω(I).

Proof Using the Cauchy-Schwarz inequality, the identity ωx = xω3 and (3.7.10), we
have, for all u, v ∈ H1

0,ω(I),

aω(u, v) =
∫ 1

−1
ux(vx + vxω2)ωdx

�‖ux‖ω‖vx‖ω + ‖ux‖ω
(∫ 1

−1
v2x2ω5dx

) 1
2

� 2‖ux‖ω‖vx‖ω.

3.7 Error estimates 135

On the other hand, due to (3.7.11) and (3.7.10), we find

aω(u, u) =
∫ 1

−1
u2
xωdx+

∫ 1

−1
uuxxω

3dx

= ‖ux‖2
ω − 1

2

∫ 1

−1
u2(1 + 2x2)ω5dx

� ‖ux‖2
ω − 3

4

∫ 1

−1
u2(1 + x2)ω5dx � 1

4
‖ux‖2

ω, ∀u ∈ H1
0,ω(I).

(3.7.12)

The proof of this lemma is complete.

Thanks to the above lemma, we can define a new orthogonal projector from H1
0,ω

to P 0
N based on the bilinear form aω(·, ·) (note the difference with π1,0

N,ω : H1
0,ω →

XN = {v ∈ PN : v(±1) = 0} defined in Section 1.8).

Definition 3.7.1 π̃1,0
N,ω : H1

0,ω → XN is defined by

aω(u− π̃1,0
N,ωu, vN) =

∫ 1

−1
(u− π̃1,0

N,ωu)
′(vNω)′dx = 0, for vN ∈ XN . (3.7.13)

Similar to Theorem 1.8.3, we have the following results:

Lemma 3.7.3 For any u ∈ H1
0,ω(I) ∩Hm

ω− 3
2 ,− 3

2 ,∗
, we have

‖u− π̃1,0
N,ωu‖ν,ω � Nν−m‖∂mx u‖ωm− 3

2 ,m− 3
2
, ν = 0, 1. (3.7.14)

Proof Using the definition (3.7.13) and Lemma 3.7.2, we find

‖u− π̃1,0
N,ωu‖2

1,ω � |u− π̃1,0
N,ωu|21,ω � aω(u− π̃1,0

N,ωu, u− π̃1,0
N,ωu)

= aω(u− π̃1,0
N,ωu, u− π1,0

N,ωu)

� 2|u− π̃1,0
N,ωu|1,ω|u− π1,0

N,ωu|1,ω.

We then derive (3.7.14) with ν = 1 from above and Theorem 1.8.3. To prove the
result with ν = 0, we use again the standard duality argument by considering the
dual problem

−φxx = u− π̃1,0
N,ωu, φ(±1) = 0. (3.7.15)

136 Chapter 3 Spectral-Galerkin Methods

Its variational formulation is: find φ ∈ H1
0,ω(I) such that

(φ′, (ψω)′) = (u− π̃1,0
N,ωu, ψω), ∀ψ ∈ H1

0,ω(I). (3.7.16)

According to Lemma 3.7.2, there exists a unique solution φ ∈ H1
0,ω(I) for the above

problem, and furthermore, we derive from (3.7.15) that φ ∈ H2
ω(I) and

‖φ‖2,ω � ‖u− π̃1,0
N,ωu‖ω. (3.7.17)

Now we take ψ = u− π̃1,0
N,ωu in (3.7.16). Hence, by Lemma 3.7.2, (3.7.17), (3.7.13)

and (3.7.14) with ν = 1,

(u− π̃1,0
N,ωu, u− π̃1,0

N,ωu)ω =
∫ 1

−1
φx((u− π̃1,0

N,ωu)ω)xdx

=
∫ 1

−1
(φ− π̃1,0

N,ωφ)x((u− π̃1,0
N,ωu)ω)xdx � 2|φ− π̃1,0

N,ωφ|1,ω|u− π̃1,0
N,ωu|1,ω

� N−1‖φ‖2,ω|u− π̃1,0
N,ωu|1,ω � N−1‖u− π̃1,0

N,ωu‖ω|u− π̃1,0
N,ωu|1,ω.

The above and (3.7.14) with ν = 1 conclude the proof.

We are now in the position to establish an error estimate of the Chebyshev-
collocation method for (3.2.1) which reads:

αuN (xj) − u′′N (xj) = f(xj), j = 1, · · · , N − 1,

uN (x0) = uN (xN) = 0,
(3.7.18)

where xj = cos(jπ/N). To this end, we need to rewrite (3.7.18) in a suitable vari-
ational formulation by using the discrete inner product (1.2.23) associated with the
Chebyshev-Gauss-Lobatto quadrature (1.2.22). One verifies easily that for vN ∈
XN , we have ω−1(vNω)′ ∈ PN−1. Therefore, thanks to (1.2.22), we find that

(u′
N , ω

−1(vNω)′)N,ω = (u′N , ω
−1(vNω)′)ω = −(u′′N , vN)ω = −(u′′N , vN)N,ω.

(3.7.19)
Let {hk(x)}Nk=0 be the Lagrange interpolation polynomials associated with {xk}Nk=0

and take the discrete inner product of (3.7.18) with hk(x) for k = 1, · · · , N − 1.
Thanks to (3.7.19) and the fact that

XN = span{h1(x), h2(x), · · · , hN−1(x)},
we find that the solution uN of (3.7.18) verifies:

α(uN , vN)N,ω + aω(uN , vN) = (IN,ωf, vN)N,ω, ∀vN ∈ XN . (3.7.20)

3.7 Error estimates 137

Theorem 3.7.2 Let u and uN be respectively the solutions of (3.2.1) and (3.7.20).
Then, for u ∈ Hm

ω− 3
2 ,− 3

2 ,∗
(I) with m � 1 and f ∈ Hk

ω− 1
2 ,− 1

2 ,∗
(I) with k � 1, we

have

‖u− uN‖1,ω � N1−m‖∂mx u‖ωm−3/2,m−3/2 +N−k‖∂kxf‖ωk− 1
2 ,k−1

2
, m, k � 1,

(3.7.21)

‖u− uN‖ω � N−m‖∂mx u‖ωm−1/2,m−1/2 +N−k‖∂kxf‖ωk− 1
2 ,k− 1

2
, m, k � 1.

(3.7.22)

Proof Using (3.2.1) and (3.7.13) we obtain

α(u, vN)ω + aω(π̃1,0
N,ωu, vN) = (f, vN)ω, ∀vN ∈ XN .

Hence, for all vN ∈ XN ,

α(π̃1,0
N,ωu− uN , vN)N,ω + aω(π̃1,0

N,ωu− uN , vN)

=(f, vN)ω − (IN,ωf, v)N,ω + α(π̃1,0
N,ωu, vN)N,ω − α(u, vN)ω

=(f − πN,ωf, vN)ω − (IN,ωf − πN,ωf, v)N,ω

+ α(π̃1,0
N,ωu− πN,ωu, vN)N,ω − α(u− πN,ωu, vN)ω,

(3.7.23)

where the operator πN,ω = π
N,ω− 1

2 ,− 1
2

is defined in (1.8.6). Hence, taking vN =

π̃1,0
N,ωu − uN in the above formula, we find, by the Cauchy-Schwarz inequality and

Lemma 3.7.2,

α‖π̃1,0
N,ωu− uN‖2

ω + |π̃1,0
N,ωu− uN |21,ω

�‖f − πN,ωf‖2
ω + ‖f − IN,ωf‖2

ω + α‖u− π̃1,0
N,ωu‖2

ω + α‖u− πN,ωu‖2
ω.

(3.7.24)

It follows from Theorems 1.8.1, 1.8.4 and (3.7.14) that

‖u− uN‖1,ω � ‖u− π̃1,0
N,ωu‖1,ω + ‖π̃1,0

N,ωu− uN‖1,ω

� N1−m‖∂mx u‖ωm−3/2,m−3/2 +N−k‖∂kxf‖ωk−1
2 ,k− 1

2
.

For α > 0, we can also derive (3.7.22) directly from (3.7.24), while for α = 0, a
duality argument is needed. The details are left as an exercise.

138 Chapter 3 Spectral-Galerkin Methods

Legendre-Galerkin method for a fourth-order equation

We now consider the error estimate for (3.6.4). Let VN be defined in (3.6.3).
Before we proceed with the error estimates, it is important to make the following
observation:

(∂2
x(πN,ω−2,−2u− u), ∂2

xvN) = (πN,ω−2,−2u− u, ∂4
xvN)

=(πN,ω−2,−2u− u, ω2,2∂4
xvN)ω−2,−2 = 0, ∀vN ∈ VN .

(3.7.25)

Hence, πN,ω−2,−2 is also the orthogonal projector from H2
0 (I) to VN .

It is also important to note that the basis functions given in (3.6.5) are in fact the
generalized Jacobi polynomials with index (−2,−2). More precisely, we find from
(1.4.12) that φk defined in (3.6.5) is proportional to the generalized Jacobi polynomial
J−2,−2
k+4 (x). This relation allows us to perform the error analysis for the proposed

scheme (3.6.4) by using Theorem 1.8.2.

Theorem 3.7.3 Let u and uN be respectively the solution of (3.6.1) and (3.6.4). If
u ∈ H2

0 (I) ∩Hm
ω−2,−2,∗(I) with m � 2 and f ∈ Hk

ω0,0,∗(I) with k � 1, then

‖∂lx(u− uN)‖ � N l−m‖∂mx u‖ωm−2,m−2 +N−k‖∂kxf‖ωk,k , 0 � l � 2. (3.7.26)

Proof Using (3.6.2) and (3.6.4) leads to the error equation

a(u− uN , vN)=a(πN,ω−2,−2u− uN , vN) − a(πN,ω−2,−2u− u, vN)

=(f − INf, vN), ∀vN ∈ VN .

Let us denote êN = πN,ω−2,−2u− uN , ẽN = u − πN,ω−2,−2u and eN = u− uN =
ẽN + êN .

Taking vN = êN in the above equality, we obtain from (3.7.25) that

‖ê′′N‖2 + α‖ê′N‖2 + β‖êN‖2 = α(ẽ′N , ê
′
N) + β(ẽN , êN) + (f − INf, êN).

Since (ẽ′N , ê
′
N) = −(ẽN , ê′′N), it follows from the Cauchy-Schwarz inequality and

the Poincaré inequality that

‖ê′′N‖2 + α‖ê′N‖2 + β‖êN‖2 � ‖ẽN‖2 + ‖f − INf‖2.

We obtain immediately the result for l = 2 from the triangular inequality and Theo-
rems 1.8.2 and 1.8.4. The results for l = 0, 1 can also be directly derived if α, β > 0.
For α = 0 or β = 0, a duality argument is needed for the cases with l = 0, 1. The

3.7 Error estimates 139

details are left as an exercise.

Dual-Petrov Legendre-Galerkin method for a third-order equation

The last problem we consider in this section is the error between the solutions
of (3.6.10) and (3.6.12). However, although the dual-Petrov-Galerkin formulation
(3.6.12) is most suitable for implementation, it is more convenient in terms of error
analysis to reformulate (3.6.12) into a suitable equivalent form.

Let VN and V
N be defined in (3.6.11). Notice that for any uN ∈ VN we have
ω−1,1uN ∈ V ∗

N . Thus, the dual-Petrov-Galerkin formulation (3.6.12) is equivalent to
the following weighted spectral-Galerkin approximation: Find uN ∈ VN such that

α(uN , vN)ω−1,1 − β(∂xuN , vN)ω−1,1 + γ(∂xuN , ω1,−1∂x(vNω−1,1))ω−1,1

+ (∂xuN , ω1,−1∂2
x(vNω

−1,1))ω−1,1 = (INf, vN)ω−1,1 , ∀vN ∈ VN .

(3.7.27)

We shall show first that the problem (3.7.27) is well-posed. To this end, let us first
prove the following generalized Poincaré inequalities:

Lemma 3.7.4 For any u ∈ VN , we have∫
I
u2(1 − x)−4dx � 4

9

∫
I
u2
x(1 − x)−2dx,∫

I
u2(1 − x)−3dx �

∫
I
u2
x(1 − x)−1dx.

(3.7.28)

Proof Let u ∈ VN and h � 2. Then, for any constant q, we have

0 �
∫
I

(u

1 − x
+ qux

)2 1
(1 − x)h

dx

=
∫
I

(u2

(1 − x)2+h
+ q

(u2)x
(1 − x)1+h

+ q2
u2
x

(1 − x)h
)
dx

= (1 − (1 + h)q)
∫
I

u2

(1 − x)2+h
dx+ q2

∫
I

u2
x

(1 − x)h
dx.

We obtain the first inequality in (3.7.28) by taking h = 2 and q = 2
3 , and the second

inequality with h = 1 and q = 1.

Remark 3.7.1 Note that with the change of variable x → −x in the above lemma,
we can establish corresponding inequalities for u ∈ V∗

N .

The leading third-order differential operator is coercive in the following sense:

140 Chapter 3 Spectral-Galerkin Methods

Lemma 3.7.5 For any u ∈ VN , we have

1
3
‖ux‖2

ω−2,0 � (ux, (uω−1,1)xx) � 3‖ux‖2
ω−2,0 . (3.7.29)

Proof For any u ∈ VN , we have uω−1,1 ∈ V ∗
N . Since the homogeneous bound-

ary conditions are built into the spaces VN and V ∗
N , all the boundary terms from

the integration by parts of the third-order term vanish. Therefore, using the identity
∂kxω

−1,1(x) = 2 k!(1 − x)−(k+1) and Lemma 3.7.4, we find

(ux, (uω−1,1)xx) = (ux, uxxω−1,1 + 2uxω−1,1
x + uω−1,1

xx)

=
1
2

∫
I

(
(u2
x)xω

−1,1+(u2)xω−1,1
xx + 4u2

xω
−1,1
x

)
dx=

∫
I

(3
2
u2
xω

−1,1
x − 1

2
u2ω−1,1

xxx

)
dx

=3
∫
I

u2
x

(1 − x)2
dx− 6

∫
I

u2

(1 − x)4
dx � 1

3

∫
I

u2
x

(1 − x)2
dx.

The desired results follow immediately from the above.

Before we proceed with the error estimates, we make the following simple but
important observation:

(∂x(u− πN,ω−2,−1u), ∂2
xvN)

= − (u− πN,ω−2,−1u, ω2,1∂3
xvN)ω−2,−1 = 0, ∀u ∈ V, vN ∈ V ∗

N ,
(3.7.30)

where πN,ω−2,−1 is defined in (1.8.19).

Theorem 3.7.4 Let u and uN be respectively the solution of (3.6.10) and (3.6.12).
Let α > 0, β � 0 and −1

3 < γ < 1
6 . Then, for u ∈ Hm

ω−2,−1,∗(I) with m � 2 and

f ∈ Hk
ω0,0,∗(I) with k � 1, we have

α‖eN‖ω−1,1 +N−1‖(eN)x‖ω−1,0

�(1 + |γ|N)N−m‖∂mx u‖ωm−2,m−1 +N−k‖∂kxf‖ωk,k .
(3.7.31)

Proof Let us define êN = πN,ω−2,−1u−uN and eN = u−uN = (u−πN,ω−2,−1u)+
êN . We derive from (3.6.10), (3.7.27) and (3.7.30) that

α(eN , vN)ω−1,1 − β(∂xeN , vN)ω−1,1 + γ(∂xeN , ω1,−1∂x(vNω−1,1))ω−1,1

+(∂xêN , ω1,−1∂2
x(vNω

−1,1))ω−1,1

= (f − INf, vN)ω−1,1 , ∀vN ∈ VN . (3.7.32)

3.7 Error estimates 141

Taking vN = êN in the above, using Lemma 3.7.5 and the identities

− (vx, v)ω−1,1 = −1
2

∫
I
(v2)xω−1,1dx = ‖v‖2

ω−2,0 , ∀v ∈ VN ,

(vx, (vω−1,1)x)=(vx, vxω−1,1 + 2vω−2,0)=‖vx‖2
ω−1,1 − 2‖v‖2

ω−3,0 , ∀v ∈ VN ,

(3.7.33)

we obtain

α‖êN‖2
ω−1,1 + β‖êN‖2

ω−2,0 + γ‖(êN)x‖2
ω−1,1 − 2γ‖êN‖2

ω−3,0 +
1
3
‖(êN)x‖2

ω−2,0

� − α(u− πN,ω−2,−1u, êN)ω−1,1 + β(∂x(u− πN,ω−2,−1u), êN)ω−1,1

− γ(∂x(u− πN,ω−2,−1u), ∂x(êNω−1,1)) + (f − INf, êN)ω−1,1 .

The right-hand side can be bounded by using Lemma 3.7.4, the Cauchy-Schwarz
inequality and the fact that ω−1,2 � 2ω−1,1 � 2ω−2,0 in I:

(u− πN,ω−2,−1u, êN)ω−1,1 � ‖êN‖ω−1,1‖u− πN,ω−2,−1u‖ω−1,1

� ‖∂xêN‖ω−2,0‖u− πN,ω−2,−1u‖ω−2,−1 ,

((u− πN,ω−2,−1u)x, êN)ω−1,1 = −(u− πN,ω−2,−1u, ∂xêNω
−1,1 + 2êNω−2,0)

� ‖u− πN,ω−2,−1u‖ω−2,−1‖∂xêN‖ω−2,0 ,

((u− πN,ω−2,−1u)x, (êNω−1,1)x) = ((u− πN,ω−2,−1u)x, (êN)xω−1,1 + 2êNω−2,0)

� ‖(u− πN,ω−2,−1u)x‖ω−1,0‖∂xêN‖ω−2,0 ,

(f − INf, êN)ω−1,1 � ‖f − INf‖‖êN‖ω−2,2

� ‖f − INf‖‖∂xêN‖ω−2,0 .

For 0 � γ < 1
6 , we choose δ sufficiently small such that 1

3 − 2γ− δ > 0. Combining
the above inequalities, using the inequality

ab � εa2 +
1
4ε
b2, ∀ε > 0, (3.7.34)

Theorem 1.8.4, and dropping some unnecessary terms, we get

α‖êN‖2
ω−1,1 +

(
1
3
− 2γ − δ

)
‖(êN)x‖2

ω−2,0

�‖u− πN,ω−2,−1u‖2
ω−2,−1 + γ‖(u− πN,ω−2,−1u)x‖2

ω−1,0 + ‖f − INf‖2

�(1 + γN2)N−2m‖∂mx u‖ωm−2,m−1 +N−k‖∂kxf‖ωk,k .

142 Chapter 3 Spectral-Galerkin Methods

The last inequality follows from Theorem 1.8.2. For −1
3 < γ < 0, we choose δ

sufficiently small such that 1
3 + γ − δ > 0, and we derive similarly

α‖êN‖2
ω−1,1 +

(
1
3

+ γ − δ

)
‖(êN)x‖2

ω−2,0

�(1 + |γ|N2)N−2m‖∂mx u‖ωm−2,m−1 +N−k‖∂kxf‖ωk,k .

On the other hand, we derive from the triangle inequality, Theorem 1.8.2, and ‖u‖ω−1,0

� 2‖u‖ω−2,0 that

‖(eN)x‖ω−1,0 � ‖(êN)x‖ω−1,0 + ‖(u− πN,ω−2,−1u)x‖ω−1,0

�‖(êN)x‖ω−2,0 +N1−m‖∂mx u‖ωm−2,m−1 .

Then, the desired results follow from the above and triangular inequalities.

Exercise 3.7

Problem 1 Prove (3.7.22) in the case of α = 0, using a duality argument as in the
proof of Lemma 3.7.3.

Problem 2 Prove (3.7.26) with l = 0, 1 in the cases of α = β = 0, using a duality
argument.

Problem 3 Continue with Problem 4 in Section 3.6. Perform the corresponding
error analysis.

Problem 4 Continue with Problem 5 in Section 3.6. Perform the corresponding
error analysis.

Chapter 4
Spectral Methods in
Unbounded Domains

Contents
4.1 Hermite spectral methods . 144

4.2 Laguerre spectral methods 158

4.3 Spectral methods using rational functions 170

4.4 Error estimates in unbounded domains 177

In the previous chapters, we discussed various spectral methods for problems in
bounded intervals or with periodic boundary conditions. In this chapter, we shall
present spectral methods for unbounded domains.

As before, spectral methods in unbounded domains will also be based on orthog-
onal polynomials or orthogonal functions in the underlying domain. Hence, instead
of Jacobi polynomials or Fourier series, we will use Hermite polynomials/functions,
Laguerre polynomials/functions and some rational orthogonal functions. In Section
4.1, we begin with some properties of the Hermite polynomials/functions. Then
we discussed the Hermite-collocation and Hermite-Galerkin methods. In Section
4.2, Laguerre spectral methods in a semi-infinite interval will be investigated. The
Laguerre-collocation and Galerkin methods will be applied to solve differential equa-
tions with general boundary conditions. In Section 4.3, rational spectral methods in a
semi-infinite interval will be considered, which are particularly suitable for problems

144 Chapter 4 Spectral Methods in Unbounded Domains

whose solutions do not decay exponentially to zero as |x| → ∞. Finally, in Section
4.4, we will discuss some basic technqiues for obtaining error bounds for spectral
methods in unbounded domains.

For unbounded domains, proper scaling factors are necessary. Here the scaling
parameter α is defined by the change of variable x = αx̃. We will discuss how to
make optimal choices of such a scaling factor.

Some of the references on spectral methods in unbounded domains include [11],
[90], [74], [144] for Laguerre methods, [54], [137], [72], [45] for Hermite methods,
and [19], [?], [105], [76] for rational functions.

4.1 Hermite spectral methods

Hermite polynomials
Hermite functions
Interpolation, discrete transform and derivatives
Hermite-collocation and Hermite-Galerkin methods
Scaling factors
Numerical experiments

For problems posed on R := (−∞,+∞), one immediately thinks of the classical
Hermite polynomials/functions. We begin with some properties of the Hermite poly-
nomials/functions.

Hermite polynomials

The Hermite polynomials, denoted by Hn(x), n � 0, x ∈ R, are defined by the
following three-term recurrence relation:

Hn+1(x) = 2xHn(x) − 2nHn−1(x), n � 1,

H0(x) = 1, H1(x) = 2x.
(4.1.1)

They are orthogonal with respect to the weight function ω(x) = e−x2
:∫

R

Hm(x)Hn(x)e−x
2
dx = γnδmn, γn =

√
π2nn!. (4.1.2)

We list below some basic properties of the Hermite polynomials, which can be found,
for instance, in [155].

4.1 Hermite spectral methods 145

• Hermite polynomials are eigenfunctions of the Sturm-Liouville problem:

ex
2
(e−x

2
H ′
n(x))

′ + 2nHn(x) = 0. (4.1.3)

• Derivative relations:

H ′
n(x) = 2nHn−1(x), n � 1, (4.1.4a)

H ′
n(x) = 2xHn(x) −Hn+1(x), n � 0. (4.1.4b)

• It follows from (4.1.2) and (4.1.4a) that∫
R

H ′
n(x)H

′
m(x)ω(x)dx = 4n2γn−1δmn. (4.1.5)

• The leading coefficient of Hn(x) is kn = 2n.
• Odd-even symmetries:

H2n(−x) = H2n(x), H2n+1(−x) = −H2n+1(x), (4.1.6a)

H2n(0) = (−1)n
(2n)!
n!

, H2n+1(0) = 0. (4.1.6b)

We now introduce the Hermite-Gauss quadrature.

Theorem 4.1.1 (Hermite-Gauss) Let {xj}Nj=0 be the zeros of HN+1(x), and set

ωj =
√
π2NN !

(N + 1)H2
N (xj)

, 0 � j � N. (4.1.7)

Then, ∫ ∞

−∞
p(x)e−x

2
dx =

N∑
j=0

p(xj)ωj , ∀p ∈ P2N+1. (4.1.8)

According to Theorem 1.2.1, {xj}Nj=0 are the eigenvalues of an (N+1)×(N+1)
symmetric tridiagonal matrix (1.2.5) with

αj = 0, 0 � j � N ; βj =
j

2
, 1 � j � N. (4.1.9)

We note from (4.1.6) and (4.1.7) that the nodes and weights are symmetric,

xj = −xN−j , ωj = ωN−j, 0 � j � N, (4.1.10)

and xN/2 = 0, if N even. Moreover, it can be shown that (cf. [102])

146 Chapter 4 Spectral Methods in Unbounded Domains

ωj ∼ 1
N
e−x

2
j

(
1 − |xj|√

2(N + 1)

)
, 0 � j � N. (4.1.11)

Hence, the ωj are exponentially small for large xj . Thus, the Hermite Gauss quadra-
ture (4.1.8) is not suitable in most practical computations since (i) it is for a weighted
inner product with an exponentially decaying weight, and (ii) it is difficult to com-
pute p(xj) and ωj accurately when j and N are large. Therefore, one should use the
so-called Hermite functions.

Hermite functions

The normalized Hermite function of degree n is defined by

Ĥn(x) =
1√
2nn!

e−x
2/2Hn(x), n � 0, x ∈ R. (4.1.12)

Clearly, {Ĥn} is an orthogonal system in L2(R), i.e.,∫
R

Ĥn(x)Ĥm(x)dx =
√
πδmn. (4.1.13)

The three-term recurrence relation (4.1.1) implies

Ĥn+1(x) = x

√
2

n+ 1
Ĥn(x) −

√
n

n+ 1
Ĥn−1(x), n � 1,

Ĥ0(x) = e−x
2/2, Ĥ1(x) =

√
2xe−x

2/2.

(4.1.14)

Property (4.1.4a) and the above formula lead to

∂xĤn(x) =
√

2nĤn−1(x) − xĤn(x)

=
√
n

2
Ĥn−1(x) −

√
n+ 1

2
Ĥn+1(x), (4.1.15)

and this implies

∫
R

∂xĤn∂xĤmdx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√
n(n− 1)π

2
, m = n− 2,

√
π

(
n+

1
2

)
, m = n,

−
√

(n+ 1)(n + 2)π
2

, m = n+ 2,

0, otherwise.

(4.1.16)

4.1 Hermite spectral methods 147

In contrast to the Hermite polynomials, the normalized Hermite functions are well-
behaved, since

max
|x|�ε

|Ĥn(x)| ∼ n−1/12, ∀ε > 0. (4.1.17)

This behavior is demonstrated in Figure 4.1.

Figure 4.1

(a) Hermite polynomials Hn(x) with n = 0, · · · , 4; (b) Hermite functions Ĥn(x) with n = 0, · · · , 4.
It is straightforward to derive from Theorem 4.1.1 the Gauss quadrature associ-

ated with the Hermite functions.

Let {xj}Nj=0 be the Hermite-Gauss nodes and define the weights

ω̂j =
√
π

(N + 1)Ĥ2
N (xj)

, 0 � j � N. (4.1.18)

Then we have∫
R

p(x)dx =
N∑
j=0

p(xj)ω̂j, ∀p ∈ {u : u = e−x
2
v, v ∈ P2N+1}. (4.1.19)

Interpolation, discrete transform and derivatives

We define the function space

P̂N := {u : u = e−x
2/2v, ∀v ∈ PN}, (4.1.20)

and denote by ÎN the interpolation operator in P̂N based on the Hermite-Gauss points

148 Chapter 4 Spectral Methods in Unbounded Domains

{xj}Nj=0, i.e., for all u ∈ C(R),

ÎNu(xj) = u(xj), 0 � j � N. (4.1.21)

For any u ∈ P̂N , we write

u(x) =
N∑
n=0

ûnĤn(x), u′(x) =
N∑
n=0

û(1)
n Ĥn(x). (4.1.22)

By Hermite-Gauss quadrature, the interpolation coefficients {ûn} are determined by

ûn =
√
π

N + 1

N∑
j=0

Ĥn(xj)

Ĥ2
N (xj)

u(xj), 0 � n � N. (4.1.23)

The recurrence relation (4.1.15) is used to find {û(1)n }Nn=0 from the coefficients
{ûn}Nn=0, as follows:

û
(1)
N =

√
N

2
ûN−1; û

(1)
k =

√
k + 1

2
ûk+1 −

√
k

2
ûk−1, 0 � k � N − 1,

(4.1.24)

with the understanding that û(0)−1 = 0.

We now turn to the differentiation matrix. For u ∈ P̂N , we can write

u(x) =
N∑
j=0

u(xj)ĥj(x) ∈ P̂N , (4.1.25)

where {ĥj}Nj=0 are Lagrange interpolation functions, defined by

ĥj(x) =
e−x2/2

e−x
2
j/2

HN+1(x)
(x− xj)H ′

N+1(xj)
. (4.1.26)

Hence, the entries of the first-order differentiation matrixD̂ can be computed by the
formula:

d̂kj = ĥ′j(xk) =

⎧⎪⎨⎪⎩
ĤN(xk)

ĤN(xj)

1
xk − xj

if k �= j,

0 if k = j.

(4.1.27)

4.1 Hermite spectral methods 149

Hermite-collocation and Hermite-Galerkin method

To illustrate how to solve differential equations in R using Hermite functions, we
consider the following eigenvalue problem (cf. [13]):

−u′′(x) + x4u(x) = λu(x), x ∈ R, u(x) → 0 as |x| → ∞. (4.1.28)

Hermite-collocation method Let {xj}Nj=0 be the set of Hermite-Gauss

points. The Hermite-collocation method for (4.1.28) is to find uN ∈ P̂N and λ s.t.

−u′′N (xj) + x4
juN (xj) = λuN (xj), j = 0, 1, · · · , N. (4.1.29)

Set ū = (uN (x0), uN (x1), · · · , uN (xN))T. Then (4.1.29) can be written in the form

(D̂2 + diag(x4
0, x

4
1, · · · , x4

N))ū = λū, (4.1.30)

where D̂ is the (N+1)×(N+1) matrix defined in (4.1.27) and diag(x40, x
4
1, · · · , x4

N)
is the diagonal matrix with diagonal entries being x40, x

4
1, · · · , x4

N .

Hermite-Galerkin method The Hermite-Galerkin method for (4.1.28) is to
find uN ∈ P̂N and λ such that

(u′N , Ĥ
′
j) + (x4uN , Ĥj) = λ(uN , Ĥj), j = 0, 1, · · · , N. (4.1.31)

Hence, by setting

uN =
N∑
k=0

ûkĤk(x), ū = (û0, û1, · · · , ûN)T,

sik = (Ĥ ′
k, Ĥ

′
i), S = (sik)0�i,k�N ,

mik = (x4Ĥk, Ĥi), M = (mik)0�i,k�N ,

the system (4.1.31) can be reduced to the matrix form(
S +M

)
ū =

√
πλū. (4.1.32)

We note that S is a symmetric positive matrix with three non-zero diagonals given
in (4.1.16). We derive from (4.1.14) that mik = mki = 0 if |i − k| > 4. The
non-zero entries can be determined from (4.1.14) and (4.1.13). They can also be

150 Chapter 4 Spectral Methods in Unbounded Domains

“approximated” by the Gauss quadrature, namely,

mik = (x4Ĥk, Ĥi) ≈
N∑
j=0

x4
j Ĥi(xj)Ĥk(xj)ω̂j.

Hence, (4.1.32) can be efficiently solved.

Scaling factors

Suppose that the function u has a finite support [−M,M], i.e. u(x) ∼ 0 for
|x| > M . In order to compute {ûn}Nn=0 by (4.1.23) we need to use information from
the interval [−M,M] only, since outside this region the function is almost zero and
will not give much contribution to ûn. This simple motivation suggests us to scale
the grid through the transform y = 1

αN
x so that we have the collocation points in y

satisfying

|yj | =
∣∣∣∣ xjαN

∣∣∣∣ � M, for all 0 � j � N, (4.1.33)

where {xj} are the roots of HN+1(x). It is clear that the above condition is satisfied
by choosing the scaling factor

αN = max
0�j�N

{xj}/M = xN/M. (4.1.34)

Let us now examine the effect of scaling through a specific example. Many prac-
tical problems require the approximation of the distribution function of the form
exp(−pv2) with moderate and large values of p. Due to the parity of the Hermite
polynomials, we can write

exp(−px2) =
∞∑
n=0

c2nĤ2n(x), (4.1.35)

where the coefficients c2n can be computed explicitly,

c2n =
(−1)n√

22n(2n)!(p + 1/2)

(
p− 1/2
p+ 1/2

)n (2n)!
n!

. (4.1.36)

We would like to determine how many terms are needed in (4.1.35) for the truncation
error to be sufficiently small. It can be shown that, asymptotically, we have

c2n ∼ 1√
nπp

(
p− 1/2
p+ 1/2

)n
. (4.1.37)

4.1 Hermite spectral methods 151

Since (
1 − 1

x

)x
� lim

a→∞

(
1 − 1

a

)a
=

1
e
, for all x � 1,

then, only when n � N ≈ Cp with a positive constant C , we have

c2n ∼ 1√
nπp

e−C . (4.1.38)

Hence, given an accuracy threshold ε, we should choose C = − log ε, i.e., we need
N = O(−p log ε) terms.

Now let us consider the expansion in scaled Hermite functions,

exp(−px2) =
∞∑
n=0

d2nĤ2n(αNx), (4.1.39)

with αN = xN/M as given in (4.1.34) and the asymptotic behavior

d2n ∼ αN√
nπp

(
p/α2

N − 1/2
p/α2

N + 1/2

)n
. (4.1.40)

Since xN ∼ √
2N (see e.g. [1]) we obtain

αN ∼
√

2N/M, (4.1.41)

and

d2n ∼
√

2N
nπpM2

(
M2p/(2N) − 1/2
M2p/(2N) + 1/2

)n
. (4.1.42)

For p large we can setM2 = 2 for the sake of simplicity. Hence, for n � C(p/N+1),
we have

d2n∼
√

N

nπp

(
1 − 2

p/N + 1

)n
(4.1.43)

� N

p

(
1 − 2

p/N + 1

)C(p/N+1)

� N

p
e−C .

Thus, for an accuracy threshold ε, we should choose C = − log ε, so the requirement
N = C(p/N + 1) is satisfied when N = O(

√−p log ε). Hence, much fewer terms
are needed when a proper scaling is used.

Time-dependent scaling In [45], Hermite spectral methods were inves-

152 Chapter 4 Spectral Methods in Unbounded Domains

tigated for linear second-order partial differential equations and the viscous Burg-
ers’ equation in unbounded domains. When the solution domain is unbounded, the
diffusion operator no longer has a compact resolvent, which makes the Hermite
spectral methods unstable. To overcome this difficulty, a time-dependent scaling
factor was employed in the Hermite expansions, which yields a positive bilinear
form. As a consequence, stability and spectral convergence were established for this
approach [45]. The method in [45] plays a similar stability role to the similarity trans-
formation technique proposed by Funaro and Kavian[54]. However, since coordinate
transformations are not required, this approach is more efficient and is easier to im-
plement. In fact, with the time-dependent scaling the resulting discretization system
is of the same form as that associated with the classical (straightforward but unstable)
Hermite spectral method.

Below we present a Petrov-Galerkin Hermite spectral method with a time-
dependent weight function for the following simple parabolic problem:

∂tu− ν∂2
xu = f(x, t), x ∈ R, t > 0,

lim
|x|→∞

u(x, t) = 0, t > 0; u(x, 0) = u0(x), x ∈ R,
(4.1.44)

where the constant ν > 0. Let PN(R) be the space of polynomials of degree at most
N , ωα = exp (−(αx)2), α = α(t) > 0 is a function of t, and

VN = {vN(x) = ωαφN(x) | φN(x) ∈ PN(R)} . (4.1.45)

The semi-discrete Hermite function method for (4.1.44) is to find uN(t) ∈ VN such
that for any ϕN ∈ PN(R),

(∂tuN(t), ϕN) + ν(∂xuN(t), ∂xϕN) = (f(t), ϕN), t > 0,

(uN(0), ϕN) = (u0, ϕN),
(4.1.46)

where (·, ·) is the inner product in the space L2(R). It was proposed in [45] that

α(t) =
1

2
√
νδ0(δt + 1)

, (4.1.47)

where δ0 and δ are some positive parameters. To simplify the computation, let

uN(x, t) =
ωα√
π

N∑
l=0

ûl(t)Hl(αx) , ϕN(x, t) = (2mm!)−1α(t)Hm(αx)

4.1 Hermite spectral methods 153

(0 � m � N). (4.1.48)

In other words, we expand the unknown solution in terms of scaled Hermite func-
tions, and the scaling is now dependent on time.

Theorem 4.1 (cf. [45]) Let u and uN be the solutions of (4.1.44) and (4.1.46),
respectively. Assume that U ∈ C(0, T ;Hσ

ω−1
α

(R)) (σ � 1), and the weight function
α defined by (4.1.47) with 2δ0δ > 1. Then

‖uN(t) − u(t)‖ω−1
α

� CN−σ/2, ∀0 < t < T, (4.1.49)

where C is a constant independent of N .

Numerical experiments

Example 4.1.1 The first example is the problem (4.1.28):

−u′′(x) + x4u(x) = λu(x), x ∈ R.

By the WKB method[83], the solution of the above equation has the asymptotic be-
havior

u(x) ∼ exp(−|x|3/3). (4.1.50)

It is obvious from (4.1.50) that u ∼ 0 if |x| � M ≈ 5. In order to obtain accurate
solutions of (4.1.28) efficiently, we need to choose the scaling factor α = x0/M ,
where x0 = max0�j�N{xj}, with xj the roots of HN+1(x). Since the solutions
of (4.1.28) are even functions, only N/2 expansion terms are required in the actual
calculations. With N = 60 we predict the scaling factor α ≈ 10.16/5.0 ≈ 2.0.
Birkhoff and Fix[13] used Galerkin method with 30 Hermite functions (i.e. N =
60) to solve (4.1.28). They found that the standard Hermite functions (i.e. without
scaling) gave the first 18 eigenvalues to only three decimal places, whereas using a
scaling factor α = 2.154 gave the same eigenvalues to 10 decimal places. That is, an
increase of 10−7 in accuracy is obtained. They obtained the optimum scaling factor
through trial and error (the procedure requires a considerable amount of computer
time), but the theory in the last subsection provides an accurate scaling factor in a
very simple way.

Example 4.1.2 Consider the heat equation

∂u

∂t
=

∂

∂x

(
ν
∂u

∂x

)
, x ∈ R, (4.1.51)

154 Chapter 4 Spectral Methods in Unbounded Domains

where ν is the viscosity coefficient, with the initial distribution

u(x, 0) =
1√
νπ

exp
(−x2/ν

)
. (4.1.52)

If the viscosity coefficient is a constant, then the exact solution of (4.1.51) and
(4.1.52) is

u(x, t) =
1√

πν(4t+ 1)
exp

(
− x2

ν(4t+ 1)

)
. (4.1.53)

Problem (4.1.51) and (4.1.52) has been chosen since it has an analytic solution and
this allows us to compare our numerical results with the exact solution (4.1.53). It can
be seen from the previous subsections that the Hermite spectral methods will work
well for moderate values of ν, but about O(1/ν) expansion terms are needed when ν
is small. However, if we apply a proper scaling then much fewer terms are required.
To illustrate this we shall consider the case when ν = 0.01. It is pointed out that the
numerical procedure can be applied to more complicated initial distributions and to
variable viscosity coefficients.

Let ū(t) = (u(x0/αN , t), · · · , u(xN/αN , t))T. Then a semi-discretization of
(4.1.51) is

dū

dt
= νD̂2ū, (4.1.54)

where D̂ is the differentiation matrix given in (4.1.27). When an explicit method is
used to integrate (4.1.54) in time, the maximum allowable time step needs to satisfy

∆t = O
(

1

νσ(D̂2)

)
, (4.1.55)

where σ(D̂2) is the spectral radii for b̂2 It can be shown (cf. [167]) that the spectral
radii for the first and second Hermite differentiation matrices are O(

√
N) and O(N),

respectively. Hence, the stability condition (4.1.55) is very mild (∆t � CN−1)
compared to the Fourier case (∆t � CN−2) and Legendre or Chebyshev cases (∆t �
CN−4). This very mild stability condition can be further alleviated by using a proper
scaling. Indeed, since σ(D̂2) = O(α2

NN) with N = O(
√

1/ν) and αN = O(
√
N)

(see [167]), we obtain ∆t = O(1). This suggests that the step-size in time can be
independent of N when ν is small.

We now provide a pseudo-code for solving the heat equation (4.1.51) with the

4.1 Hermite spectral methods 155

Hermite spectral method. The ODE system (4.1.54) is integrated by using the forward
Euler’s method.

CODE Hermite∗heat.1
Input N, ν, ∆t, T, u0(x)
Call a subroutine to get the roots of HN+1(x),i.e.,xj,
0�j�N
Choose a scaling factor α=x0/M

Call a subroutine to obtain Ĥn,j=Ĥn(xj)
Compute the collocation point x(j) and the initial data:
x(j)=xj/α, u(j)=u0(x(j)), 0�j�N
time=0
While time < T
%form the Hermite expansion coefficient ûn

for n=0, N do
a(n)=

∑N
j=0u(j)∗Ĥn(xj)

endfor
%compute a2(n)=û(2)

n

a2(0)=0.5∗α2(-a(0)+
√

2a(2)), a2(1)=0.5∗α2(-3∗a(1)+√6a(3))
a2(N+1)=0, a2(N+2)=0
for n=2, N do

a2(n)=0.5∗α2(
√

(n−1)na(n−2)−(2n+1)a(n)+√(n+1)(n+2)a(n+2))
endfor

%forward Euler time integration
for j=0 to N do

u(j)=u(j)+ν∗∆t∗∑N
n=0a2(n)∗Ĥn(xj)

endfor
Update time: time=time+∆t
endWhile

In the above code, a subroutine for finding the roots of HN+1(x) is similar to CODE
LGauss.1 given in Section 1.3. Moreover, the recurrence formula (4.1.14) must be
used to evaluate Ĥn(xj).

We use CODE Hermite∗heat.1 to solve the problem in Example 4.1.2. Fig-
ure 4.2 gives a comparison between the exact solution and the numerical results ob-
tained by using a scaling factor, α = x0/1.5. The solution domain is therefore
|x| � 1.5. With N = 32 and ∆t = 0.01, it is seen that the agreement between the
exact solution and the numerical result is good. However, if a scaling factor is not
used, then reasonable approximate solutions cannot be obtained, even with a much
larger values of N ; see Figure 4.3.

156 Chapter 4 Spectral Methods in Unbounded Domains

Figure 4.2

Example 4.1.2: Comparison between the exact (solid lines) and numerical (pluses) solutions at

different time levels, with a constant scaling β = x0/1.5, N = 32 and ∆t = 0.01.

Figure 4.3

Example 4.1.2: Numerical solutions at different time levels without using a scaling (i.e., β = 1).

N = 128 and ∆t = 0.005. The exact solutions are displayed in Fig.4.2.

Example 4.1.3 Consider the parabolic problem (4.1.44) with ν = 1 and the follow-
ing source term

f(x, t) =
(
x cos x+ (t+ 1) sin x

)
(t+ 1)−3/2 exp

(
− x2

4(t+ 1)

)
. (4.1.56)

4.1 Hermite spectral methods 157

This example was proposed by Funaro and Kavian[54]. Its exact solution is of the
form

u(x, t) =
sinx√
t+ 1

exp
(
− x2

4(t+ 1)

)
. (4.1.57)

We denote

EN (t) = ‖u(t) − uN (t)‖N,ω−1
α
, EN,∞(t) =

max0�j�N |uN (xj , t) − u(xj , t)|
max0�j�N |u(xj , t)| .

We solve the above problem using (4.1.46) and the scaling factor (4.1.47) with (δ0, δ)
= (0.5, 0) which corresponds to the classical approach, and with (δ0, δ) = (1, 1)
which corresponds to a time-dependent scaling. For ease of comparison, we use the
same mesh size as used in [54]. Table 4.1 shows the error E20(1) with different
time steps. We note the result in [54] is obtained by an explicit first-order forward
difference in time.

Table 4.2 shows the order of accuracy for the scheme (4.1.46) together with the
Crank-Nicolson time-discretization. It is observed from the numerical results that the
numerical scheme is of second-order accuracy in time and spectral accuracy in space.

Table 4.1 Errors at t = 1 with N = 20 using different methods

time step Funaro and Kavian’s Classical method (4.1.46) Proposed method (4.1.46)

τ scheme [54] with (δ0, δ) = (0.5, 0) with (δ0, δ) = (1, 1)

250−1 2.49E-03 1.95E-04 2.96E-06
1000−1 6.20E-04 1.95E-04 1.19E-06
4000−1 1.55E-04 1.95E-04 1.18E-06
16000−1 3.89E-05 1.95E-04 1.18E-06

Table 4.2 Errors of the scheme (4.1.46) using the scaling factor (4.1.47) with
(δ0, δ) = (1, 1)

τ N EN(1) EN,∞(1) Order
10−1 1.70E-03 9.78E-04
10−2 1.70E-05 9.77E-06 τ2.00

10−3 30 1.70E-07 9.77E-08 τ2.00

10−4 1.70E-09 9.80E-10 τ2.00

10 5.16E-03 1.19E-03
10−4 20 1.18E-06 1.25E-07 N−12.10

30 1.70E-09 9.80E-10 N−16.14

158 Chapter 4 Spectral Methods in Unbounded Domains

Exercise 4.1

Problem 1 Approximate f(x) = sin(10x), x ∈ [−π, π], using the Hermite spectral
(or Hermite pseudo-spectral) method:

sin(10x) ≈
N∑
n=0

anHn(x). (4.1.58)

a. Find an for N = 11, 21 and 31.

b. Let xj = 2πj/M (j = −M
2 ,−M

2 + 1, · · · , M2) with M = 200. Plot the right-
hand side function of (4.1.58) by using its values at x = xj . Compare your results
with the exact function f(x) = sin(10x).

c. Repeat (a) and (b) above by using an appropriate scaling factor, see (4.1.34).

Problem 2 Solve Example 4.1.1 to verify the claims for that example.

Problem 3 Solve problem (4.1.51) and (4.1.52) with ν = 0.01. Compute u(x, 2)
by using the Hermite collocation method in space and RK4 in time with (i) ∆t = 0.1,
N = 16, (ii) ∆t = 0.01, N = 16, (iii) ∆t = 0.01, N = 24.

a. What are the good scaling factors for (i)–(iii) above?

b. Plot the exact solution and numerical solutions.

Problem 4 Repeat Problem 1 in Section 5.4 using a Hermite spectral method with
a proper scaling.

4.2 Laguerre spectral methods

Generalized Laguerre polynomials
Laguerre functions
Interpolation, discrete transform and derivatives
Laguerre-collocation & Galerkin methods
General boundary conditions
Fourth-order equations
Scaling and numerical experiments

For problems posed on a semi-infinite interval, it is natural to consider the (usual) La-
guerre polynomials {Ln(x)} which form a complete orthogonal systems in L2

ω(0,∞)
with ω(x) = e−x. Although for many problems it is sufficient to use the usual La-
guerre polynomials, it is more convenient for the analysis and for the implementation

4.2 Laguerre spectral methods 159

to introduce a family of generalized Laguerre polynomials {L(α)
n (x)} with α > −1

and Ln(x) = L(0)
n (x).

Generalized Laguerre polynomials

The generalized Laguerre polynomials L(α)
n (x) with x ∈ R+ := (0,∞), α > −1,

are defined by the three-term recurrence relation:

(n+ 1)L(α)
n+1(x) = (2n + α+ 1 − x)L(α)

n (x) − (n+ α)L(α)
n−1(x),

L(α)
0 (x) = 1, L(α)

1 (x) = α+ 1 − x.
(4.2.1)

They are orthogonal with respect to the weight function ωα(x) = xαe−x, i.e.,∫
R+

L(α)
n (x)L(α)

m (x)ωα(x)dx = γ(α)
n δmn, (4.2.2)

where
γ(α)
n = Γ(n+ α+ 1)/Γ(n+ 1). (4.2.3)

We now collect some useful properties of the Laguerre polynomials/functions (cf.
[155]):

a. Laguerre polynomials are eigenfunctions of the following Sturm-Liouville
problem:

x−αex∂x
(
xα+1e−x∂xL(α)

n (x)
)

+ λnL(α)
n (x) = 0, (4.2.4)

with the eigenvalues λn = n.

b. We derive from (4.2.4) the orthogonality for {∂xL(α)
n (x)}:∫

R+

∂xL(α)
n (x)∂xL(α)

m (x)xωα(x)dx = λnγ
(α)
n δmn. (4.2.5)

c. Derivative relations:

∂xL(α)
n (x) = −L(α+1)

n−1 (x) = −
n−1∑
k=0

L(α)
k (x), (4.2.6a)

L(α)
n (x) = ∂xL(α)

n (x) − ∂xL(α)
n+1(x), (4.2.6b)

x∂xL(α)
n (x) = nL(α)

n (x) − (n+ α)L(α)
n−1(x). (4.2.6c)

The two Gauss-type quadratures associated to (4.2.2) and (4.2.5) are:

• Laguerre-Gauss quadrature Let {x(α)
j }Nj=0 be the zeros of L(α)

N+1(x)

160 Chapter 4 Spectral Methods in Unbounded Domains

and define the associated weights by

ω
(α)
j = −Γ(N + α+ 1)

(N + 1)!
1

L(α)
N (x(α)

j)∂xL(α)
N+1(x

(α)
j)

=
Γ(N + α+ 1)

(N + α+ 1)(N + 1)!
x

(α)
j

[L(α)
N (x(α)

j)]2
, 0 � j � N. (4.2.7)

Then we have ∫
R+

p(x)xαe−xdx =
N∑
j=0

p(x(α)
j)ω(α)

j , ∀p ∈ P2N+1.

• Laguerre-Gauss-Radau quadrature Let {x(α)
j }Nj=0 be the zeros

of x∂xL(α)
N+1(x) and define the associated weights by

ω
(α)
0 =

(α+ 1)Γ2(α+ 1)Γ(N + 1)
Γ(N + α+ 2)

, (4.2.8a)

ω
(α)
j =

Γ(N + α+ 1)
N !(N + α+ 1)

1

[L(α)
N (x(α)

j)]2
, 1 � j � N. (4.2.8b)

Then we have ∫
R+

p(x)xαe−xdx =
N∑
j=0

p(x(α)
j)ω(α)

j , ∀p ∈ P2N . (4.2.9)

The zeros of L(α)
N+1(x) and x∂xL(α)

N+1(x) can be computed using Theorem 1.2.1.

The Laguerre-Gauss points (i.e., zeros of L(α)
N+1(x)) can be computed as the

eigenvalues of the symmetric tridiagonal matrix (1.2.5) with

αj = 2j + α+ 1, 0 � j � N,

βj = j(j + α), 1 � j � N.
(4.2.10)

Due to (4.2.6a), the Laguerre-Gauss-Radau points of order N with index α are
simply the Laguerre-Gauss points of order N − 1 with index α + 1 plus the
point 0.

4.2 Laguerre spectral methods 161

Let {x(α,N)
j }Nj=0 be the Laguerre-Gauss-Radau points. It is well known (cf. [155])

that x(α,N)
N → +∞ as N → +∞. Hence, the values of LN (x(α,N)

N) grow extremely
fast, and the associated weights in the Laguerre-Gauss-Radau quadrature decay ex-
tremely fast. Therefore, numerical procedures using Laguerre polynomials are usu-
ally very ill-conditioned. Instead, it is advisable to use Laguerre functions.

Laguerre functions

The generalized Laguerre function is defined by

L̂(α)
n (x) := e−x/2L(α)

n (x), α > −1, x ∈ R+. (4.2.11)

Let ω̂α = xα, we have that
{
L̂(α)
n

}
are L2

ω̂α
(R+)−orthogonal.

In what follows, we restrict ourselves to the most commonly used case,

L̂n(x) := L̂(0)
n (x) = e−x/2Ln(x), x ∈ R+, (4.2.12)

which satisfies the three-term recurrence relation (derived from (4.2.1)):

(n+ 1)L̂n+1(x) = (2n + 1 − x)L̂n(x) − nL̂n−1(x),

L̂0(x) = e−x/2, L̂1(x) = (1 − x)e−x/2,
(4.2.13)

and the orthogonality (cf. (4.2.2)):∫
R+

L̂n(x)L̂m(x)dx = δmn. (4.2.14)

Moreover, due to the fact

∂xL̂n(x) = −1
2
L̂n(x) + e−x/2∂xLn(x), (4.2.15)

we find from (4.2.6a) that

∂xL̂n(x) = −
n−1∑
k=0

L̂k(x) − 1
2
L̂n(x). (4.2.16)

We emphasize that in contrast to Laguerre polynomials, the Laguerre functions

162 Chapter 4 Spectral Methods in Unbounded Domains

are well behaved, see Figure 4.4. More precisely, we have (cf. [155])

|L̂n(x)| � 1, x ∈ R+; (4.2.17a)

L̂n(x) = O((nx)−1/4), ∀x ∈ [cn−1, ω]. (4.2.17b)

where ω is a finite real number.

Figure 4.4

(a): Graphs of the first six Laguerre polynomials Ln(x) with 0 � n � 5 and x ∈ [0, 6]; (b): Graphs of

the first six Laguerre functions L̂n(x) with 0 � n � 5 and x ∈ [0, 20].

It is straightforward to define Gauss-type quadrature rules associated with La-
guerre function approach. As an example, we present below the Laguerre-Gauss-
Radau quadrature associated with the Laguerre functions:

Let {xj}Nj=0 be the zeros of x∂xLN+1(x), and

ω̂j =
1

(N + 1)[L̂N (xj)]2
, 0 � j � N. (4.2.18)

Then∫
R+

p(x)dx =
N∑
j=0

p(xj)ω̂j, ∀p ∈ {u : u = e−xv, v ∈ P2N}. (4.2.19)

Interpolation, discrete transform and derivatives

We define
P̂N = span{L̂k(x) : k = 0, 1, · · · , N}, (4.2.20)

4.2 Laguerre spectral methods 163

and denote by ÎN the interpolation operator in P̂N based on the Laguerre-Gauss-
Radau points {xj}Nj=0, i.e., for all u ∈ C(R+), ÎN satisfies

ÎNu(xj) = u(xj), 0 � j � N. (4.2.21)

For any u ∈ P̂N , we write

u(x) =
N∑
n=0

ûnL̂n(x), u′(x) =
N∑
n=0

û(1)
n L̂n(x). (4.2.22)

Thanks to the Laguerre-Gauss-Radau quadrature, the interpolation coefficients {ûn}
can be determined by

ûn =
1

N + 1

N∑
j=0

L̂n(xj)
[L̂N (xj)]2

u(xj), 0 � n � N. (4.2.23)

By using the recurrence relation (4.2.16), we can compute {û(1)n }Nn=0 from the coef-
ficients {ûn}Nn=0 as follows:

û
(1)
N = −1

2
ûN ,

û
(1)
k = −1

2
ûk −

N∑
n=k+1

ûn, 0 � k � N − 1.
(4.2.24)

We now turn to the differentiation matrix corresponding to the Laguerre function
approach. Let {xj}Nj=0 be the Laguerre-Gauss-Radau points. Given u ∈ P̂N , we can
write

u(x) =
N∑
j=0

u(xj)ĥj(x), (4.2.25)

where {ĥj}Nj=0 are the Lagrange interpolation functions satisfying

ĥj ∈ P̂N , ĥj(xk) = δkj , 0 � k, j � N.

It can be verified that the first-order differentiation matrix associated with the Laguerre-
Gauss-Radau points is given by

d̂kj = ĥ′j(xk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L̂N+1(xk)

(xk − xj)L̂N+1(xj)
, k �= j,

0, k = j �= 0,

−(N + 1)/2, k = j = 0.

(4.2.26)

164 Chapter 4 Spectral Methods in Unbounded Domains

Laguerre-collocation & Galerkin methods

To illustrate how to solve differential equations in the semi-infinite interval using
Laguerre functions, we consider the following model equation:

− u′′(x) + γu(x) = f(x), x ∈ R+, γ > 0,

u(0) = 0, lim
x→+∞u(x) = 0.

(4.2.27)

Laguerre-collocation method The Laguerre-collocation method for
(4.2.27) is to find uN ∈ P̂N such that

− u′′N (xj) + γuN (xj) = f(xj), 1 � j � N,

uN (0) = 0.
(4.2.28)

Setting ū = (uN (x0), uN (x1), · · · , uN (xN))T and f̄ = (f(x0), f(x1), · · · , f(xN))T,
the collocation equation (4.2.28) can be written in the form

(−D̂2 + γI)ū = f̄ , (4.2.29)

where D̂ = (d̂kj) is the N ×N matrix with d̂kj defined in (4.2.26).

Laguerre-Galerkin methods We now consider the approximation of
(4.2.27) by using a Galerkin method. To this end, we define

H1
0 (R+) = {u ∈ H1(R+) : u(0) = 0}, P̂ 0

N = {u ∈ P̂N : u(0) = 0}.

Then, the variational formulation of (4.2.27) is to find u ∈ H1
0 (R+) such that

a(u, v) := (u′, v′) + γ(u, v) = (f, v), ∀v ∈ H1
0 (R+). (4.2.30)

The Laguerre-Galerkin approximation uN ∈ P̂ 0
N to (4.2.30) is determined by

a(uN , vN) = (u′N , v
′
N) + γ(uN , vN) = (ÎNf, vN), ∀vN ∈ P̂ 0

N , (4.2.31)

where ÎNf ∈ P̂N is the interpolating function such that ÎNf(xi) = f(xi), i =
0, 1, · · · , N .

Let us set

φ̂k(x) = (Lk(x) − Lk+1(x))e−x/2 = L̂k(x) − L̂k+1(x). (4.2.32)

4.2 Laguerre spectral methods 165

It follows from Lk(0) = 1 that φ̂k(0) = 0, and

P̂ 0
N = span{φ̂0, φ̂1, · · · , φ̂N−1}. (4.2.33)

Hence, defining

uN =
N−1∑
k=0

ûkφ̂k(x), ū = (û0, û1, · · · , ûN−1)T,

fi = (ÎNf, φ̂i), f̄ = (f0, f1, · · · , fN−1)T,

sik = (φ̂′k, φ̂
′
i), S = (sik)0�i,k�N−1,

mik = (φ̂k, φ̂i), M = (mik)0�i,k�N−1,

we see that M is a symmetric tridiagonal matrix, and it can be verified that S =
I − 1

4M. Thus, the system (4.2.31) is reduced to the matrix form(
I + (γ − 1/4)M

)
ū = f̄ . (4.2.34)

General boundary conditions

More general boundary conditions of the form

au(0) − bu′(0) = c, (4.2.35)

with b �= 0 (b = 0 reduces to the simpler Dirichlet case) and ab � 0 to ensure the
ellipticity, can be easily handled as follows. First, the non-homogeneity can be taken
care of by subtracting ub(x) := c/(a + b/2)e−x/2 from the solution, leading to the
following homogeneous problem: Find u = ũ+ ub such that

γũ− ũxx = f − (γ − 1/4)ub := f̃ ; aũ(0) − bũ′(0) = 0. (4.2.36)

The corresponding variational formulation is: Find u = ũ+ ub ∈ H1(R+) such that

γ(ũ, v) +
a

b
ũ(0)v(0) + (ũx, vx) = (f̃ , v), ∀v ∈ H1(R+). (4.2.37)

Since Lk(0) = 1 and ∂xLk(0) = −k, we find that

φ̃k(x) = (Lk(x) − akLk+1(x))e−x/2,

ak = (a+ kb+ b/2)/(a + (k + 1)b+ b/2),
(4.2.38)

166 Chapter 4 Spectral Methods in Unbounded Domains

satisfies aφ̃k(0) − bφ̃′k(0) = 0. Let

X̃N = span{φ̃0, φ̃1, · · · , φ̃N−1}. (4.2.39)

Thus, the Laguerre-Galerkin method for (4.2.37) is: Find uN = ũN + ub with ũN ∈
X̃N such that

γ(ũN , ṽ) + (ũ′N , ṽ
′) +

a

b
ũN (0)ṽ(0) = (ÎN f̃ , ṽ), ∀ṽ ∈ X̃N . (4.2.40)

It is clear that M̃ij := (φ̃j , φ̃i) = 0 for |i − j| > 1. One also verifies readily by
integration by parts that

S̃ij := (φ̃′j , φ̃
′
i) +

a

b
φ̃j(0)φ̃i(0) = −(φ̃′′j , φ̃i) = −(φ̃j , φ̃′′i), (4.2.41)

which implies that S̃ij = 0 for |i− j| > 1. Hence, the matrix S̃ + αM̃ associated to
(4.2.40) is again tridiagonal.

Fourth-order equations

Consider the fourth-order model problem

α1u− α2uxx + uxxxx = f, x ∈ R+

u(0) = ux(0) = lim
x→+∞u(x) = lim

x→+∞ux(x) = 0. (4.2.42)

Let H2
0 (R+) = {u ∈ H2(R+) : u(0) = ux(0) = 0}. The variational formulation

for (4.2.42) is: Find u ∈ H2
0 (R+) such that

α1(u, v) + α2(ux, vx) + (uxx, vxx) = (f, v), ∀v ∈ H2
0 (R+). (4.2.43)

Set X̂N = {u ∈ P̂N : u(0) = ux(0) = 0}. Then, the Laguerre-Galerkin approxima-

tion for (4.2.43) is: Find uN ∈ X̂N such that

α1(uN , v) + α2(u′N , v
′) + (u′′N , v

′′) = (ÎNf, v), ∀v ∈ X̂N . (4.2.44)

One verifies easily that

ψ̂k(x) = (Lk(x) − 2Lk+1(x) + Lk+2(x))e−x/2 ∈ X̂k+2,

4.2 Laguerre spectral methods 167

and X̂N = span{ψ̂0, ψ̂1, · · · , ψ̂N−2}. Hence, setting

skj = (ψ̂′′
j , ψ̂

′′
k), S = (skj)k,j=0,1,··· ,N−2,

qkj = (ψ̂′
j , ψ̂

′
k), Q = (qkj)k,j=0,1,··· ,N−2,

mkj = (ψ̂j , ψ̂k), M = (mkj)k,j=0,1,··· ,N−2,

f̃k = (ÎNf, ψ̂k), f̄ = (f̃0, f̃1, · · · , f̃N−2),

uN =
N−2∑
k=0

ũkψ̂k, ū = (ũ0, ũ1, · · · , ũN−2),

(4.2.45)

we find that (4.2.44) reduces to

(α1M + α2Q+ S)ū = f̄ . (4.2.46)

One verifies that S, Q and M are all symmetric penta-diagonal and their entries can
be easily computed. Hence, (4.2.46) can be efficiently solved.

Scaling and numerical experiments

Although the Laguerre-spectral methods presented above enjoy a theoretical spec-
tral convergence rate, the actual error decays considerably slower than that of the
Chebyshev- or Legendre-spectral method for similar problems in finite intervals. The
poor resolution property of Laguerre polynomials/functions, which was pointed out
by Gottlieb and Orszag in [61], is one of the main reasons why Laguerre polynomi-
als/functions are rarely used in practice. However, similarly as in [158] for the Her-
mite spectral method, the resolution of Laguerre functions can be greatly improved
by using a proper scaling factor.

The main factor responsible for the poor resolution of Laguerre polynomials
and Laguerre functions is that usually a significant portion of the Laguerre Gauss-
Radau points is located outside of the interval of interest. For example, u(x) =
(sin kx)e−x � 10−8 for x > 18, so all the collocation points which are greater than
18 are essentially wasted. Thus, it makes sense to scale the function so that all the
effective collocation points are inside the interval of interest. More precisely, we
can proceed as follows: Given an accuracy threshold ε, we estimate a M such that

|u(x)| � ε for x > M . Then we set the scaling factor βN = x
(N)
N /M , where

x
(N)
N is the largest Laguerre Gauss-Lobatto point, and instead of solving the equation

(4.2.27), we solve the following scaled equation with the new variable y = βNx:

γv − β2
Nvyy = g(y); v(0) = 0, lim

y→+∞u(y) = 0, (4.2.47)

168 Chapter 4 Spectral Methods in Unbounded Domains

where v(y) = u(βNx) and g(y) = f(βNx). Thus, the effective collocation points
xj = yj/βN ({yj}Nj=0 being the Laguerre Gauss-Lobatto points) are all located in
[0,M]. In Figure 4.5, the approximations of (4.2.27) with the exact solution being
u(x) = sin 10x(x+ 1)−5 using the Laguerre-Galerkin method with a scaling fac-
tor=15 and without scaling are plotted against the exact solution. Notice that if no
scaling is used, the approximation with N = 128 still exhibits an observable error,
while the approximation with a scaling factor=15 using only 32 modes is virtually
indistinguishable with the exact solution. This simple example demonstrates that a
proper scaling will greatly enhance the resolution capabilities of the Laguerre func-
tions and make the Laguerre functions a viable alternative to the rational polynomials
studied in [66], [18].

Figure 4.5 Locations of the Laguerre Gauss-Radau points and effects of scaling

Example 4.2.1 The Schrödinger equation,

−y′′(x) + y(x) = λq(x)y(x), 0 < x <∞, (4.2.48)

plays a central role in the theory of Quantum Mechanics. Here,

q(x) =
1

1 + e(x−r)/ε ,

with r = 5.08685476 and ε = 0.929852862. The boundary conditions are

y(0) = 0, lim
x→∞ y(x) = 0. (4.2.49)

This problem can be solved by using Weideman and Reddy’s MATLAB Differ-
entiation Matrix Suite (cf. [168]). Since the domain is [0,∞), solving the Schrödinger

4.2 Laguerre spectral methods 169

equation by the Laguerre spectral collocation method is a natural choice. Let D be
the second-derivative Laguerre matrix of order N + 1, as computed by lagdif.m
in [168]. Let the scaling parameter be β. This means that the nodes are xj = rj/β,
where the rj are the roots of xL′

N+1(x). There is an additional boundary node x = 0;
incorporation of the boundary condition at this node means the first row and column
of D are to be deleted. The boundary condition at x = ∞ is automatically taken care
of by the Laguerre expansion. The Schrödinger equation is therefore approximated
by the N ×N matrix eigenvalue problem

(−D + I)y = λQy, (4.2.50)

where y represents the approximate eigenfunction values at the nodes, I is the identity
matrix, and

Q = diag
(

1
1 + e(xj−r)/ε

)
.

The MATLAB function schrod.m in [168] given in Table 4.3 implements this
method.

The physically interesting eigenvalue is the one of smallest magnitude. It was
computed before to seven-digit accuracy as λ = 1.424333. The Laguerre method
shown in Table 4.3 computed this eigenvalue to full accuracy withN = 20 (resp.N =
30) and all scaling parameters roughly in the range β ∈ [3, 6] (resp. β ∈ [2, 9]).

Table 4.3 Computing the smallest eigenvalue of the Schrödinger Equation

>>b = 4; N = 20; % Initialize parameters.
>>r = 5.08685476; epsi = 0.929852862;

>>[x,D] = lagdif(N+1,2,b);
% Compute Laguerre derivative
matrix.

>>D2=D(2:N+1,2:N+1);

>>Q = diag(1./(1+exp((x-r)/epsi))); % Woods-Saxon potential.
>>I = eye(size(D2)); % Identity matrix.

>>e = min(eig(-D2+I,Q)); % Compute smallest eigenvalue.

Exercise 4.2

Problem 1 Solve the boundary value problem

u′′(y) − y2u(y) = −e−y2/2, y ∈ (1,∞)

u(1) = e−1/2,

170 Chapter 4 Spectral Methods in Unbounded Domains

by using the Laguerre-spectral method.

Problem 2 Solve the problem

∂u

∂t
− ν

∂2u

∂x2
= 0, x ∈ (0,∞),

u(x, 0) =
1√
νπ

exp
(
−x

2

ν

)
, u(0, t) =

1√
πν(4t+ 1)

,

with ν = 0.01 by using the Laguerre-collocation method in space and RK4 in time
with (i) ∆t = 0.1, N = 16; (ii) ∆t = 0.01, N = 16; (iii) ∆t = 0.01, N = 24. The
exact solution is given by (4.1.53).

a. What are the good scaling factors for (i)–(iii) above?

b. Plot the exact solution and numerical solutions.

4.3 Spectral methods using rational functions

Rational spectral method in the whole line
Rational spectral method in a semi-infinite interval
Numerical experiments

In this section, we will discuss the use of rational spectral methods, which are par-
ticularly suitable for problems whose solutions do not decay exponentially to zero as
|x| → ∞. The properties of the rational spectral methods have been discussed by
several researchers, see, e.g. Boyd [17, 19] and Weideman [167].

Rational spectral method in the whole line

For problem posed in the whole line, a suitable set of rational basis functions is
defined by

Rn(t) = cos(ncot−1(t)), n = 0, 1, · · · . (4.3.1)

The above orthogonal rational functions are merely mapped Chebyshev polynomi-
als,which in turn are the transformed cosines of a Fourier series. With the map
x = t/

√
1 + t2, the basis functions defined by (4.3.1) are equal to Tn(x), where

the Tn(x) are the usual Chebyshev polynomials. The first five basis functions are

R0(t) = 1, R1(t) =
t√

t2 + 1
, R2(t) =

t2 − 1
t2 + 1

,

4.3 Spectral methods using rational functions 171

R3(t) =
t(t2 − 3)

(t2 + 1)3/2
, R4(t) =

t4 − 6t2 + 1
(t2 + 1)2

. (4.3.2)

In general, only the Rn’s with even n are truly rational but the others have a square
root in the denominator. The orthogonality relation is∫ ∞

−∞

1
1 + t2

Rm(t)Rn(t)dt =
πcn
2
δm,n, (4.3.3)

where c0 = 2, cn = 1(n � 1) and δm,n is the Kronecker–delta. Thus, if f(t) ∈
L2(R) and f(t) =

∑∞
n=0 anRn(t), then we have

an =
2
πcn

∫ ∞

−∞

1
1 + t2

f(t)Rn(t)dt, n � 0.

Example 4.3.1 As an example, we consider parametrized dynamical systems of the
form

u′ = f(u, λ), u(t) ∈ Rd, λ ∈ Rp, t ∈ R, (4.3.4)

where d, p � 1. A solution u(t) of (4.3.4) at λ is called a connecting orbit if the limits

u− = lim
t→−∞u(t), u+ = lim

t→∞u(t) (4.3.5)

exist.

In the case u− = u+, the orbit is called a homoclinic orbit; when u− �= u+,
it is called a heteroclinic orbit. A closed path formed by several heteroclinic orbits
is called a heteroclinic cycle. Homoclinic orbits typically arise as limiting cases of
periodic orbits which attain infinite period but stay bounded in phase space. There
are also many applications for studying the heteroclinic orbits. For example, the
problem of finding traveling wave front solutions of constant speed for nonlinear
parabolic equations is equivalent to the problem of finding trajectories that connect
two fixed points of an associated system of ordinary differential equations (ODEs).
Computation of connecting orbits involves the solution of a boundary value problem
on the real line. Therefore, the problem is frequently replaced by one on a finite
domain. The system of ODEs is then solved by a standard ODE boundary value
solvers such as a multiple shooting methods and spline collocation methods. A more
efficient method is to employ the rational spectral method. This procedure does not
require that the infinite interval be truncated. Furthermore, spectral accuracy can be
expected with this approach. Accurate numerical results can be obtained using a
small number of grid points.

172 Chapter 4 Spectral Methods in Unbounded Domains

We now consider the use of the rational spectral method to solve (4.3.4). Let
u = (u1, · · · , ud)T and f = (f1, · · · , fd)T. Substituting the expansions

ui(t) =
M+1∑
k=0

cikRk(t), 1 � i � d, (4.3.6)

into (4.3.4), we obtain

M+1∑
k=0

cikR
′
k(t) = fi

⎛⎝(M+1∑
k=0

c1kRk(t), · · · ,
M+1∑
k=0

cdkRk(t)

)T

, λ

⎞⎠ , 1 � i � d,

(4.3.7)
where M is a given positive integer. The derivatives of R(t), R′(t), can be obtained
by direct calculations from (4.3.1).

In practical calculations, it is more efficient to use the pseudospectral method.
That is, we assume (4.3.7) hold at the collocation points {tj}Mj=1. As mentioned be-
fore, our basis functions Rn(t) are mapped Chebyshev polynomials,which suggests
to choose the collocation points as

tj = cot (jπ/(M + 1)) , 1 � j � M. (4.3.8)

Due to the nature of the rational spectral functions we can add two collocation points,
t0 = +∞ and tM+1 = −∞. Using the relation

ui(tj) =
M+1∑
k=0

cik cos (kjπ/(M + 1)) , 0 � j � M + 1, (4.3.9)

we obtain

cik =
2

(M + 1)c̄k

M+1∑
m=0

c̄−1
m ui(tm) cos (mkπ/(M + 1)) , 0 � k � M + 1,

(4.3.10)
where c̄m = 2 if m = 0 or M + 1, and c̄m = 1 if 1 � m � M . Using (4.3.10) and

R′
k(tj) = k sin2 (jπ/(M + 1)) sin (kjπ/(M + 1)) , (4.3.11)

we have, for 1 � j � M ,

u′i(tj) =
M+1∑
k=0

cikR
′
k(tj) =

M+1∑
k=0

cikk sin2 (jπ/(M + 1)) sin (kjπ/(M + 1))

4.3 Spectral methods using rational functions 173

=
2

M + 1
sin2 (jπ/(M + 1))

∑
k,m

k

c̄k c̄m

cos (mkπ/(M + 1)) sin (kjπ/(M + 1))ui(tm).

The problem (4.3.4) and (4.3.5) is to solve

2
M + 1

sin2 (jπ/(M + 1))
∑
k,m

k

c̄k c̄m
cos (mkπ/(M + 1))

sin (kjπ/(M + 1)) ui(tm)

= fi (u(tj), λ) , 1 � i � d, 1 � j � M,

u(t0) = u+, u(tM+1) = u− .

(4.3.12)

The above system has dM equations for the dM unknowns ui(tj), 1 � i � d, 1 �
j � M . The main advantage of the pseudospectral method is that it allows one to
work in the physical space rather than the coefficient space. Thus it is possible to
handle nonlinearities very efficiently, without the convolution sums introduced by
the pure spectral method.

We can also solve the problem (4.3.4) and (4.3.5) by using the collocation points
(4.3.8) in the equation (4.3.7). It follows from (4.3.11) and Rk(tj) = cos(kjπ/(M +
1)) that

M+1∑
k=0

k sin2 (jπ/(M + 1)) sin (kjπ/(M + 1)) cik

=fi

⎛⎝(M+1∑
k=0

c1k cos (kjπ/(M + 1)) , · · · ,
M+1∑
k=0

cdk cos (kjπ/(M + 1))

)T

, λ

⎞⎠ ,

(4.3.13)

for 1 � j � M, 1 � i � d. The above system gives dM equations. We can use
further 2d conditions, which are given by (4.3.5), to find the d(M + 2) unknowns
cik, 1 � i � d, 0 � k � M + 1.

Rational spectral method in a semi-infinite interval

By applying a mapping to the Chebyshev polynomial,we define a new spectral
basis[20, 22]. The new basis functions, denoted by TLn(y), are defined by

TLn(y) := Tn(x) = cos(nt), (4.3.14)

174 Chapter 4 Spectral Methods in Unbounded Domains

where L is a constant map parameter and the three coordinates are related by

y = L
1 + x

1 − x
, x =

y − L

y + L
, (4.3.15)

y = L cot2
t

2
, t = 2cot−1

√
y

L
. (4.3.16)

To avoid confusion as we leap from one coordinate to another, we shall adopt the con-
vention that y ∈ [0,∞) is the argument of the TLn(y), x ∈ [−1, 1] is the argument
of the ordinary Chebyshev polynomials,and t ∈ [0, π] is the argument for cosines.
We are free to calculate in whichever of these three coordinates are most convenient.

We shall refer to the TLn(y) as the rational Chebyshev functions on a semi-
infinite interval. The first five basis functions for L = 1 are

TL0(y) = 1, TL1(y) =
y − 1
y + 1

, TL2(y) =
y2 − 6y + 1

(y + 1)2
,

TL3(y) =
y3 − 15y2 + 15y − 1

(y + 1)3
, TL4(y) =

y4 − 28y3 + 70y2 − 28y + 1
(y + 1)4

.

(4.3.17)

By merely changing the variable in the usual orthogonality integral for the cosines,
one can show that the rational Chebyshev functions are orthogonal:∫ ∞

0

TLm(y)TLn(y)
√
L√

y(y + L)
dy =

πcn
2
δm,n, (4.3.18)

where c0 = 2, cn = 1 (n � 1). The pseudospectral grid in y is simply the image
under the mapping of an evenly spaced Fourier grid,

yi = L cot2
ti
2
, ti =

π(2i + 1)
2N + 2

, 0 � i � N. (4.3.19)

If we have a differential equation defined in the interval [α,∞) instead of y ∈ [0,∞),
then we merely generalize (4.3.16) to y = α+L cot2(t/2). The relevant modification
is that the collocation grid is changed to

yi = α+ L cot2
ti
2
, ti =

π(2i+ 1)
2N + 1

, 0 � i � N − 1. (4.3.20)

A boundary condition is to be imposed at yN (note that TLn(α) = TLn(yN) =
cos(nπ) = (−1)n).

4.3 Spectral methods using rational functions 175

Numerical experiments

Example 4.3.2 The Huxley equation,

wt = wzz + f(w, a), x ∈ R, t > 0,

f(w, a) := w(1 − w)(w − a), a ∈ (0, 1).
(4.3.21)

We look for traveling wave solutions to (4.3.21) of the form w(z, t) = u(z + bt),
where b is the wave speed.

The problem (4.3.21) gives the first-order ODE system

du1(x)
dx

= u2(x),

du2(x)
dx

= bu2(x) − f(u1(x), a),
(4.3.22)

where x = z + bt. If a = 0.5 and b = 0, then (4.3.22) has a family of periodic orbits
of increasing period. In the limit, as the period goes to infinity, the orbits approach
a heteroclinic cycle with the equilibrium points (0, 0) and (1, 0). The first of the two
heteroclinic orbits has the exact representation

u1(x) =
exp(x/

√
2)

1 + exp(x/
√

2)
, u2(x) =

du1(x)
dx

. (4.3.23)

The second heteroclinic connection is obtained by reflecting the phase plane rep-
resentation of the first with respect to the horizontal axis u2 = 0. Since this test
problem has (4.3.23) as an exact solution, it is useful to test our spectral method.

It is known that a scaling factor β is useful to optimize computational accuracy. It
is observed in [105] that if β is not carefully chosen, then numerical oscillations are
present. It is also observed that a reasonable choice of β in this case is in the region
[0.1, 0.5], since this leads to smooth curves. It was found that the accuracy is not very
sensitive to the choice of the scaling factor in the neighborhood of the optimum β.
Therefore, it is safe to use any β in this “trusted” region. Based on this observation,
for any given M we can obtain a corresponding interval from which we can choose
any value as β.

For Example 4.3.2, the exact representation of the two branches is b = ±√2(a−
0.5). Therefore in the case a = 0.5 the exact value of b is 0. In [105], the numerical
values of |b| against the number of collocation points, M , are presented, with cor-
responding scaling factors used. It was observed that if M > 10, then the scaling

176 Chapter 4 Spectral Methods in Unbounded Domains

factors used are almost independent of M . For a given M , we define the numerical
errors as

error ≡ max
1�j�M

‖u(tj) − U(tj)‖l2 , (4.3.24)

where u = (u1, u2)T is the exact solution given in (4.3.23), and U is the numerical
solution. The numerical errors are plotted in Fig. 4.6, which also shows a spectral
convergence rate.

Figure 4.6 The maximum errors between the exact and the numerical solutions of u 1.

Exercise 4.3

Problem 1 The differential equation

u′′(y) − y2u(y) = −e−y2/2, y ∈ R

has an exact solution u(y) = e−y2/2. Solve it by using the rational spectral method.
Show spectral accuracy by using a number of collocation points.

Problem 2 Solve

u′′(y) − y2u(y) = −e−y2/2, y ∈ (1,∞),

u(1) = e−1/2,

by using the rational spectral method.

4.4 Error estimates in unbounded domains 177

4.4 Error estimates in unbounded domains

Laguerre-Galerkin method
Hermite-Galerkin method

In this section, we will discuss some basic technqiues for obtaining error bounds for
spectral methods in unbounded domains. There have been several works relevant to
the topic in this section; see e.g. [117], [34], [45], [74], [113], [144], [76].

Laguerre-Galerkin method

Let ωα = xαe−x and ω̂α = xα. We begin by considering the L2
ωα

-orthogonal
projection: πN,α : L2

ωα
(R+) → PN , defined by

(u− πN,αu, vN)ωα = 0, ∀vN ∈ PN . (4.4.1)

We derive from the orthogonality of L(α)
n (4.2.2) that

πN,αu =
N∑
n=0

û(α)
n L(α)

n , with û(α)
n = (u,L(α)

n)ωα/γ
(α)
n .

Similar to the Jacobi approximations, we introduce

Hm
ωα,∗(R+) := {u : ∂kxu ∈ L2

ωα+k
(R+), 0 � k � m}, (4.4.2)

equipped with the norm and semi-norm

‖u‖Hm
ωα,∗ =

(m∑
k=0

‖xk/2∂kxu‖2
ωα

)1/2
, |u|Hm

ωα,∗ = ‖xm/2∂mx u‖2
ωα
.

Before presenting the main result, we make the observation that

∂kxL(α)
n (x) = (−1)kL(α+k)

n−k (x), n � k, (4.4.3)

which follows by using the derivative relation (4.2.6a) repeatedly. Hence, {∂kxL(α)
n }

are mutually orthogonal in L2
ωα+k

(R+), i.e.,∫ +∞

0
∂kxL(α)

n ∂kxL(α)
m ωα+kdx = γ

(α+k)
n−k δmn.

By Stirling’s formula (1.8.12) and (4.2.3),

γ
(α+k)
n−k =

Γ(n+ α+ 1)
Γ(n− k + 1)

∼ nα+k, for n� 1.

178 Chapter 4 Spectral Methods in Unbounded Domains

Then, using an argument similar to that in the proof of Theorem 1.8.1 leads to the
fundamental approximation result for Laguerre polynomials:

Theorem 4.4.1 For any u ∈ Hm
ωα,∗(R+) and m � 0,

‖∂lx(πN,αu− u)‖ωα+l
� N (l−m)/2‖∂mx u‖ωα+m , 0 � l � m. (4.4.4)

We now consider the corresponding approximation result for Laguerre functions.
For any u ∈ L2

ω̂α
(R+), we have uex/2 ∈ L2

ωα
(R+). Let us denote

P̂N = span{L̂(α)
0 , L̂(α)

1 , · · · , L̂(α)
N }, (4.4.5)

and define the operator

π̂N,αu = e−x/2πN,α(uex/2) ∈ P̂N , (4.4.6)

where P̂N is given in (4.2.20). Clearly, by (4.4.1),

(π̂N,αu− u, vN)ω̂α = (πN,α(uex/2) − (uex/2), (vN ex/2))ωα

= 0, ∀vN ∈ P̂N .
(4.4.7)

Hence, π̂N,α is the orthogonal projector from L2
ω̂α

(R+) onto P̂N .

Theorem 4.4.2 Let ∂̂x = ∂x + 1
2 . Then

‖∂̂lx(πN,αu− u)‖ω̂α+l
� N (l−m)/2‖∂̂mx u‖ω̂α+m , 0 � l � m. (4.4.8)

Proof Let v = uex/2. It is clear that

∂lx(πN,αv − v) = ∂lx(e
x/2(π̂N,αu− u)) = ex/2∂̂lx(π̂N,αu− u),

and likewise, ∂mx v = ex/2∂̂mx u. Hence, the desired result is a direct consequence of
(4.4.4).

Hereafter, let ω = e−x, and denote

H1
0,ω(R+) = {u ∈ H1

ω(R+) : u(0) = 0}, P 0
N = H1

0,ω(R+) ∩ PN .
Before we study the errors of the Laguerre-Galerkin approximation for (4.2.27), we
need to establish a few lemmas. We shall first establish a Sobolev inequality and a
Poincaré inequality in the semi-infinite interval.

4.4 Error estimates in unbounded domains 179

Lemma 4.4.1 For any given v ∈ H1
0,ω(R+), we have

‖e−x
2 v‖L∞(R+) �

√
2‖v‖

1
2
ω |v|

1
2
1,ω, ‖v‖ω � 2|v|1,ω. (4.4.9)

Proof For any x ∈ R+,

e−xv2(x) =
∫ x

0

d
dy

(e−yv2(y))dy

= 2
∫ x

0
e−yv(y)

dv(y)
dy

dy −
∫ x

0
e−yv2(y)dy,

from which we derive

e−xv2(x) +
∫ x

0
e−yv2(y)dy

� 2
∫ ∞

0
e−y|v(y)dv(y)

dy
|dy � 2‖v‖ω|v|1,ω.

(4.4.10)

This implies the first conclusion. Letting x→ ∞, we get the second inequality.

Consider the orthogonal projection π1,0N : H1
0,ω(R+) → P 0

N , defined by

((u− π1,0
N u)′, v′N)ω = 0, ∀vN ∈ P 0

N . (4.4.11)

Lemma 4.4.2 If u ∈ H1
0,ω(R+), and ∂xu ∈ Hm−1

ω,∗ (R+), then for m � 1,

‖π1,0
N u− u‖1,ω � N

1
2
−m

2 ‖xm−1
2 ∂mx u‖ω. (4.4.12)

Proof Let uN (x) =
∫ x
0 πN−1,0u

′(y)dy. Then u− uN ∈ H1
0,ω(R+). It follows from

Lemma 4.4.1 and Theorem 4.4.1 with α = 0 that

‖π1,0
N u− u‖1,ω � ‖uN − u‖1,ω � |u− uN |1,ω

� N
1
2
−m

2 ‖xm−1
2 ∂mx u‖ω.

This ends the proof.

Note that for any u ∈ H1
0 (R+) we have uex/2 ∈ H1

0,ω(R+). Define the operator

π̂1,0
N u = e−x/2π1,0

N (uex/2) ∈ P̂ 0
N , ∀u ∈ H1

0 (R+).

The following lemma characterizes this operator.

180 Chapter 4 Spectral Methods in Unbounded Domains

Lemma 4.4.3 For any u ∈ H1
0 (R+), we have

((u− π̂1,0
N u)′, v′N) +

1
4
(u− π̂1,0

N u, vN) = 0, ∀vN ∈ P̂ 0
N . (4.4.13)

Let ∂̂x = ∂x + 1
2 . If u ∈ H1

0 (R+) and ∂̂mx u ∈ L2
ω̂m−1

(R+), then we have

‖π̂1,0
N u− u‖1 � N

1
2
−m

2 ‖∂̂mx u‖ω̂m−1 . (4.4.14)

Proof Using the definition of π1,0
N , and integration by parts, we find that for any

vN = wNe
−x/2 with wN ∈ P 0

N ,

((u− π̂1,0
N u)′, v′N)

=
(
[(uex/2) − π1,0

N (uex/2)]′ − 1
2
[(uex/2) − π1,0

N (uex/2)], w′
N − 1

2
wN

)
ω

= −1
2

∫ ∞

0
[(uex/2 − π1,0

N (uex/2))wN]′e−xdx+
1
4
((uex/2) − π1,0

N (uex/2), wN)ω

= −1
4
((uex/2) − π1,0

N (uex/2), wN)ω = −1
4
(u− π̂1,0

N u, vN),

which implies the identity (4.4.13). Let v = uex/2. It is clear that

∂x(π̂
1,0
N u− u) = −1

2
e−x/2(π1,0

N v − v) + e−x/2∂x(π
1,0
N v − v).

Hence, using Lemma (4.4.2) and the fact ∂mx v = ex/2∂̂mx u, leads to

‖∂x(π̂1,0
N u− u)‖ � ‖π1,0

N v − v‖ω + ‖∂x(π1,0
N v − v)‖ω

� N
1
2
−m

2 ‖xm−1
2 ∂mx v‖ω � N

1
2
−m

2 ‖xm−1
2 ∂̂mx u‖.

Similarly, we have
‖π̂1,0

N u− u‖ � N
1
2
−m

2 ‖xm−1
2 ∂̂mx u‖.

This completes the proof.

A complete error analysis for (4.2.31) needs error estimates for the laguerre-
Gauss-Radau interpolation which are much more involved than the interpolation er-
rors on a finite interval. We shall refer to [121] (and the references therein) where
some optimal Laguerre interpolation error estimates were established. To simplify
the presentation, we shall ignore the interpolation error here. We are now in a posi-
tion to perform the error analysis.

4.4 Error estimates in unbounded domains 181

Theorem 4.4.3 Let ∂̂x = ∂x + 1
2 , γ > 0, and let u and uN be respectively the

solution of (4.2.27) and (4.2.31) where ÎNf is replaced f . Then, if u ∈ H1
0 (R+) and

∂̂mx u ∈ L2
ω̂m−1

(R+), we have

‖u− uN‖1 � N
1
2
−m

2 ‖∂̂mx u‖ω̂m−1 . (4.4.15)

Proof Let eN = uN − π̂1,0
N u and ẽN = u− π̂1,0

N u. Hence, by (4.2.30) and (4.2.31),

a(uN − u, vN) = 0, ∀vN ∈ P̂ 0
N .

Due to (4.4.13), we have a(eN , vN) = a(ẽN , vN) = (γ − 1/4)(ẽN , vN). Using the
Cauchy-Schwarz inequality and Lemma 4.4.3 yields, for γ > 0,

‖eN‖1 � ‖ẽN‖1 � N
1
2
−m

2 ‖xm−1
2 ∂̂mx u‖.

Finally, the estimate (4.4.15) follows from the triangle inequality and Lemma 4.4.3.

Hermite-Galerkin method

The analysis for the Hermite case can be carried out in a similar fashion. Let
ω = e−x2

be the Hermite weight. We define the L2
ω-orthogonal projection πN :

L2
ω(R) → PN by

(u− πNu, vN)ω = 0, ∀vN ∈ PN .

We derive immediately from (4.1.2) that

πNu(x) =
N∑
n=0

ûnHn(x),

with

ûn =
1√
π2nn!

∫ ∞

−∞
u(x)Hn(x)e−x

2
dx, n � 0.

To obtain the approximation result for πN , we observe from (4.1.4a) that

∂kxHn(x) = 2kn(n− 1) · · · (n− k + 1)Hn−k(x), n � k, (4.4.16)

which implies that {Hn} are orthogonal under the inner product of the Sobolev space
Hm
ω (R). Hence, using an argument similar to that for the proof of Theorem 1.8.1, we

can easily establish the following result:

182 Chapter 4 Spectral Methods in Unbounded Domains

Theorem 4.4.4 For any u ∈ Hm
ω (R) with m � 0,

‖∂lx(πNu− u)‖ω � N (l−m)/2‖∂mx u‖ω, 0 � l � m. (4.4.17)

We now consider the corresponding approximation result for Hermite functions.
Since uex

2/2 ∈ L2
ω(R) for any u ∈ L2(R). We define

π̂Nu := e−x
2/2πN (uex

2/2) ∈ P̂N , (4.4.18)

where P̂N is given in (4.1.20). It is easy to check that π̂Nu is the L2(R)−orthogonal
projection of u onto P̂N since

(u− π̂Nu, vN) =
(
uex

2/2 − π̂N (uex
2/2), vNex

2/2
)
ω

= 0, ∀vN ∈ P̂N . (4.4.19)

The following result is a direct consequence of Theorem 4.4.4.

Corollary 4.4.1 Let ∂̂x = ∂x + x. For any ∂̂mx u ∈ L2(R) with m � 0,

‖∂̂lx(π̂Nu− u)‖ � N (l−m)/2‖∂̂mx u‖, 0 � l � m. (4.4.20)

With the help of the above approximation results, it is straightforward to establish
error estimates for the Hermite-Galerkin approximation to Poisson type equations.

Exercise 4.4

Problem 1 Given α1 > 0 and α2 > 0. Let u and uN be respectively the solutions
of (4.2.43) and (4.2.44). Show that for u ∈ H2

0 (R+) and ∂2
xu ∈ Hm

ω̂m−2(R+), with
m � 2, we have

‖u− uN‖2 � N1−m
2 ‖u‖m,ω̂m−2 .

Chapter 5
Some applications in one
space dimension

Contents
5.1 Pseudospectral methods for boundary layer problems 184

5.2 Pseudospectral methods for Fredholm integral equations . . 190

5.3 Chebyshev spectral methods for parabolic equations 196

5.4 Fourier spectral methods for the KdV equation 204

5.5 Fourier method and filters 214

5.6 Essentially non-oscillatory spectral schemes 222

In this chapter, we present applications of the spectral method to some typical one-
dimensional problems. The first section is concerned with two-point boundary value
problems with boundary layers. Spectral collocation methods have some advantages
for handling this class of problems, but special tricks are needed to deal with ex-
tremely thin layers. The second section is concerned with the Fredholm integral
equations. It will be demonstrated that the spectral method is almost as efficient as
the standard product integration methods while producinf much more accurate ap-
proximations. In Section 5.3, we present a Chebyshev spectral method for parabolic
equations, and in Section 5.4 we consider Fourier spectral methods for the KdV equa-
tion. In the final two sections, we discuss Fourier approximation to discontinuous
functions, the use of the spectral filters, and the applications to nonlinear hyperbolic

184 Chapter 5 Some applications in one space dimension

conservation laws. The last section — essentially non-oscillatory spectral methods
— requires some background in hyperbolic conservation laws. A good reference on
this topic is the book by LeVeque[101].

5.1 Pseudospectral methods for boundary layer problems

A direct application of PS methods
Boundary layer resolving spectral methods
Transformed coefficients
Numerical experiments

The case when ε � 1 in (2.4.1) is particularly interesting and challenging. Many
different phenomena can arise in such problems, including boundary layers and com-
plicated internal transition regions. The last few decades have witnessed substantial
progress in the development of numerical methods for the solution of such problems
and several packages, such as COLSYS[5], PASVAR [100], and MUS[122] are presently
available.

In this section, we consider the case where thin boundaries are formed when
ε � 1. It is well-known that spectral methods are attractive in solving this type of
problems thanks to the fact that the spectral collocation points are clustered at the
boundary, more precisely, we have

|x1 − x0| = |xN − xN−1| = | cos(π/N) − 1| ≈ 1
2

(π
N

)2 ≈ 5
N2

.

In other words, the spacing between the collocation points near the boundaries is
of order O(N−2), in contrast with O(N−1) spacing for finite differences or finite
elements.

Although spectral methods are much more efficient than finite differences and fi-
nite elements in solving boundary layers, still a large N is required to obtain accurate
solutions when ε is sufficiently small. In the past few years, several modified spectral
methods have been proposed that are designed to resolve thin boundary layers,see
e.g. [47], [64], [160].

A direct application of PS methods

We first use the CODE PSBVP.2 in Section 2.4 to compute the numerical solu-
tion of the following problem with small parameter ε.

Example 5.1.1 The following example has variable coefficients and the solution

5.1 Pseudospectral methods for boundary layer problems 185

develops two boundary layers of width O(ε) near the boundaries. The equation is

εu′′(x) − xu′(x) − u = f(x),

where f(x) = ((x+ 1)/ε− 1) exp(−(x+ 1)/ε)− 2((x− 1)/ε+ 1) exp((x− 1)/ε).
The boundary conditions are u(−1) = 1, u(+1) = 2.

It can be verified that the function u(x) = e−(x+1)/ε + 2e(x−1)/ε satisfies the
above ODE. It also satisfies the boundary conditions to machine precision (which is
about 16-digits in double precision) for all values of ε � 0.05. The following table
contains the maximum errors for ε = 10−2, 10−3 and 10−4:

N ε=10−2 ε=10−3 ε=10−4

32 1.397e-03 4.388e+00 6.450e+01
64 1.345e-10 3.024e-01 2.792e+01

128 8.843e-14 1.598e-04 7.006e+00
256 5.372e-13 9.661e-13 1.321e-01

We observe that the Chebyshev pseudospectral method fails to resolve the solution
satisfactorily for ε = 10−4, even with N = 256.

For comparison, we solve the problem by using the central-difference finite dif-
ference method with ε = 10−2 and 10−3, respectively. The following results show
that even with 1000 grid points the boundary layers are not well resolved:

N ε=10−2 ε=10−3 N ε=10−2 ε=10−3

32 1.900e+00 1.879e+00 256 1.077e+00 1.987e+00
64 1.866e+00 1.941e+00 512 6.443e-01 1.954e+00
128 1.560e+00 1.972e+00 1024 3.542e-01 1.714e+00

Boundary layer resolving spectral methods

In order to resolve very thin boundary layers by using a reasonable number of un-
knowns N , we transform the singularly perturbed linear BVP (2.4.1) via the variable
transformation x �→ y(x) (or x = x(y)) into the new BVP

εv′′(y) + P (y)v′(y) +Q(y)v(y) = F (y), (5.1.1)

where v is the transplant of u, v(y) = u(x(y)). The transformed coefficients are

P (y) =
p(x)
y′(x)

+ ε
y′′(x)
y′(x)2

, Q(y) =
q(x)
y′(x)2

, F (y) =
f(x)
y′(x)2

, (5.1.2)

We used CODE DM.3 in Section 2.1 to compute the differentiation matrix D1. That is, we
have used the formulas (2.1.15) and (2.1.16). If we use more accurate formulas (2.1.17), this error will
reduce to 6.84e-14.

186 Chapter 5 Some applications in one space dimension

where again x = x(y). It is clear from (5.1.1) and (5.1.2) that for any variable trans-
formation x �→ y(x) the two quantities 1/y′(x) and y′′(x)/[y′(x)]2 are of interest
and should be easy to calculate.

We now introduce the iterated sine functions x = gm(y),m = 0, 1, · · · , where

g0(y) := y, gm(y) = sin
(π

2
gm−1(y)

)
, m � 1. (5.1.3)

The following result characterizes these transformations based on the relative spacing
of the transformed Chebyshev points.

The following two statements hold for any integer m � 0:

(a) The map gm is one–to–one and gm([−1, 1]) = [−1, 1];

(b) If the xj are Chebyshev points xj = cos(πj/N), then

gm(x0) − gm(x1) = gm(xN−1) − gm(xN)

=
8
π2

(
π2

4N

)2m+1 (
1 + O(N−2)

)
.

(5.1.4)

For part (a) we need to show that g′m(y) �= 0 for y ∈ (−1, 1), |gm(y)| � 1 and
gm(±1) = ±1, which can be proved by mathematical induction. Part (b) can also be
established by induction (with respect to m).

Transformed coefficients

We now consider the transformation x = x(y) := gm(y). From (5.1.4) it can be
expected that the transformations (5.1.3) together with the Chebyshev PS method can
deal with extremely small boundary layers using a fairly small number of collocation
points. For m = 1, 2 and 3 (which correspond to one, two and three sine trans-
formations), the distance between each boundary point and its nearest interior point
is O(N−4),O(N−8) and O(N−16), respectively. Therefore, even for very small ε
such as ε = 10−12, at least one collocation point lies in the boundary layer even for
moderate values of N , if two or three sine transformations are used.

After having the transformation x(y) = gm(y), we need to work on the trans-
formed coefficients P (y), Q(y) and F (y) given by (5.1.2). The computation of
1/y′(x) is straightforward. Differentiating the recursion (5.1.3) we obtain

g′0(y) = 1, g′m(y) =
π

2
cos

(π
2
gm−1(y)

)
g′m−1(y), m � 1. (5.1.5)

5.1 Pseudospectral methods for boundary layer problems 187

Since y′(x) = 1/g′m(y), we have

1
y′(x)

=
m−1∏
k=0

(π
2

cos
(π

2
gk(y)

))
, m � 1. (5.1.6)

Further we define the functions hm(x), mapping [−1, 1] onto itself, recursively via

h0(x) := x, hm(x) :=
2
π

arcsin (hm−1(x)) , m � 1. (5.1.7)

We will show that hm = g−1
m , for m = 0, 1, · · · (this implies that y(x) = hm(x)).

The case m = 0 is trivial. For m � 1, we let z = hm(gm(y)). It can be shown by
induction that

gk(z) = hm−k(gm(y)), 0 � k � m. (5.1.8)

For k = m we therefore obtain

gm(z) = h0(gm(y)) = gm(y), (5.1.9)

and, since gm is injective, it follows that y = z, i.e. y = hm(gm(y)).

We now proceed to find a recursion for the quantity h′′m(x)/[h′m(x)]2. From
(5.1.7) we obtain

sin
(π

2
hm(x)

)
= hm−1(x), m � 1. (5.1.10)

Differentiating the above equation twice with respect to x yields

π

2
cos

(π
2
hm(x)

)
h′m(x) = h′m−1(x),

−
(π

2

)2
sin

(π
2
hm(x)

) (
h′m(x)

)2 +
(π

2

)
cos

(π
2
hm(x)

)
h′′m(x) = h′′m−1(x).

(5.1.11)

Finally, using the above results we obtain the recursion

h′′m(x)
(h′m(x))2

=
π

2
tan

(π
2
hm(x)

)
+
π

2
cos

(π
2
hm(x)

) h′′m−1(x)(
h′m−1(x)

)2 . (5.1.12)

Note that h′0(x) ≡ 1 and h′′0(x) ≡ 0. Since y(x) = hm(x), the quantity
y′′(x)/[y′(x)]2 can be computed easily using (5.1.12).

188 Chapter 5 Some applications in one space dimension

Using (5.1.6) and (5.1.12), we are able to compute the coefficients P (y), Q(y)
and F (y) in the transformed equation (5.1.1). The pseudocode for solving (5.1.1) is
provided below:

CODE Layer.1
Input M, N, ε, p(x), q(x), f(x), βL, βR
Collocation points: x(j)=cos(πj/N)
%first order differentiation matrix
call CODE DM.3 in Section 2.1 to get D1
%compute second order differentiation matrix
D2=D1*D1
% compute x=gm(y) and 1/y’(x) at grid points
for j=1 to N-1 do
gm=y(j); yp(j)=1

for mm=1 to M do
yp(j)=(π/2)*cos(π*gm/2)
gm=sin(π*gm/2)

endfor
x(j)=gm

% compute hm(x) and y′′(x)/[y′(x)]2

hm=x(j); hd(j)=0;
for mm=1 to M do
hm=(2/π)*asin(hm)
hd(j)=(π/2)*tan(π*hm/2)+(π/2)*cos(π*hm/2)*hd(j)

endfor
endfor
% compute the stiffness matrix A
for i=1 to N-1 do

P(i)=p(x(i))*yp(i)+ε*hd(i)
Q(i)=q(x(i))*(yp(i))2; F(i)=f(x(i))*(yp(i))2

ss1=ε*D2(i,0)+P(i)*D1(i,0);
ss2=ε*D2(i,N)+P(i)*D1(i,N);

for j=1 to N-1 do
if i=j

A(i,j)=ε*D2(i,j)+P(i)*D1(i,j)+Q(i)
else

A(i,j)=ε*D2(i,j)+P(i)*D1(i,j)
endif

endfor
% compute the right-hand side vector b

b(i)=F(i)-ss1*βR-ss2*βL
endfor
% solve the linear system to get the unknown vector

5.1 Pseudospectral methods for boundary layer problems 189

u=A−1b
Output u(1), u(2), · · ·, u(N-1)

The MATLAB code based on the above algorithm is given below.

CODE Layer.2
Input eps, M, N, p(x), q(x), f(x), betaL, betaR
pi1=pi/2;
j=[1:1:N-1]; y=[cos(pi*j/N)]’;
% MATLAB code for DM1 is given by CODE DM.4 in Section 2.1
D1=DM1(N); D2=D1ˆ2;
for j=1:N-1

gm=y(j); yp(j)=1;
for mm=1:M

yp(j)=yp(j)*pi1*cos(pi1*gm); gm=sin(pi1*gm);
end

x(j)=gm;
%compute y’’(x)/[y’(x)]ˆ2

hm=x(j); hd(j)=0;
for mm=1:M

hm=asin(hm)/pi1;
hd(j)=pi1*tan(pi1*hm)+pi1*cos(pi1*hm)*hd(j);

end
end
% compute the stiffness matrix
for i=1:N-1

P1=p(x(i))*yp(i)+eps*hd(i);
Q1=q(x(i))*yp(i)ˆ2; F1=f(x(i))*yp(i)ˆ2;

for j=1:N-1
if i==j
A(i,j)=eps*D2(i+1,j+1)+P1*D1(i+1,j+1)+Q1;

else
A(i,j)=eps*D2(i+1,j+1)+P1*D1(i+1,j+1);

end if
end for

ss1=eps*D2(i+1,1)+P1*D1(i+1,1);
ss2=eps*D2(i+1,N+1)+P1*D1(i+1,N+1);
b(i)=F1-ss1*betaR-ss2*betaL;

end
% solve the linear system
u=A\b’;

190 Chapter 5 Some applications in one space dimension

Numerical experiments

We compute the numerical solutions for Example 5.1.1 using the above MAT-
LAB code. The following table contains the results of our experiments for ε =
10−3, ε = 10−6 and ε = 10−9. We use two sine iterations in the above code.

N ε=10−3 ε=10−6 ε=10−9

32 1.96e-02 4.77e+00 6.56e-01
64 3.91e-04 2.11e-01 3.20e-01

128 1.74e-09 7.48e-03 3.03e-01
256 8.66e-12 6.82e-07 9.00e-02
512 1.25e-09 3.87e-10 6.24e-05

The maximum errors in the above table suggest that with two sine iterations very
thin boundary can be resolved with O(100) collocation points.

We close by pointing out that there have been various types of methods for han-
dling singular solutions or coordinate singularities with spectral methods see, e.g.
[136], [42], [85], [48], [103], [77], [104].

Exercise 5.1

Problem 1 Solve the boundary value problem in Problem 1 of Exercise 2.4 with
CODE Layer.1, and compare the errors thus obtained.

5.2 Pseudospectral methods for Fredholm integral equations

Trapezoidal method and simpson’s method
Integral of Lagrange polynomials
Linear system
Computational efficiency

We consider the Fredholm integral equation of the second kind,

u(x) +
∫ 1

−1
K(x, s)u(s)ds = g(x), x ∈ [−1, 1], (5.2.1)

where the kernel functions K(x, s) and g(x) are given. There exist many product-
integration type numerical methods for the solution of (5.2.1), such as second-order
trapezoidal method, fourth-order Simpson’s method, see e.g. Brunner[26], Davis[37]

and Atkinson[6]. In this section, we describe a method based on the Chebyshev pseu-
dospectral method. For comparison, we begin by introducing the trapezoidal and

5.2 Pseudospectral methods for Fredholm integral equations 191

Simpson’s methods.

Trapezoidal method and Simpson’s method

We divide [−1, 1] into N equal intervals by the points

−1 = y0 < y1 < · · · < yN−1 < yN = 1.

Specifically, if h = 2/N is the common length of the intervals, then yj = −1 + jh,
0 � j � N . The so-called composite trapezoidal rule for the integral of a given
function f(s) is defined by∫ 1

−1
f(s)ds ∼= h

(
f(y0)

2
+ f(y1) + · · · + f(yN−1) +

f(yN)
2

)
. (5.2.2)

Using the composite trapezoidal rule to treat the integral term in (5.2.1) leads to the
following trapezoidal method:

U(yj) + h
N∑
k=0

c̃−1
k K(yj , yk)U(yk) = g(yj), 0 � j � N,

where c̃j = 1 except c̃0 = c̃N = 2. Solving the above linear system will give an
approximate solution for (5.2.1). The convergence rate for this approach is two.

Similarly, the composite Simpson’s rule is given by∫ 1

−1
f(s)ds∼= h

3

(
f(y0) + 4f(y1) + 2f(y2) + 4f(y3) + 2f(y4) + · · ·

+2f(yN−2) + 4f(yN−1) + f(yN)
)
, (5.2.3)

where N is an even , positive integer. Using the composite Simpson’s rule to treat
the integral term in (5.2.1) leads to the following Simpson’s method:

U(yj) +
h

3

N∑
k=0

ckK(yj, yk)U(yk) = g(yj), 0 � j � N.

Here c0 = 1, cN = 1, ck = 4 for 1 � k � N−1 and k odd, ck = 2 for 1 � k � N−1
and k even. The convergence rate for this approach is four.

To obtain a better understanding of the above two methods, they will be employed
to solve the following example.

For simplicity, it is always required that N , the number of sub-intervals, is even for Simpson’s
method.

192 Chapter 5 Some applications in one space dimension

Example 5.2.1 Consider (5.2.1) with K(x, s) = exs and

g(x) = e4x +
(
ex+4 − e−(x+4)

)
/(x+ 4).

The exact solution is u(x) = e4x.

The maximum errors obtained by using the trapezoidal and Simpson’s methods
are listed below:

N Trapezoidal method Simpson’s method
8 7.878e-01 5.782e-02
16 3.259e-01 7.849e-03
32 1.022e-01 6.825e-04
64 2.846e-02 4.959e-05

128 7.500e-03 3.329e-06
256 1.924e-03 2.154e-07

The second-order convergence rate for the trapezoidal method and the fourth-
order convergence rate for the Simpson’s method are observed from the above table.

Integral of Lagrange polynomials

In our computation, we need the values of the integrals

bk =
∫ 1

−1
Tk(s)ds, 0 � k � N.

They can be computed using (1.3.4),

2bk =
1

k + 1

(
Tk+1(1) − Tk+1(−1)

)
− 1
k − 1

(
Tk−1(1) − Tk−1(−1)

)
, k � 2,

b0 = 2, b1 = 0.
(5.2.4)

Since Tk(±1) = (±1)k , we obtain

bk =
{

0, k odd,
2/(1 − k2), k even.

(5.2.5)

As before, the Chebyshev points are defined by xj = cos(πj/N), 0 � j � N .
For a fixed k, 0 � k � N , let Fk(s) be the polynomial of minimal degree which
takes the value 1 at s = xk and 0 at s = xj , j �= k (i.e. Fk(s) is the Lagrange
polynomial). Expand Fk(s) in terms of the Chebyshev polynomials, i.e., Fk(s) =

5.2 Pseudospectral methods for Fredholm integral equations 193∑N
j=0 akjTj(s), s ∈ [−1, 1]. Similar to the derivation of (5.3.4), we obtain

akj =
2
Nc̃j

N∑
m=0

c̃−1
m Fk(xm) cos (jmπ/N) =

2
Nc̃j c̃k

cos (jkπ/N) .

The above result gives

Fk(s) =
2

Nc̃k

N∑
j=0

c̃−1
j cos (jkπ/N)Tj(s).

Integrating on both sides from −1 to 1 leads to

dk :=
∫ 1

−1
Fk(s)ds =

2
Nc̃k

∑
j even

c̃−1
j bj cos (jkπ/N) , (5.2.6)

where bj is defined by (5.2.5).

Linear system

We can now use the Chebyshev pseudospectral method to solve (5.2.1). The trick
is that we expand the functions in the integrand, rather than expanding the unknown
function only:

K(x, s)u(s) ≈
N∑
k=0

Fk(s)K(x, sk)U(sk), sk = cos(πk/N), 0 � k � N.

(5.2.7)
where U(sk) is the approximation for u(sk), 0 � k � N . We then use (5.2.7) and
let (5.2.1) hold at the Chebyshev points {xj}:

U(xj) +
N∑
k=0

K(xj, sk)U(sk)
∫ 1

−1
Fk(s)ds = g(xj), 0 � j � N.

We write the above equations into matrix form,⎛⎜⎝ U(x0)
...

U(xN)

⎞⎟⎠+ M(x, s)

⎛⎜⎝ U(s0)
...

U(sN)

⎞⎟⎠ =

⎛⎜⎝ g(x0)
...

g(xN)

⎞⎟⎠ , (5.2.8)

194 Chapter 5 Some applications in one space dimension

where the matrix M(x, s) is defined by

M(x, s) =

⎛⎜⎜⎜⎝
d0K(x0, s0) d1K(x0, s1) · · · dNK(x0, sN)
d0K(x1, s0) d1K(x1, s1) · · · dNK(x1, sN)

...
...

...
d0K(xN , s0) d1K(xN , s1) · · · dNK(xN , sN)

⎞⎟⎟⎟⎠ , (5.2.9)

with dk given by (5.2.6). Since sk = xk, 0 � k � N , we obtain

(I + M(x, x))�U = �g, (5.2.10)

where �U = (U(x0), · · · , U(xN))T and �g = (g(x0), · · · , g(xN))T.

A pseudocode is given below:

CODE Intgl.1
Input N, K(x,s), g(x)
Compute the collocation points: x(k)=cos(πk/N)

x(k)=cos(πk/N); c̃(k)=1
end
c̃(0)=2; c̃(N)=2; c̃(k)=1, 1�k�N-1
% compute the integral of the Chebyshev function, bk
for k=0 to N do

if k is even then b(k)=2/(1-k2)
else b(k)=0
endif

endfor
% compute dk
for k=0 to N do

dd=0
for j=0 to N do

dd=dd+b(j)*cos(jkπ/N)/c̃(j)
endfor

d(k)=2*dd/(N*c̃(k))
endfor
% form the stiffness matrix
for i=0 to N do

for j=0 to N do
if i=j then A(i,j)=1+d(i)*K(x(i),x(i))
else A(i,j)=d(j)*K(x(i),x(j))
endif

endfor
% form the right-hand side vector

5.2 Pseudospectral methods for Fredholm integral equations 195

b(i)=g(x(i))
endfor

% solve the linear system
u=A−1b
Output u(0), u(1), · · ·, u(N)

Using the above code to compute the numerical solutions of Example 5.2.1 gives
the following results (the maximum errors):

N Maximum error N Maximum error
6 1.257e-02 14 1.504e-09
8 2.580e-04 16 1.988e-11

10 5.289e-06 18 2.416e-13
12 9.654e-08 20 2.132e-14

Computational efficiency

For differential equations, numerical methods based on the assumption that the
solution is approximately the low-order polynomials lead to a sparse system of al-
gebraic equations. Efficient softwares are available to compute the solutions of the
system. In contrast, a similar approach for the integral equation (5.2.1) leads to a full
system. Even with the (low-order) trapezoidal method the stiffness matrix is full.

It is clear that the spectral method is much more accurate than the trapezoidal and
Simpson’s methods. As for computational efficiency, the only extra time used for the
spectral method is the calculation of dk (see (5.2.6)). By using FFT, it means that the
extra cost is about O(N logN) operations. In other words, the computational time
for the three methods discussed above are almost the same.

In summary, the spectral method is almost as efficient as the standard product
integration methods, but it produces much more accurate approximations.

Exercise 5.2

Problem 1 Assume that f(θ) is periodic in [0, 2π]. If f is smooth, it can be shown
that the trapezoid rule (5.2.2) converges extremely fast (i.e. exponentially). The rapid
convergence of the periodic trapezoid rule can be found in [81]. For illustration,
evaluate

I =
∫ 2π

0

√
1
4

sin2 θ + cos2 θdθ.

How many terms have to be used to get the 12-digits correct (I=4.8442241102738
· · ·)?

196 Chapter 5 Some applications in one space dimension

Problem 2 Consider the following integro-differential equation:

x2u′(x) + exu(x) +
∫ 1

−1
e(x+1)su(s)ds = f(x), −1 � x � 1,

u(−1) + u(1) = e+ e−1.

Choose f(x) = (x2+ex)ex+(ex+2−e−(x+2))/(x+2) so that the exact solution
is u(x) = ex. Solve this problem by using the spectral techniques studied in this
chapter, with N = 4, 6, 8, 10, 12, 14. Plot the maximum errors.

Problem 3 Consider the following integro-differential equation:

exu′′(x)+cos(x)u′(x)+sin(x)u(x)+
∫ 1

−1
e(x+1)su(s)ds=g(x), −1 � x � 1

u(1) + u(−1) + u′(1) = 2e+ e−1, u(1) + u(−1) − u′(−1) = e.

Choose f(x) = (ex + cos(x) + sin(x))ex + (ex+2 − e−(x+2))/(x + 2) so that
the exact solution is u(x) = ex. Solve this problem by using the spectral techniques
studied in this chapter, with N = 4, 6, 8, 10, 12, 14. Plot the maximum errors.

5.3 Chebyshev spectral methods for parabolic equations

Derivatives and their coefficients
Linear heat equation
Nonlinear Burgers’ equation

Let us begin with the simple case, the linear heat equation with homogeneous bound-
ary conditions:

ut = uxx, x ∈ (−1, 1); u(±1, t) = 0. (5.3.1)

An initial condition is also supplied. We can construct a Chebyshev method for the
heat equation as follows:

Step 1 Approximate the unknown function u(x, t) by

uN (x, t) =
N∑
k=0

ak(t)Tk(x), (5.3.2)

where Tk(x) are the Chebyshev polynomials.

5.3 Chebyshev spectral methods for parabolic equations 197

Step 2 Let {xj} be the Chebyshev-Gauss-Lobatto points xj = cos (πj/N), 0 �
j � N . Substituting the above polynomial expansion into the heat equation and
assuming that the resulting equation holds at {xj}N−1

j=1 , we find

duN

dt
(xj , t) =

N∑
k=0

ak(t)T ′′
k (xj), 1 � j � N − 1; uN (±1, t) = 0. (5.3.3)

Notice that {ak} can be determined explicitly by {uN (xj, t)} from (5.3.2), namely,
we derive from (1.3.17) that

ak(t) =
2
Nc̃k

N∑
j=0

c̃−1
j uN (xj , t) cos (πjk/N) , 0 � k � N, (5.3.4)

where c̃0 = 2, c̃N = 2 and c̃j = 1 for 1 � j � N − 1. Thus, combining the above
two equations gives the following system of ODE:

d

dt
uN (xj, t) = Gj

(
uN (x0, t), uN (x1, t), · · · , uN (xN , t)

)
, 1 � j � N − 1,

where Gj can be expressed explicitly.

Derivatives and their coefficients

Notice that deg(uN) � N . The first derivative of uN has the form

∂uN

∂x
=

N−1∑
k=0

a
(1)
k (t)Tk(x), (5.3.5)

where the expansion coefficients a(1)k will be determined by the coefficients ak in
(5.3.2). It follows from T ′

0(x) ≡ 0 and (5.3.2) that

∂uN

∂x
=

N−1∑
k=1

ak(t)T ′
k(x). (5.3.6)

On the other hand, (1.3.4) and (5.3.5) lead to

∂uN

∂x
=

N−1∑
k=0

a
(1)
k (t)Tk(x)

198 Chapter 5 Some applications in one space dimension

= a
(1)
0 T ′

1(x) +
1
4
a

(1)
1 T ′

2(x) +
1
2

N∑
k=2

a
(1)
k (t)

[
1

k + 1
T ′
k+1(x) −

1
k − 1

T ′
k−1(x)

]

= a
(1)
0 T ′

1(x) +
N∑
k=2

1
2k
a

(1)
k−1T

′
k(x) −

N−1∑
k=1

1
2k
a

(1)
k+1T

′
k(x)

=
N∑
k=1

1
2k

(
c̃ka

(1)
k−1 − a

(1)
k+1

)
T ′
k(x),

(5.3.7)

where we have assumed that a(1)N = a
(1)
N+1 = 0. By comparing (5.3.6) and (5.3.7),

we obtain

c̃ka
(1)
k (t) = a

(1)
k+2(t) + 2(k + 1)ak+1(t), k = N − 1, N − 2, · · · , 0,

where a(1)
N+1(t) ≡ 0, a(1)

N (t) ≡ 0. If we write the higher-order derivatives in the form

∂muN

∂xm
=

N−m∑
k=0

a
(m)
k (t)Tk(x), m � 1,

a similar procedure as above will give the following recurrence formula:

c̃ka
(m)
k (t) = a

(m)
k+2(t) + 2(k + 1)a(m−1)

k+1 (t), k = N −m,N −m− 1, · · · , 0,
a

(m)
N+1(t) ≡ 0, a

(m)
N (t) ≡ 0, for m � 1.

(5.3.8)

Linear heat equation

We first consider the heat equation (5.3.1) with the initial condition

u(x, 0) = u0(x), x ∈ (−1, 1). (5.3.9)

We solve the above problem by using the spectral method in space. For ease of
illustration for the spectral method, we employ the forward Euler method in time
direction. High-order accuracy temporal discretization will be discussed later. By
use of (5.3.5), the model problem (5.3.1) becomes

∂uN

∂t

∣∣∣
x=xj

=
N∑
k=0

a
(2)
k (t) cos (πjk/N) . (5.3.10)

5.3 Chebyshev spectral methods for parabolic equations 199

The procedure for using the above formula involving two FFTs:

• Use FFT to evaluate ak(tn), which will be used to evaluate a(2)k (tn) with small
amount O(N) operations based on (5.3.8);

• Then FFT can be used again to evaluate the right-hand side of (5.3.10).

The following pseudocode implements the numerical procedure. The ODE sys-
tem (5.3.10) is solved by the forward Euler method.

CODE Exp.1
Input N, u0(x), ∆t, Tmax
%collocation points, initial data, and c̃k
for j=0 to N do

x(j)=cos(πj/N), u(j)=u0(x(j)), c̃(j)=1
endfor
c̃(0)=2, c̃(N)=2
%set starting time time=0
While time � Tmax do

% Need to call F(u), the RHS of the ODE system
rhs=RHS(u,N,c̃)
%Forward Euler method
for j=1 to N-1 do

u(j)=u(j)+∆t*RHS(j)
endfor

%set new time level
time=time+∆t

endwhile
Output u(1),u(2),· · ·,u(N-1)

The right-hand side of (5.3.10) is given by the following subroutine:
CODE Exp.2
function r=RHS(u,N,c̃)
%calculate coefficients ak(t)

for k=0 to N do
a(0,k)=2/(N*c̃(k))

∑N
j=0u(j)cos(πjk/N)/c̃(j)

endfor
%calculate coefficients a

(i)
k (t), i=1, 2

for i=1 to 2 do
a(i,N+1)=0, a(i,N)=0
for k=N-1 to 0 do

a(i,k)=
(
a(i,k+2)+2(k+1)*a(i-1,k+1)

)
/c̃(k)

endfor
endfor

200 Chapter 5 Some applications in one space dimension

%calculate the RHS function of the ODE system
for j=0 to N do

r(j)=
∑N
k=0a(2,k)cos(πjk/N)

endfor

Example 5.3.1 Consider the model problem (5.3.1) with the initial function u0(x) =
sin(πx). The exact solution is given by u(x, t) = e−π2t sin(πx).

The following is the output with Tmax = 0.5:

N ‖e‖∞(∆t=10−3) ‖e‖∞(∆t=10−4) N ‖e‖∞(∆t=10−3) ‖e‖∞(∆t=10−4)
3 1.083e-02 1.109e-02 7 1.635e-04 1.855e-05
4 3.821e-03 3.754e-03 8 1.642e-04 1.808e-05
5 7.126e-04 8.522e-04 9 1.741e-04 1.744e-05
6 2.140e-04 5.786e-05 10 1.675e-04 1.680e-05

It is observed that for fixed values of ∆t the error decreases until N = 7 and then
remains almost unchanged. This implies that for N � 7, the error is dominated by
that of the time discretization. Due to the small values of the time step, the effect of
rounding errors can also be observed.

For comparison, we also compute finite-difference solutions for the model prob-
lem (5.3.1). We use the equal space mesh −1 = x0 < x1 < · · · < xN = 1, with
xj = xj−1 + 2/N, 1 � j � N . The central-differencing is employed to approxi-
mate the spatial derivative uxx and the forward Euler is used to approximate the time
derivative ut. It is well known that the error in this case is O(∆t+N−2). Below is
the output:

N ‖e‖∞(∆t=10−3) ‖e‖∞(∆t=10−4) N ‖e‖∞(∆t=10−3) ‖e‖∞(∆t=10−4)
3 2.307e-02 2.335e-02 10 1.007e-03 1.163e-03
5 5.591e-03 5.792e-03 15 3.512e-04 5.063e-04
7 2.464e-03 2.639e-03 20 1.185e-04 2.717e-04

We now make some observations from the above two tables. Assume that a highly
accurate and stable temporal discretization is used. In order that the maximum error
of the numerical solution to be of order O(10−5), the spectral method requires that
N = 7 (i.e. 6 grid points inside the space direction), but the central finite-difference
method needs more than 40 points. The difference in the number of grid points will
become much larger if smaller error bound is used.

Nonlinear Burgers’ equation

By slightly modifying the pseudocode (the boundary conditions and the right-
hand side functions need to be changed), we can handle nonlinear non-homogeneous

5.3 Chebyshev spectral methods for parabolic equations 201

problems. We demonstrate this by considering a simple example below.

In the area of computational fluid dynamics (CFD), the Burgers’ equation

ut + uux = εuxx (5.3.11)

is a popular model equation. It contains the nonlinear convection term uux and the
diffusion term εuxx. Let

u = 2ε
∂

∂x
(lnψ).

Then (5.3.11) becomes the (linear) diffusion equation ψt = εψxx, which allows an
analytical solution. For example,

u(x, t) =
ε

1 + εt

[
x+ tan

(
x

2(1 + εt)

)]
. (5.3.12)

Example 5.3.2 Consider the Burgers’ equation (5.3.11) on (−1, 1) with boundary
conditions and initial condition such that the exact solution is (5.3.12).

The changes for the pseudocode CODE Exp.1 are given below:

CODE Exp.3
Input N, u0(x), uL(t), uR(t), ε, ∆t, Tmax
%collocation points, initial data, and c̃k
Set starting time: time=0
While time � Tmax do

Boundary conditions: u(1)=uL(time), u(N+1)=uR(time)
Call the RHS function of the ODE system: rhs=F(u,N,c̃,ε)

%solve the ODE system, say by using the Euler method
Set new time level: time=time+∆t

endwhile
Output u(1),u(2),· · ·,u(N-1)

To handle the right-hand side function, the changes for the pseudocode CODE
Exp.2 are given below:

CODE Exp.4
function r=F(u,N,c̃,ε)
%calculate coefficients ak(t)

%calculate coefficients a
(i)
k (t), i=1, 2

%calculate the RHS function of the ODE system
for j=0 to N do

r(j)=ε*
∑N
k=0a(2,k)cos(πjk/N)-u(j)*

∑N
k=0a(1,k)cos(πjk/N)

endfor

202 Chapter 5 Some applications in one space dimension

In the following, we list the numerical results with Tmax = 0.5 and ε = 1:

N ‖e‖∞(∆t=10−3) ‖e‖∞(∆t=10−4) N ‖e‖∞(∆t=10−3) ‖e‖∞(∆t=10−4)
3 3.821e-05 7.698e-05 7 4.689e-05 4.692e-06
4 9.671e-05 5.583e-05 8 4.391e-05 4.393e-06
5 3.644e-05 5.177e-06 9 4.560e-05 4.562e-06
6 4.541e-05 4.376e-06 10 4.716e-05 4.718e-06

It is seen that for N > 6 the error is almost unchanged. This again suggests that
the error is dominated by that of the time discretization. To fix this problem, we
will apply the Runge-Kutta type method discussed in Section 1.6. For the nonlinear
Example 5.3.2, applying the collocation spectral methods yields a system of ODEs:

dU

dt
= εAU − diag(U1, U2, · · · , UN−1)BU + b(t),

where (B)ij = (D1)ij , 1 � i, j � N−1, the vector b is associated with the boundary
conditions:

(b)j = ε
[
(D2)j,0U0 + (D2)j,NUN

]− Uj
[
(D1)j,0U0 + (D1)j,NUN

]
.

Note that U0 = uR(t) and UN = uL(t) are given functions.

In the following, we first give the subroutine for computing the vector b and then
give the code which uses the RK4 algorithm (1.6.8) to solve the nonlinear Burgers’
equation.

CODE RK.2
function b=func b(N,UL,UR,eN,D1,D2,U)
for j=1 to N-1 do
b(j)=ε*(D2(j,0)*UR+D2(j,N)*UL)-U(j)*(D1(j,0)*UR+D1(j,N)*UL)

endfor

CODE RK.3
Input N, u0(x),uL(t),uR(t),ε,∆t,Tmax
%Form the matrices A, B and vector b
call CODE DM.3 in Sect 2.1 to get D1(i,j), 0�i,j�N
D2=D1*D1;
for i=1 to N-1 do
for j=1 to N-1 do

A(i,j)=D2(i,j); B(i,j)=D1(i,j)
endfor

endfor
Set starting time: time=0

5.3 Chebyshev spectral methods for parabolic equations 203

Set the initial data: U=u0(x)
While time � Tmax do

%Using RK4 (1.6.8)
U0=U; C=diag(U(1),U(2),· · ·,U(N-1))
UL=uL(time); UR=uR(time);
b=func b(N,UL,UR,ε,D1,D2,U)
K1=ε*A*U-C*B*U+b
U=U0+0.5*∆t*K1; C=diag(U(1),U(2),· · ·,U(N-1))
UL=uL(time+0.5*∆t); UR=uR(time+0.5*∆t);
b=func b(N,UL,UR,ε,D1,D2,U)
K2=ε*A*U-C*B*U+b
U=U0+0.5*∆t*K2; C=diag(U(1),U(2),· · ·,U(N-1))
b=func b(N,UL,UR,ε,D1,D2,U)
K3=ε*A*U-C*B*U+b
U=U0+∆t*K3; C=diag(U(1),U(2),· · ·,U(N-1))
UL=uL(time+∆t); UR=uR(time+∆t);
b=func b(N,UL,UR,ε,D1,D2,U)
K4=ε*A*U-C*B*U+b
U=U0+∆t*(K1+2*K2+2*K3+K4)/6
Set new time level: time=time+∆t

endwhile
Output U0(1),U(2), · · ·, U(N-1)

The maximum errors below are obtained for Tmax = 0.5 and eN = 1. The
spectral convergence rate is observed for N = O(10) when RK4 is employed.

N Max error (∆t=1e-3) Max error (∆t=5e-4)
3 8.13e-05 8.13e-05
4 5.13e-05 5.13e-05
5 1.82e-06 1.82e-06
6 1.88e-07 1.88e-07
7 7.91e-09 7.91e-09
8 2.19e-09 2.20e-09
9 9.49e-10 8.10e-11

Exercise 5.3

Problem 1 Solve (5.3.1) with the initial condition u(x, 0) = sin(πx) by using the
Chebyshev spectral methods described in CODE Exp.1, except replacing the Euler
method by the 2nd-order Runge-Kutta method (1.6.6) with α = 1

2 .

1. UseN = 6, 8, 9, 10, 11, 12, and give the maximum errors |uN (x, 1)−u(x, 1)|.
2. Plot the numerical errors against N using semi-log plot.

204 Chapter 5 Some applications in one space dimension

Problem 2 Repeat Problem 1, except with the 4th-order Runge-Kutta method (1.6.8).

Problem 3 Solve the problem in Example 5.3.2 by using a pseudo-spectral ap-
proach (i.e. using the differential matrix to solve the problem in the physical space).
Take 3 � N � 20, and use RK4.

5.4 Fourier spectral methods for the KdV equation

An analytic solution for the KdV equation
Numerical scheme based on a two-step method
Numerical scheme based on the RK4 method
Dual-Petrov Legendre-Galerkin method for the kdv equation

In this section, we describe a method introduced by Fornberg and Whitham [51] to
solve the KdV equation

ut + βuux + µuxxx = 0, x ∈ R, (5.4.1)

where β and µ are given constants. The sign of µ is determined by the direction of
the wave and its shape. If µ < 0, by use of the transforms u → −u, x → −x and
t→ t, the KdV equation (5.4.1) becomes

ut + βuux − µuxxx = 0, x ∈ R.

Therefore, we can always assume µ > 0. Some linear properties for solutions of
(5.4.1) were observed numerically by Kruskal and Zabusky in 1966[94]. The soliton
theory has been motivated by the numerical study of the KdV equation.

In general, the solution of (5.4.1) decays to zero for |x| � 1. Therefore, numeri-
cally we can solve (5.4.1) in a finite domain:

ut + βuux + µuxxx = 0, x ∈ (−p, p), (5.4.2)

with a sufficiently large p.

An analytic solution for the KdV equation

For the computational purpose, it is useful to obtain an exact solution for the
nonlinear problem (5.4.1). To this end, we will try to find a traveling wave solution
of the form u(x, t) = V (x − ct). Substituting this form into (5.4.1) gives −cV ′ +
βV V ′ + µV ′′′ = 0, where V ′ = Vζ(ζ). Integrating once gives

5.4 Fourier spectral methods for the KdV equation 205

−cV +
β

2
V 2 + µV ′′ = α1,

where α1 is an integration constant. Multiplying the above equation by 2V′ and
integrating again yields

−cV 2 +
β

3
V 3 + µ(V ′)2 = 2α1V + α2,

where α2 is a constant. Note that we are looking for the solitary solution: away from
the heap of water there is no elevation. This means that V (x), V ′(x), V ′′(x) tend to
zero as |x| → ∞, which implies that α1 = 0 and α2 = 0. Therefore, we obtain the
ODE

−cV 2 +
β

3
V 3 + µ(V ′)2 = 0.

One of the solutions for the above nonlinear ODE is

V (ζ) =
3c
β

sech2

(
1
2

√
c/µ(ζ − x0)

)
.

This can be verified by direct computation. To summarize: One of the exact solutions
for the equation (5.4.1) is

u(x, t) =
3c
β

sech2

(
1
2

√
c/µ(x− ct− x0)

)
, (5.4.3)

where c and x0 are some constants.

Numerical scheme based on a two-step method

A simple change of variable (x→ πx/p+π) changes the solution interval [−p, p]
to [0, 2π]. The equation (5.4.2) becomes

ut +
βπ

p
uux +

µπ3

p3
uxxx = 0, x ∈ [0, 2π]. (5.4.4)

It follows from (1.5.14) that

∂nu

∂xn
= F−1{(ik)nF{u}}, n = 1, 2, · · · .

An application of the above results (with n = 1 and 3) to (5.4.4) gives

206 Chapter 5 Some applications in one space dimension

du(xj , t)
dt

= − iβπ
p
u(xj , t)F−1(kF (u))+

iµπ3

p3
F−1(k3F (u)), 1 � j � N−1,

(5.4.5)
where we have replaced the continuous Fourier transforms by the discrete transforms.
Let U = [u(x1, t), · · · , u(xN−1, t)]T. Then (5.4.5) can be written in the vector form

Ut = F(U),

where F is defined by (5.4.5). The discretization scheme for time used in [51] is the
following two-step method:

U(t+ ∆t) = U(t− ∆t) + 2∆tF(U(t)).

For this approach, two levels of initial data are required. The first level is given by
the initial function, and the second level can be obtained by using the fourth-order
Runge-Kutta method RK4. This way of time discretization for (5.4.5) gives

u(x, t+∆t) = u(x, t−∆t)−2i
βπ

p
∆tu(x, t)F−1(kF (u))+2i∆t

µπ3

p3
F−1(k3F (u)).

(5.4.6)
Stability analysis for the above scheme gives the stability condition

∆t
∆x3

<
1
π3

≈ 0.0323. (5.4.7)

In order that the FFT algorithms can be applied directly, we use the transform k′ =
k +N/2 in (1.5.15) and (1.5.16) to obtain

û(k′, t) = F (u) =
1
N

N−1∑
j=0

(−1)ju(xj , t)e−ik
′xj , 0 � k′ � N − 1,

F−1(kF (u)) = (−1)j
N−1∑
k′=0

(k′ −N/2)û(k′, t)eik
′xj , 0 � j � N − 1.

F−1(k3F (u)) = (−1)j
N−1∑
k′=0

(k′ −N/2)3û(k′, t)eik
′xj , 0 � j � N − 1.

The FFT algorithms introduced in Section 1.5 can then be used. A pseudo-code is
given below:

CODE KdV.1

5.4 Fourier spectral methods for the KdV equation 207

Input β, p, µ, N, u0(x), λ (∆t=λ∆x3)
∆x=2*p/N; ∆t=λ∆x3

Grid points x(j) and initial data: x(j)=2πj/N; u0(j)=u0(j)
% use an one-step method to compute u1(j):=u(xj,∆t)
time=∆t
while time < T do

for j=0 to N-1 do
%Need to call function to calculate F(u1)
RHS=F(u1,N,β, µ, p); u(j)=u0(j)+2∆t*RHS(j)

endfor
%update vectors u0 and u1

for j=0 to N-1 do
u0(j)=u1(j); u1(j)=u(j)

endfor
Update time: time=time+∆t
endwhile
Output the solution u(j) which is an approximation to u(xj,T).

In forming the function F(u1,N,β, µ, p), CODE FFT.1 and CODE
FFT.2 introduced in Section 1.5 can be used. If the programs are written in MAT-
LAB, the MATLAB functions fft and ifft can be used directly. In MATLAB,
fft(x) is the discrete Fourier transform of vector x, computed with a fast Fourier
algorithm. X=fft(x) and x= ifft(X) implement the transform and the inverse
transform pair given for vectors of length N by

X(k) =
N∑
j=1

x(j)e−2πi(j−1)(k−1)/N , x(j) =
1
N

N∑
k=1

X(k)e2πi(j−1)(k−1)/N .

(5.4.8)
Note that X(k) has an N−1 factor difference with our definition in Section 1.5. With
the above definitions, a pseudo-code for the function F(u,N, β, µ, p) used above is
given below:

CODE KdV.2
function r=F(u,N,β, µ, p)
for j=0 to N-1 do

y(j)=(-1)j*u(j)
endfor
Compute F(u): Fu=fft(y)/N
%compute kF(u) and k3F(u)
for k=0 to N-1 do

y(k)=(k-N/2)*Fu(k); Fu(k)=(k-N/2)3Fu(k)
endfor

208 Chapter 5 Some applications in one space dimension

Compute the two inverses in the formula: y=ifft(y)*N;
Fu=ifft(Fu)*N
%compute F(u,N,β, µ, p)
for j=0 to N-1 do

r(j)=-i*β*π/p*u(j)*(-1)j*u(j)+i*µ*(π/p)3*(-1)j*Fu(j)
endfor

Since fft and ifft are linear operators, it can be verified that without theN factors
in the steps involving fft and ifft we will end up with the same solutions. The
MATLAB code for the function F(u,N, β, µ, p), CODE KdV.3, can be found in
this book’s website:

http://www.math.hkbu.edu.hk/˜ttang/PGteaching

Example 5.4.1 Consider the KdV equation (5.4.1) with β = 6, µ = 1, and initial
condition u(x, 0) = 2sech2(x).

By (5.4.3), the exact solution for this problem is u(x, t) = 2sech2(x − 4t). The
main program written in MATLAB for computing u(x, 1), CODE KdV.4, can also
be found in this book’s website, where for simplicity we assume that u(x,∆t) has
been obtained exactly.

In Figure 5.1, we plot the exact solution and numerical solutions at t = 1 with
N = 64 and 128. The spectral convergence is observed from the plots.

Figure 5.1

Fourier spectral solution of the KdV equation with (a): N=64(the maximum error is 1.32e-0.1),

and (b): N=128(the maximum error is 6.08e-0.3).

5.4 Fourier spectral methods for the KdV equation 209

Fornberg and Whitham modified the last term of (5.4.6) and obtained the follow-
ing scheme

u(x, t+ ∆t) = u(x, t− ∆t) − 2i
βπ

p
∆tu(x, t)F−1(kF (u))

+ 2iF−1
(
sin

(
µπ3k3p−3∆t

)
F (u)

)
. (5.4.9)

Numerical experiments indicate that (5.4.9) requires less computing time than that of
(5.4.6). The stability condition for this scheme is

∆t
∆x3

<
3

2π3
≈ 0.0484, (5.4.10)

which is an improvement of (5.4.7).

Numerical scheme based on the RK4 method

Numerical experiments suggest that the stability condition can be improved by
using RK4 introduced in Section 1.6. A modified code using the formula (1.6.11),
CODE KdV.5, can be found in the website of this book. The errors with N = 64,
128 and 256 are listed below:

N Maximum error time step
64 8.65e-02 1.59e-02

128 1.12e-05 1.98e-03
256 1.86e-12 2.48e-04

It is observed that comparing with the second-order time stepping methods (5.4.6)
and (5.4.9) the RK4 method allows larger time steps and leads to more accurate nu-
merical approximations.

Dual-Petrov Legendre-Galerkin method for the KdV equation

Although most of the studies on the KdV equation are concerned with initial
value problems or initial value problems with periodic boundary conditions as we
addressed in the previous section, it is often useful to consider the KdV equation on
a semi-infinite interval or a bounded interval. Here, as an example of application to
nonlinear equations, we consider the KdV equation on a finite interval:

αvt + βvx + γvvx + vxxx = 0, x ∈ (−1, 1), t ∈ (0, T],

v(−1, t) = g(t), v(1, t) = vx(1, t) = 0, t ∈ [0, T],

v(x, 0) = v0(x), x ∈ (−1, 1).

(5.4.11)

210 Chapter 5 Some applications in one space dimension

The positive constants α, β and γ are introduced to accommodate the scaling of the
spatial interval. The existence and uniqueness of the solution for (5.4.11) can be
established as in [32],[16]. Besides its own interests, the equation (5.4.11) can also
be viewed as a legitimate approximate model for the KdV equation on a quarter-plane
before the wave reaches the right boundary.

Let us first reformulate (5.4.11) as an equivalent problem with homogeneous
boundary conditions. To this end, let v̂(x, t) = 1

4(1 − x)2g(t) and write v(x, t) =
u(x, t) + v̂(x, t). Then, u satisfies the following equation with homogeneous bound-
ary conditions:

αut + a(x, t)u + b(x, t)ux + γuux + uxxx = f, x ∈ (−1, 1), t ∈ (0, T],

u(±1, t) = ux(1, t) = 0, t ∈ [0, T],

u(x, 0) = u0(x) = v0(x) − v̂(x, 0), x ∈ (−1, 1),
(5.4.12)

where

a(x, t) =
γ

2
(x− 1)g(t), b(x, t) = β + γv̂(x, t), f(x, t) = −αv̂t(x, t).

We consider the following Crank-Nicolson leap-frog dual-Petrov-Galerkin approxi-
mation:

α

2∆t
(uk+1
N − uk−1

N , vN)ω−1,1 +
1
2
(∂x(uk+1

N + uk−1
N), ∂2

x(vNω
−1,1))

= (INf(·, tk), vN)ω−1,1 − γ(IN (ukN∂xu
k
N), vN)ω−1,1

− (aukN , vN)ω−11 + (ukN , ∂x(b vN ω
−1,1)), ∀vN ∈ VN .

(5.4.13)

This is a second-order (in time) two-step method so we need to use another scheme,
for example, the semi-implicit first-order scheme, to compute u1N . Since the trun-
cation error of a first-order scheme is O(∆t)2, the overall accuracy of the scheme
(5.4.13) will still be second-order in time.

It is shown in [145] that this scheme is stable under the very mild condition
δN � C (as opposed to δN3 � C in the previous subsections). Setting uN =
1
2 (uk+1

N − uk−1
N), we find at each time step we need to solve

α

2∆t
(uN , vN)ω−1,1 + (∂xuN , ∂2

x(vNω
−1,1)) = (h, vN)ω−1,1 , ∀vN ∈ VN ,

(5.4.14)
where h includes all the known terms from previous time steps. The system (5.4.14)

5.4 Fourier spectral methods for the KdV equation 211

is exactly in the form of (3.7.27) for which a very efficient algorithm is presented
in Section 3.6. Note that the nonlinear term IN (uN∂xuN) can be computed by a
procedure described in Section 2.5.

Now, we present some numerical tests for the KdV equation. We first consider
the initial value KdV problem

ut + uux + uxxx = 0, u(x, 0) = u0(x), (5.4.15)

with the exact soliton solution

u(x, t) = 12κ2sech2(κ(x− 4κ2t− x0)). (5.4.16)

Since u(x, t) converges to 0 exponentially as |x| → ∞, we can approximate the
initial value problem (5.4.15) by an initial boundary value problem for x ∈ (−M,M)
as long as the soliton does not reach the boundaries.

We take κ = 0.3, x0 = −20, M = 50 and ∆t = 0.001 so that for N � 160,
the time discretization error is negligible compared with the spatial discretization
error. In Figure 5.2, we plot the time evolution of the exact solution, and in Figure
5.3, we plot the maximum errors in the semi-log scale at t = 1 and t = 50. Note
that the straight lines indicate that the errors converge like e−cN which is typical for
solutions that are infinitely differentiable but not analytic. The excellent accuracy for
this known exact solution indicates that the KdV equation on a finite interval can be
used to effectively simulate the KdV equation on a semi-infinite interval before the
wave reaches the boundary.

Figure 5.2 Time evolution for exact KdV solution (5.4.16)

In the following tests, we fix M = 150, ∆t = 0.02 and N = 256. We start with
the following initial condition

212 Chapter 5 Some applications in one space dimension

u0(x) =
5∑
i=1

12κ2
i sech2(κi(x− xi)) (5.4.17)

with

κ1 = 0.3, κ2 = 0.25, κ3 = 0.2, κ4 = 0.15, κ5 = 0.1,

x1 = −120, x2 = −90, x3 = −60, x4 = −30, x5 = 0.
(5.4.18)

Figure 5.3 The KdV problem (5.4.15) and (5.4.16): maximum error vs. N .

Figure 5.4 Time evolution for the numerical solution to (5.4.15) and (5.4.17).

In Figure 5.4, we plot the time evolution of the solution in the (x, t) plane. We also
plot the initial profile and the profile at the final step (t = 600) in Figure 5.5. We
observe that the soliton with higher amplitude travels with faster speed, and the am-
plitudes of the five solitary waves are well preserved at the final time. This indicates
that our scheme has an excellent conservation property.

5.4 Fourier spectral methods for the KdV equation 213

Figure 5.5 Top curve is the initial profile (5.4.17) and the bottom is the profile at t = 600.

Exercise 5.4

Problem 1 Consider the Sine-Gordon equation,

utt = uxx − sin(u), x ∈ (−∞,∞), (5.4.19)

with initial conditions

u(x, 0) = 0, ut(x, 0) = 2
√

2sech(x/
√

2). (5.4.20)

The exact solution for this problem is

u(x, t) = 4 tan−1

(
sin(t/

√
2)

cosh(x/
√

2)

)
.

The Sine-Gordon equation (5.4.19) is related to the KdV and cubic Schrödinger
equations in the sense that all these equations admit soliton solutions.

1. Reduce the second-order equation (5.4.19) by introducing the auxiliary vari-
able ut.

2. Applying the method used in this section to solve the above problem in a
truncated domain (−12.4, 12.4), with N = 32 and 64. Show the maximum absolute
errors at t = 2π, 4π and 6π.

3. The numerical solution in the (x, t) plane is plotted in Figure 5.6. Verify it
with your numerical solution.

214 Chapter 5 Some applications in one space dimension

Problem 2 Use the Fourier spectral methods to solve the Burgers’ equation (5.3.11)
with ε = 0.15 and with periodic boundary condition in [−π, π] (p. 113, [165]). The
initial data is

u(x, 0) =
{

sin2 x, for x ∈ [−π, 0],
0, for x ∈ (0, π].

Produce solution plots at time 0, 0.5, 1, · · · , 3, with a sufficiently small time step,
for N = 64, 128 and 256. ForN = 256, how small a value of ε can you take without
obtaining unphysical oscillations?

Problem 3 Write a spectral code to solve the following nonlinear Schrödinger’s
equation for super-fluids:

iεut + ε2uxx + (|u|2 − 1)u = 0, x ∈ (−π, π),

u(x, 0) = x2e−2x2
ei,

where ε = 0.3. The problem has a periodic boundary condition in [−π, π]. Choose a
proper time stepping method to solve the problem for 0 < t � 8.

Figure 5.6 Breather solution of the sine-Gordon equation.

5.5 Fourier method and filters

Fourier approximation to discontinuous function
Spectral-filter
Fully discretized spectral-Fourier method

We consider what is accepted by now as the universal model problem for scalar con-
servation laws, namely, the inviscid Burgers’ equation

5.5 Fourier method and filters 215

ut +
(
u2/2

)
x

= 0, (5.5.1)

subject to given initial data. We want to solve the 2π-periodic problem (5.5.1) by the
spectral-Fourier method. To this end, we approximate the spectral-Fourier projection
of u(x, t),

PNu =
N∑

k=−N
ûke

ikx, ûk =
1
2π

∫ 2π

0
u(x)e−ikxdx, (5.5.2)

by an N -trigonometric polynomial, uN (x, t),

uN (x, t) =
N∑

k=−N
ûk(t)eikx. (5.5.3)

In this method the fundamental unknowns are the coefficients ûk(t), |k| � N .
A set of ODEs for the ûk are obtained by requiring that the residual of (5.5.1) be
orthogonal to all the test functions e−ikx, |k| � N :∫ 2π

0
(uNt + uN uNx)e−ikx dx = 0.

Due to the orthogonality property of the test and trial functions,

û′k(t) + ̂(uNuNx)k = 0, |k| � N, (5.5.4)

where
̂(uN uNx)k =

1
2π

∫ 2π

0
uN uNx e

−ikx dx. (5.5.5)

The initial condition are clearly

ûk(0) =
1
2π

∫ 2π

0
u(x, 0)e−ikx dx. (5.5.6)

Equation (5.5.5) is a particular case of the general quadratic nonlinear term

(̂uv)k =
1
2π

∫ 2π

0
uve−ikxdx, (5.5.7)

where u and v denote generic trigonometric polynomials of degree N , which have
expansions similar to (5.5.2). When these are inserted into (5.5.7) and the orthogo-

216 Chapter 5 Some applications in one space dimension

nality property is invoked, the expression

(̂uv)k =
∑
p+q=k

ûpv̂q (5.5.8)

results. The ODE system (5.5.4) is discretized in time by an ODE solver such as
Runge-Kutta methods described in Section 1.6.

Fourier approximation to discontinuous function

The Fourier approximation (5.5.3) is a very good way of reconstructing the point
values of u(x, t) provided that u is smooth and periodic. However, if a discontinuous
function u(x, t) is approximated by its finite Fourier series PNu, then the order of
convergence of PNu to u is only O(N−1) for each fixed point[62, 63]. Moreover,
PNu has oscillations of order 1 in a neighborhood of O(N−1) of the discontinuity.
To see this, we consider a simple test problem.

Example 5.5.1 Consider the Burgers’ equation (5.5.1) with the initial data

u(x) =
{

sin(x/2), 0 � x � 1.9,
− sin(x/2), 1.9 < x < 2π.

(5.5.9)

Figure 5.7 shows the behavior of the spectral-Fourier solution for the Burgers’
equation, which is subject to the discontinuous initial condition (5.5.9). The resulting
ODE system for the Fourier coefficients was integrated up to t = 0.1 using the third-
order Runge-Kutta method. The oscillatory behavior of the numerical solution is
clearly observed from this figure.

Figure 5.7 Spectral-Fourier solution with N = 64.

5.5 Fourier method and filters 217

Spectral-filter

There have been many attempts to smooth the oscillatory solution. It was ob-
served that the oscillations may be suppressed, or smoothed, by a gradual tapering of
the Fourier coefficients. Among them is a spectral-filter approach in which the first
step is to solve for the coefficients of the spectral expansion, ûk, and then to multiply
the resulting coefficient by a factor σk = σ(k/N). Here σ is called a filter. We will
follow the presentation by Vandeven [166] and Gottlieb and Shu[63] to introduce the
Fourier space filter of order p. A real and even function σ(η) is called a filter of order
p if

• (i) σ(0) = 1, σ(l)(0) = 0, 1 � l � p− 1.
• (ii) σ(η) = 0, |η| � 1.
• (iii) σ(η) ∈ C(p−1) , |η| <∞ .

There are many examples of filters that have been used during the years. We
would like to mention some of them:

• In 1900, Fejér suggested using averaged partial sums instead of the original
sums. This is equivalent to the first order filter

σ1(η) = 1 − η2.

• The Lanczos filter is formally a first-order one,

σ2(η) =
sin(πη)
πη

.

However, note that at η = 0, it satisfies the condition for a second-order filter.

• A second-order filter is the raised cosine filter

σ3(η) = 0.5(1 + cos(πη)).

• The sharpened raised cosine filter is given by

σ4(η) = σ4
3(η)(35 − 84σ3(η) + 70σ2

3(η) − 20σ3
3(η)).

This is an eighth-order filter.

• The exponential filter of order p (for even p) is given by

σ5(η) = e−αη
p
.

218 Chapter 5 Some applications in one space dimension

Note that formally the exponential filter does not conform to the definition of the
filter as σ5(1) = e−α. However, in practice we choose α such that e−α is within the
round-off error of the specific computer.

The filtering procedures may be classified as follows:

• Pre-processing The initial condition is filtered in terms of its continuous
Fourier coefficients

unew0 (x) =
N∑

k=−N
σ(2πk/N)ûk(0)eikx.

• Derivative filtering In the computation of spatial derivatives the term ik is
replaced by ikσ(2πk/N), i.e.,

du

dx
=

N∑
k=−N

ikσ(2πk/N)ûkeikx.

• Solution smoothing At regular intervals in the course of advancing the solu-
tion in time, the current solution values are smoothed in Fourier space, i.e.,

u(x, t) =
N∑

k=−N
σ(2πk/N)ûk(t)eikx.

Fully discretized spectral-Fourier method

In order to illustrate the use of the spectral-filter approach, we will discuss a more
general fully discretized method which uses the standard spectral-Fourier method in
space and Runge-Kutta methods in time. This fully discretized method will also be
employed in the next section. Consider the conservation equation

ut + f(u)x = 0, 0 � x < 2π, t > 0,

u(x, 0) = u0(x), 0 � x < 2π.
(5.5.10)

If the cell average of u is defined by

ū(x, t) =
1

∆x

∫ x+∆x/2

x−∆/2
u(ζ, t)dζ , (5.5.11)

then (5.5.10) can be approximated by

5.5 Fourier method and filters 219

∂

∂t
ū(x, t) +

1
∆x

[
f (u(x+ ∆x/2, t)) − f (u(x− ∆x/2, t))

]
= 0,

ū(x, 0) = ū0(x).
(5.5.12)

Hence a semi-discrete conservative scheme

d

dt
ūj = L(ū)j := − 1

∆x

(
f̂j+1/2 − f̂j−1/2

)
(5.5.13)

will be of high order if the numerical flux f̂j+1/2 approximates f (u(x+ ∆x/2, t))
to high order. Notice that (5.5.13) is a scheme for the cell averages ūj . However, in
evaluating f̂j+1/2, which should approximate f(u(xj + ∆x/2, t)), we also need ac-
curate point values uj+1/2. For finite difference schemes the reconstruction from cell
averages to point values is a major issue and causes difficulties. For spectral meth-
ods, this is very simple because ū is just the convolution of u with the characteristic
function of (xj−1/2, xj+1/2). To be specific, if

u(x) =
N∑

k=−N
ake

ikx (5.5.14)

(we have suppressed the time variable t), then

ū(x) =
N∑

k=−N
āke

ikx (5.5.15)

with

āk = τkak , τk =
sin(k∆x/2)
k∆x/2

for 0 < |k| � N, τ0 = 1. (5.5.16)

We now state our scheme as (5.5.13) with

f̂j+1/2 = f(u(xj+1/2, t)), (5.5.17)

where u is defined by (5.5.14). We obtain the Fourier coefficients āk of ū from
{ūj} by collocation, and obtain ak of u needed in (5.5.14) by (5.5.16). To discretize
(5.5.13) in time, we use the high-order TVD Runge-Kutta methods proposed in
[148]:

220 Chapter 5 Some applications in one space dimension

ū(j) =
j−1∑
k=0

(
αjkū

(k) + βjk∆tL(ū(k))
)
, j = 1, · · · , r,

ū(0) = ūn , ūn+1 = ū(r) .

(5.5.18)

In our computation, we will use a third-order Runge-Kutta scheme, i.e. r = 3, with
α10 = β10 = 1, α20 = 3

4 , β20 = 0, α21 = β21 = 1
4 , α30 = 1

3 , β30 = α31 =
β31 = 0, α32 = β32 = 2

3 . A small ∆t will be used so that the temporal error can be
neglected. A suggested algorithm can be

• (1) Starting with {ūj}, compute its collocation Fourier coefficients {āk} and
Fourier coefficients {ak} of u by (5.5.16).

• (2) Compute u(xj+1/2) by

u(x) =
N∑

k=−N
σ(2πk/N)akeikx . (5.5.19)

In the above, a solution smoothing with a filter function is used.

• (3) Use f̂j+1/2 = f(u(xj+1/2, t)) in (5.5.13), and use the third-order Runge-
Kutta method (5.5.18).

• (4) After the last time step, use a stronger filter (i.e. lower order filter) in (5.5.19)
to modify the numerical solution u(x, T).

A pseudocode outlining the above procedure is provided below:

CODE Shock.1
Input N, αjk and βjk, 1�j�3, 0�k�2
Input ∆t, u0(x), T

∆x=2π/(2N+1), xj=j∆x 0�j�2N
Compute ū(j,0)=ū0(xj), |j|�2N, using (5.5.11)
time=0
While time < T
For r=0 to 2 do
%Compute Fourier coefficients of ū and u using collocation
method
for |k|� N do

āk= (
∑2N

j=0ū(j,r)e
−ikxj)/(2N+1)

τk=sin(k∆x/2)/(k∆x/2); ak=āk/τk
endfor

%Compute u(xj+1/2) using a weak filter
for j=0 to 2N do

5.5 Fourier method and filters 221

xj+1/2=xj+0.5*∆x; u(xj+1/2)=
∑N
k=−N σ(2πk/N)ake

ikxj+1/2

endfor
%Runge-Kutta method

for j=0 to 2N do
RHS(j,r)=-(f(u(xj+1/2))-f(u(xj−1/2)))/∆x
if r=0 then

ū(j,1)=ū(j,0)+∆t RHS(j,0)
elseif r=1 then
ū(j,2)= 3

4 ū(j,0)+
1
4 ū(j,1)+

∆t
4 RHS(j,1)

elseif r=2 then
ū(j,3)= 1

3 ū(j,0)+
2
3 ū(j,2)+

2
3∆tRHS(j,2)

endif
endfor

endFor
Update the initial value: ū(j,0)=ū(j,3), 0�j�2N
time=time+∆t
endWhile
%Final solution smoothing using a stronger filter σ̃

for |k|� N do
āk=(

∑2N
j=0ūje

−ikxj)/(2N+1); ak=āk/τk
endfor
for j=0 to 2N do

u(xj)=
∑N
k=−N σ̃(2πk/N)ake

ikxj+1/2

endfor

We reconsider Example 5.5.1 by using CODE Shock.1. The weak filter σ used
above is

σ(η) = e−15 ln 10η20 (5.5.20)

and the strong filter σ̃ used above is

σ(η) = e−15 ln 10η4 . (5.5.21)

The time step used is ∆t = 0.01 and T = 0.5. The filtered spectral-Fourier solution
with N = 64 is displayed in Figure 5.8, which is an improvement to the standard
spectral-Fourier solution.

Exercise 5.5

Problem 1 Solve the periodic Burgers’ equation

ut + (u2/2)x = 0, x ∈ [0, 2π], t > 0

u(x, 0) = sin(x), u(0, t) = u(2π, t),
(5.5.22)

222 Chapter 5 Some applications in one space dimension

using (a) the spectral-Fourier method; and (b) the filtered spectral-Fourier method.

Figure 5.8 Filtered spectral-Fourier solution with N = 64.

5.6 Essentially non-oscillatory spectral schemes

Spectral accuracy from the Fourier coefficients
Essentially non-oscillatory reconstruction

Naive implementations of the spectral method on hyperbolic problems with discon-
tinuous solutions will generally produce oscillatory numerical results. The oscilla-
tions arising directly from the discontinuity have a Gibbs-like, high-frequency char-
acter. These oscillations are not in themselves insurmountable, for according to a
result of Lax[96], they should contain sufficient information to permit the reconstruc-
tion of the correct physical solution from the visually disturbing numerical one.

We consider the one-dimensional scalar conservations law

ut + f(u)x = 0, (5.6.1)

with prescribed initial conditions, u(x, 0) = u0(x). It is well known that solutions of
(5.6.1) may develop spontaneous jump discontinuities (shock waves) and hence the
class of weak solutions must be admitted. Moreover, since there are many possible
weak solutions, the equation (5.6.1) is augmented with an entropy condition which
requires

U(u)t + F (u)x � 0. (5.6.2)

5.6 Essentially non-oscillatory spectral schemes 223

Here, U(u) and F (u) are any entropy function and the corresponding entropy-flux
pair associated with (5.6.1), so that a strict inequality in (5.6.2) reflects the existence
of physical relevant shock waves in the entropy solution of (5.6.1) and (5.6.2). Fur-
ther theoretical support for the use of spectral methods on non-smooth problems was
furnished by many authors, see e.g. [59], [157], [115], [73]. Lax and Wendroff[97]

proved that if the sequence uN (N � 0) of the solutions produced by a Fourier or
Chebyshev collocation method for the equation (5.6.1) is bounded and converges al-
most everywhere, asN → ∞, then the limit is a weak solution of (5.6.1). This means
that it satisfies the equation∫ ∫

(uφt + f(u)φx) dxdt =
∫
u(x, 0)φ(x, 0) dx

for all smooth functions φwhich vanish for large t and on the boundary of the domain.
The limit solution thus satisfies the jump condition, s = [f(u)]/[u]. Hence, any
shocks that are present are propagated with the correct speed.

It was observed by many authors that using a filter approach is equivalent to
adding an artificial viscosity for finite difference methods. When applied too often,
a strong filter will unacceptably smear out a shock. On the other hand, frequent
applications of a weak filter may not be enough even to stabilize the calculation. In
this section, we follow Cai, Gottlieb and Shu[28] to describe a Fourier spectral method
for shock wave calculations.

Spectral accuracy from the Fourier coefficients

For simplicity, assume that u(x), 0 � x � 2π, is a periodic piecewise smooth
function with only one point of discontinuity at x = α, and denote by [u] the value of
the jump of u(x) at α, namely [u] = (u(α+) − u(α−))/2π. We assume that the first
2N+1 Fourier coefficients ûk of u(x) are known and given by (5.5.2). The objective
is to construct an essentially non-oscillatory spectrally accurate approximation to
u(x) from the Fourier coefficients û′ks. We start by noting that the Fourier coefficients
û′ks contain information about the shock position α and the magnitude [u] of the
shock:

Lemma 5.6.1 Let u be a periodic piecewise smooth function with one point of dis-
continuity α. Then for |k| � 1 and for any n > 0,

ûk = e−ikα
n−1∑
j=0

[u(j)]
(ik)j+1

+
1
2π

∫ 2π

0

[u(n)]
(ik)n

e−ikxdx . (5.6.3)

224 Chapter 5 Some applications in one space dimension

Proof It follows from

ûl =
1
2π

∫ 2π

0
u(x)e−ilx dx =

1
2π

∫ xs

0
u(x)e−ilx dx+

1
2π

∫ 2π

xs

u(x)e−ilx dx,

and integration by parts that

ûl = e−ilxs
u(x+

s) − u(x−s)
2πil

+
1
2π

∫ 2π

0

u′(x)e−ilx

il
dx;

the rest is obtained by induction. This completes the proof.

As an example, consider the sawtooth function F (x, α,A) defined by

F (x, α,A) =
{ −Ax, x � α ,

A(2π − x), x > α .
(5.6.4)

Note that the jump of the function, [F], is A and all the derivatives are continuous:
[F (j)] = 0 for all j � 1. That means the expansion (5.6.3) can be terminated after the
first term, yielding the following results for f̂k, the Fourier coefficients of F (x, α,A):

f̂0(α,A) = A(π − α), f̂k(α,A) =
Ae−ikα

ik
, |k| � 1 . (5.6.5)

This example suggests that we can rewrite (5.6.3) as

ûk = f̂k(α, [u])+e−ikα
n−1∑
j=1

[u(j)]
(ik)j+1

+
1
2π

∫ 2π

0

[u(n)]
(ik)n

e−ikxdx , |k| � 1 . (5.6.6)

The order one oscillations in approximating u(x) by its finite Fourier sum PNu are
caused by the slow convergence of

FN (x, α, [u]) =
N∑

k=−N
f̂k(α, [u])eikx (5.6.7)

to the sawtooth function F (x, α, [u]). Therefore, those oscillations can be eliminated
by adding a sawtooth function to the basis of the space to which u(x) is projected.
To be specific, we seek an expansion of the form

vN (x) =
∑
|k|�N

ake
ikx +

∑
|k|>N

A

ik
e−ikyeikx (5.6.8)

5.6 Essentially non-oscillatory spectral schemes 225

to approximate u(x). The 2N + 3 unknowns ak , (|k| � N), A and y are determined
by the orthogonality condition∫ 2π

0
(u− vN)e−ijxdx = 0 , |j| � N + 2. (5.6.9)

The system of equations (5.6.9) leads to the conditions

ak = ûk , |k| � N, (5.6.10)

A

i(N + j)
e−i(N+j)y = ûN+j , j = 1, 2, (5.6.11)

where ûk are the usual Fourier coefficients of u(x), defined by (5.5.2). Solving equa-
tions (5.6.11) gives

eiy =
(N + 1)ûN+1

(N + 2)ûN+2
, A = i(N + 1)ei(N+1)y ûN+1 . (5.6.12)

The procedure described in (5.6.12) is second-order accurate in the location and jump
of the shock. In fact, we can state

Theorem 5.1 Let u(x) be a piecewise C∞ function with one discontinuity at x = α.
Let y and A be defined in (5.6.12). Then

|y − α| = O(N−2), |A− [u]| = O(N−2). (5.6.13)

Proof It follows from (5.6.3) that

eiy =
(N + 1)ûN+1

(N + 2)ûN+2
=
e−i(N+1)xs

[
[u] +

[u′]
i(N + 1)

+ O
(

1
(N + 1)2

)]
e−i(N+2)xs

[
[u] +

[u′]
i(N + 2)

+ O
(

1
(N + 2)2

)]
=eixs

[
1 + O(N−2)

]
.

By the same token,

|A|=(N + 1)|ûN+1| =

[{
[u] − [u′′]

(N + 1)2

}2

+
[u′]2

(N + 1)2

]1/2

= |[u]| [1 + O(N−2)
]
.

226 Chapter 5 Some applications in one space dimension

This completes the proof of Theorem 5.1.

Essentially non-oscillatory reconstruction

Formally, we obtain from (5.6.5), (5.6.8) and (5.6.10) that

vN (x) = û0 −A(π − y) +
N∑

k=−N
k �=0

(
ûk − A

ik
e−iky

)
eikx + F (x, y,A), (5.6.14)

where the function F is defined by (5.6.4). Applying appropriate filters, we modify
(5.6.14) to give a formula for computing the approximation to u:

vN (x) = û0 −A(π − y) +
N∑

k=−N
k �=0

σ(2πk/N)
(
ûk − A

ik
e−iky

)
eikx + F (x, y,A) .

(5.6.15)
Note that (5.6.12) is an asymptotic formula for the jump location y and strength
A. In practice, it is found that the coefficients of modes in the range (

√
N,N0.75)

give the best results to detect shock location and strength. Therefore, we choose√
N < N1 < N0.75 and solve A and y by the following formulas:

eiy =
(N1 + 1)ûN1+1

(N1 + 2)ûN1+2
, A = i(N1 + 1)ei(N1+1)yûN1+1 . (5.6.16)

A pseudocode outlines the above procedure is provided below:

CODE Shock.2
Input N, N1, u0(x)

∆x=2π/(2N+1), xj=j∆x 0�j�2N
Compute Fourier coefficients ûk, for |k|�N
% Compute the jump position y

y = -i*log((N1+1)*ûN1+1/(N1+2)*ûN1+2)
y=Re(y)

% Compute the strength of the jump
A=i*(N1+1)*exp(i(N1+1)y)*ûN1+1

A=Re(A)
% To recover the pointwise value from the
Fourier coefficients
For j=0 to 2N do
% Compute the last term in (5.6.15)

if xj�y then F=-A*xj

5.6 Essentially non-oscillatory spectral schemes 227

else F=A*(2π-xj)
endif

% Compute the approximations
u(xj)=û0-A*(π-y)+σ(2πk/N)*(ûk-A/(ik)*exp(-i*k*y))

*exp(i*k*xj)+F
endFor

Example 5.6.1 We use the above pseudocode on the following function

u(x) =
{

sin(x/2), 0 � x � 1.9,
− sin(x/2), 1.9 < x < 2π.

(5.6.17)

Notice that [u(k)] �= 0 for all k � 0. Using (5.5.2) we obtain for all k � 0,

ûk =
1
2π

(
−e

−i(k+0.5)∗1.9

k + 0.5
+
e−i∗(k−0.5)∗1.9

k − 0.5

)
. (5.6.18)

Numerical results using CODE Shock.2 are plotted in Figures 5.9 and 5.10. In
the following table, we list the errors of the jump location and its strength determined
by CODE Shock.2. The filter function used in the code is

σ(η) = e−15 ln 10η12 .

Figure 5.9 The solid line is the exact solution and the pulses

the numerical solution with N = 32.

228 Chapter 5 Some applications in one space dimension

Figure 5.10 Error of the re-construction on logarithm scale for N = 8, 16, 32.

Notice that the second-order accuracy is verified.

Location (exact:1.9) Strength (exact:-sin(0.95)/π)
N error order error order
8 1.1e-02 3.4e-04

16 3.4e-03 1.69 9.8e-05 1.79
32 9.2e-04 1.89 2.6e-05 1.91
64 2.4e-04 1.94 6.8e-06 1.93

In obtaining the convergence order, we have used the formula:

order = log2

(
error(h)
error(h/2)

)
.

In using the filters, we choose the parameters α = m = 4, k0 = 0.

We remark that if u is smooth, (5.6.8) keeps spectral accuracy because A deter-
mined by (5.6.12) will be spectrally small.

We now state our scheme as (5.5.13) with

f̂j+1/2 = f(vN (xj+1/2, t)), (5.6.19)

where vN is defined by (5.6.8). We obtain the Fourier coefficients āk of ū from {ūj}
by collocation, and obtain ak of u needed in (5.6.8) by (5.5.16). The main difference
between the conventional spectral method and the current approach is that we use
the essentially non-oscillatory reconstruction vN instead of the oscillatory PNu in
(5.5.17).

5.6 Essentially non-oscillatory spectral schemes 229

To discretize (5.5.13) in time, we use the high-order TVD Runge-Kutta methods
(5.5.18). A pseudocode outlines the above procedure is provided below:

CODE Shock.3
Input N, αjk and βjk, 1�j�3, 0�k�2
Input ∆t, u0(x), T

∆x=2π/(2N+1), xj=j∆x 0�j�2N
Compute ū(j,0)=ū0(xj), |j|�2N,
using (5.5.11)
time=0
While time�T
For r=0 to 2 do
% Compute Fourier coefficients of āk and ak
using collocation method

for |k|� N do
āk= (

∑2N
j=0ū(j,r)e

−ikxj)/(2N+1); τk=sin(k∆x/2)/(k∆x/2);
ak=āk/τk

endfor
%Compute the jump position y

N1=N0.6; y = -i*log((N1+1)*aN1+1/(N1+2)*aN1+2); y=Re(y)
%Compute the strength of the jump

A=i*(N1+1)*exp(i(N1+1)y)*aN1+1; A=Re(A)
%To recover pointwise value from Fourier coefficients
for j=0 to 2N do

%Compute the last term in (5.6.15)
if xj�y then F=-A*xj
else F=A*(2π-xj)

endif
%Compute u(xj+1/2) using a weak filter

xj+1/2=xj+0.5*∆x
u(xj+1/2)=a0-A(π-y)+

∑
k �=0 σ(2πk/N)(ak-Ae

−iky/(ik))eikxj+1/2+F
endfor

%Runge-Kutta method
for j=0 to 2N do

RHS(j,r)=-(f(u(xj+1/2))-f(u(xj−1/2)))/∆x
if r=0 then ū(j,1)=ū(j,0)+∆t RHS(j,0)
elseif r=1 then ū(j,2)= 3

4 ū(j,0)+
1
4 ū(j,1)+

∆t
4 RHS(j,1)

elseif r=2 then ū(j,3)= 1
3 ū(j,0)+

2
3 ū(j,2)+

2
3∆tRHS(j,2)

endif
endFor
Update the initial value: ū(j,0)=ū(j,3), 0�j�2N
time=time+∆t

endWhile

230 Chapter 5 Some applications in one space dimension

%Final solution smoothing using a stronger filter σ̃

for |k|� N do
āk=(

∑2N
j=0ūje

−ikxj)/(2N+1); ak=āk/τk
endfor
for j=0 to 2N do

u(xj)=a0-A(π-y)+
∑
k �=0 σ̃(2πk/N)(ak-Ae

−iky/(ik))eikxj+F
endfor

We now reconsider Example 5.6.1 by using CODE Shock.3. The weak filter σ

used above is σ(η) = e−15(ln 10)η8 , and a strong filter σ̃ used is σ(η) = e−15(ln 10)η4 .

The numerical solution with T = 0.5 andN = 32 is displayed in Figure 5.11. At
t = 2, we employed a coarse grid with N = 32 and a finer grid with N = 64. The
convergence with respect to the mesh size is observed from Figures 5.12 and 5.13.

Figure 5.11 Inviscid Burgers’ equation with the initial

function (5.6.17) (N = 32 and t = 0.5).

Figure 5.12 Same as Figure 5.11, except t=2. Figure 5.13 Same as Figure 5.12, exceptN=64.

Chapter 6
Spectral methods in
Multi-dimensional Domains

Contents
6.1 Spectral-collocation methods in rectangular domains 233

6.2 Spectral-Galerkin methods in rectangular domains 237

6.3 Spectral-Galerkin methods in cylindrical domains 243

6.4 A fast Poisson Solver using finite differences 247

In this chapter, we are mainly concerned with spectral approximations for the follow-
ing model problem:

αu− ∆u = f (6.0.1)

in a regular domain Ω with appropriate boundary conditions.

Developing efficient and accurate numerical schemes for (6.0.1) is very important
since

• (i) one often needs to solve (6.0.1) repeatedly after a semi-implicit time dis-
cretization of many parabolic type equations;

• (ii) as in the one-dimensional case, it can be used as a preconditioner for more

232 Chapter 6 Spectral methods in Multi-dimensional Domains

general second-order problems with variable coefficients, such as

Lu := −
d∑

i,j=1

Di(aijDju) +
d∑
i=1

Di(biu) + hu = f, x ∈ Ω. (6.0.2)

Unlike in the one-dimensional case, it is generally not feasible to solve the (non-
separable) equation (6.0.2) directly using a spectral method. In other words, for
(6.0.2) with variable coefficients, it is necessary to use a preconditioned iterative
method.

Computational costs for multidimensional problems using spectral methods could
easily become prohibitive if the algorithms are not well designed. There are two key
ingredients which make spectral methods feasible for multidimensional problems.

The first is the classical method of “separation of variables” which write the so-
lution of a multidimensional separable equation as a product of functions with one
independent variable. We shall explore this approach repeatedly in this chapter.

The second is the observation that spectral transforms in multidimensional do-
mains can be performed through partial summation. For example, Orszag[125] pointed
out that one can save a factor of 10,000 in the computer time for his turbulence code
CENTICUBE (128 × 128 × 128 degrees of freedom) merely by evaluating the mul-
tidimensional spectral transforms through partial summation. We will illustrate his
idea by a two-dimensional example.

Suppose the goal is to evaluate an M × N spectral sum at each point of the
interpolating grid. Let the sum be

f(x, y) =
M−1∑
m=0

N−1∑
n=0

amnφm(x)φn(y). (6.0.3)

To compute (6.0.3) at an arbitrary point as a double DO LOOP, a total of MN mul-
tiplications and MN additions are needed even if the values of the basis functions
have been computed and stored.

Since there are MN points on the collocation grid, we would seem to require
a total O(M2N2) operations to perform a two-dimensional transform from series
coefficients to grid point values. Thus, if M and N are the same order of magnitude,
the operation count for each such transform increases as the fourth power of the
number of degrees in x direction – and we have to do this once per time step. A finite
difference method, in contrast, requires only O(MN) operations per time step.

6.1 Spectral-collocation methods in rectangular domains 233

Now arrange (6.0.3) as

f(x, y) =
M−1∑
m=0

φm(x)
[N−1∑
n=0

amnφn(y)
]
. (6.0.4)

Let us define the line functions via fj(x) = f(x, yj), 0 � j � N −1. It follows from
(6.0.4) that

fj(x) =
M−1∑
m=0

α(j)
m φm(x), 0 � j � N − 1,

where

α(j)
m =

N−1∑
n=0

amnφn(yj), 0 � m � M − 1, 0 � j � N − 1. (6.0.5)

There are MN coefficients α(j)
m , and each is a sum over N terms as in (6.0.5), so the

expense of computing the spectral coefficients of the fj(x) is O(MN2). Each fj(x)
describes how f(x, y) varies with respect to x on a particular grid line, so we can
evaluate f(x, y) everywhere on the grid. Since fj(x) are one-dimensional, each can
be evaluated at a single point in only O(M) operations:

Conclusion:

• In two-dimensions, [direct sum] O(M2N2) → O(MN2) + O(M2N) [partial
sum];

• In three-dimensions, L×M ×N points on x, y and z directions: [direct sum]
O(L2M2N2) → O(LMN2) + O(LM2N) + O(L2MN) [partial sum];

• The cost of partial summation can be reduced further to O(NM log(NM))
in two-dimensions and O(LMN log(LMN)) in three-dimensions if we are dealing
with a Fourier or Chebyshev expansion.

In the rest of this chapter, we shall present several efficient numerical algorithms
for solving (6.0.1).

6.1 Spectral-collocation methods in rectangular domains

Let Ω = (−1, 1)2. We consider the two-dimensional Poisson type equation{
αu− ∆u = f, in Ω,
u(x, y) = 0, on ∂Ω.

(6.1.1)

234 Chapter 6 Spectral methods in Multi-dimensional Domains

For the sake of simplicity, we shall use the same number of points, N , in the x
and y directions, although in practical applications one may wish to use different
numbers of points in each direction. Let XN = {u ∈ PN × PN : u|∂Ω = 0} and
{ξi}Ni=0 be the Chebyshev or Legendre Gauss-Lobatto points. Then, the Chebyshev-
or Legendre-collocation method is to look for uN ∈ XN such that

αuN (ξi, ξj)− ∂2
xuN (ξi, ξj)− ∂2

yuN (ξi, ξj) = f(ξi, ξj), 1 � i, j � N − 1. (6.1.2)

Let {hn(ξ)}Nn=0 be the Lagrange polynomial associated with {ξi}Ni=0. We can write

uN (x, y) =
N∑
m=0

N∑
n=0

uN (ξm, ξn)hm(x)hn(y).

LetD2 be the second-order differentiation matrix, given in Section 2.4 for the Cheby-
shev case, and let U and F be two matrices of order (N − 1) × (N − 1) such that

U = (uN (ξm, ξn))N−1
m,n=1, F = (f(ξm, ξn))N−1

m,n=1.

Then, (6.1.2) becomes the matrix equation

αU −D2U − UDT
2 = F, (6.1.3)

which can also be written as a standard linear system,

(αI ⊗ I − I ⊗D2 −D2 ⊗ I)ū = f̄ , (6.1.4)

where I is the identity matrix, f̄ and ū are vectors of length (N − 1)2 formed by the
columns of F and U , and ⊗ denotes the tensor product of matrices, i.e. A ⊗ B =
(Abij)N−1

i,j=1.

Since D2 is a full matrix, a naive approach using Gauss elimination for (6.1.4)
would cost O(N6) operations. However, this cost can be significantly reduced by
using a discrete version of “separation of variables” — the matrix decomposition
method[112], known as the matrix diagonalization method in the field of spectral meth-
ods [79, 80]. To this end, we consider the eigenvalue problem

D2x̄ = λx̄. (6.1.5)

It has been shown (cf. [58]) that the eigenvalues of D2 are all negative and distinct.
Hence, it is diagonalizable, i.e., if Λ is the diagonal matrix whose diagonal entries
{λp} are the eigenvalues of (6.1.5), and let P be the matrix whose columns are the

6.1 Spectral-collocation methods in rectangular domains 235

eigenvectors of (6.1.5), then we have

P−1D2P = Λ, (6.1.6)

Multiplying (6.1.3) from the left by P−1 and from the right by P−T , we find that

αP−1U(P−1)T − (P−1D2P)(P−1U(P−1)T)

− (P−1U(P−1)T)(PTDT
2 (P−1)T) = P−1F (P−1)T.

(6.1.7)

Let Ũ = P−1U(P−1)T and F̃ = P−1F (P−1)T. Then (6.1.7) becomes

αŨ − ΛŨ − ŨΛT = F̃ ,

which gives

Ũi,j =
F̃i,j

α− Λii − Λjj
, 1 � i, j � N − 1. (6.1.8)

Solving the above equations gives the matrix Ũ . Using the relation U = PŨPT

yields the solution matrix U .

In summary, the solution of (6.1.2) consists of the following steps:

• Step 1: Pre-processing: compute the eigenvalues and eigenvectors
(Λ, P) of D2;

• Step 2: Compute F̃ = P−1F (P−1)T;

• Step 3: Compute Ũ from (6.1.8);

• Step 4: Obtain the solution U = PŨPT.

We note that the main cost of this algorithm is the four matrix-matrix multipli-
cations in Steps 2 and 4. Hence, besides the cost of pre-computation, the cost for
solving each equation is about 4N3 flops, no matter whether Chebyshev or Legendre
points are used. We also note that the above algorithms can be easily extended to
three-dimensional cases, we refer to [80].

Example 6.1.1 Solve the 2D Poisson equation

uxx + uyy = 10 sin(8x(y − 1)), (x, y) ∈ Ω,

u(x, y)|∂Ω = 0,
(6.1.9)

with the Chebyshev-collocation method.

236 Chapter 6 Spectral methods in Multi-dimensional Domains

A simple, but not very efficient, MATLAB code which solves (6.1.4) directly is
provided below. The code begins with the differentiation matrix and the Chebyshev-
Gauss-Lobatto points, which was described in detail in Chapters 1 & 2.

CODE Poisson.m
% Solve Poisson eqn on [-1,1]x[-1,1] with u=0 on boundary
%D= differentiation matrix -- from DM.4 in Sect. 2.1
%Input N

x = cos(pi*(0:N)/N)’; y = x;
% Set up grids and tensor product Laplacian, and solve for u:
[xx,yy] = meshgrid(x(2:N),y(2:N));

% stretch 2D grids to 1D vectors
xx = xx(:); yy = yy(:);

% source term function
f = 10*sin(8*xx.*(yy-1));
D2 = Dˆ2; D2 = D2(2:N,2:N); I = eye(N-1);

% Laplacian
L = kron(I,D2) + kron(D2,I);
figure(1), clf, spy(L), drawnow

%solve problem and watch clock
tic, u = L\f; toc

% Reshape long 1D results onto 2D grid:
uu = zeros(N+1,N+1); uu(2:N,2:N) = reshape(u,N-1,N-1);
[xx,yy] = meshgrid(x,y);
value = uu(N/4+1,N/4+1);

% Interpolate to finer grid and plot:
[xxx,yyy] = meshgrid(-1:.04:1,-1:.04:1);
uuu = interp2(xx,yy,uu,xxx,yyy,’cubic’);
figure(2), clf, mesh(xxx,yyy,uuu), colormap(1e-6*[1 1 1]);
xlabel x, ylabel y, zlabel u
text(.4,-.3,-.3,sprintf(’u(2ˆ-1/2,2ˆ-1/2)=%14.11f’,value))

Exercises 6.1

Problem 1 Solve the Poisson problem

uxx + uyy = −2π2 sin(πx) sin(πy), (x, y) ∈ Ω = (−1, 1)2,

u(x, y)|∂Ω = 0.
(6.1.10)

using the Chebyshev pseudo-spectral method with formula (6.1.8). The exact solu-
tion of this problem is u(x, y) = sin(πx) sin(πy).

6.2 Spectral-Galerkin methods in rectangular domains 237

Problem 2 Consider the Poisson problem

uxx + uyy + aux + buy = f(x, y), (x, y) ∈ Ω = (−1, 1)2,

u(x, y)|∂Ω = 0,
(6.1.11)

where a and b are constants.

a. Derive a Chebyshev pseudo-spectral method for solving this problem.

b. Let a = b = 1 and f(x, y) = −2π2 sin(πx) sin(πy) + π(cos(πx) sin(πy) +
sin(πx) cos(πy)).

The exact solution of this problem is u(x, y) = sin(πx) sin(πy). Solve the problem
using your code in part (a).

Problem 3 Consider the following two dimensional separable equation in Ω =
(−1, 1)2:

a(x)uxx + b(x)ux + c(x)u+ d(y)uyy + e(y)uy + f(y)u = g(x, y),

u|∂Ω = 0.
(6.1.12)

Design an efficient spectral-collocation method for solving this equation.

Problem 4 Write down the matrix diagonalization algorithm for the Poisson type
equation in Ω = (−1, 1)3.

6.2 Spectral-Galerkin methods in rectangular domains

Matrix diagonalization method
Legendre case
Chebyshev case
Neumann boundary conditions

The weighted spectral-Galerkin approximation to (6.1.1) is: Find uN ∈ XN such
that

α(uN , vN)ω + aω(uN , vN) = (INf, vN)ω for all vN ∈ XN , (6.2.1)

where IN : C(Ω) −→ P dN is the interpolation operator based on the Legendre or
Chebyshev Gauss-Lobatto points, (u, v)ω =

∫
Ω uvωdx is the inner product in L2

ω(Ω)
and

aω(u, v) = (∇u, ω−1∇(vω))ω. (6.2.2)

238 Chapter 6 Spectral methods in Multi-dimensional Domains

Matrix diagonalization method

Let {φk}N−2
k=0 be a set of basis functions for PN ∩H1

0 (I). Then,

XN = span{φi(x)φj(y) : i, j = 0, 1, · · · , N − 2}.
Let us denote

uN =
N−2∑
k,j=0

ũkjφk(x)φj(y), fkj = (INf, φk(x)φj(y))ω ,

skj =
∫
I
φ′j(x)(φk(x)ω(x))′dx, S = (skj)k,j=0,1,··· ,N−2,

mkj =
∫
I
φj(x)φk(x)ω(x)dx, M = (mkj)k,j=0,1,··· ,N−2,

U = (ũkj)k,j=0,1,··· ,N−2, F = (fkj)k,j=0,1,··· ,N−2.

(6.2.3)

Taking vN = φl(x)φm(y) in (6.2.1) for l,m = 0, 1, · · · , N − 2, we find that (6.2.1)
is equivalent to the matrix equation

αMUM + SUM +MUST = F. (6.2.4)

We can also rewrite the above matrix equation in the following form using the tensor
product notation:

(αM ⊗M + S ⊗M +M ⊗ ST)ū = f̄ , (6.2.5)

where, as in the last section, f̄ and ū are vectors of length (N − 1)2 formed by the
columns of U and F . As in the spectral collocation case, this equation can be solved
in particular by the matrix diagonalization method. To this end, we consider the
generalized eigenvalue problem:

Mx̄ = λSx̄. (6.2.6)

In the Legendre case, M and S are symmetric positive definite matrices so all the
eigenvalues are real positive. In the Chebyshev case, S is no longer symmetric but
it is still positive definite. Furthermore, it is shown in [58] that all the eigenvalues
are real, positive and distinct. Let Λ be the diagonal matrix whose diagonal entries
{λp} are the eigenvalues of (6.2.6), and let E be the matrix whose columns are the
eigenvectors of (6.2.6). Then, we have

ME = SEΛ. (6.2.7)

6.2 Spectral-Galerkin methods in rectangular domains 239

Now setting U = EV , thanks to (6.2.7) the equation (6.2.4) becomes

αSEΛVM + SEVM + SEΛV ST = F. (6.2.8)

Multiplying E−1S−1 to the above equation, we arrive at

αΛVM + VM + ΛV ST = E−1S−1F := G. (6.2.9)

The transpose of the above equation reads

αMV TΛ +MV T + SV TΛ = GT. (6.2.10)

Let v̄p = (vp0, vp1, · · · , vpN−2)T and ḡp = (gp0, gp1, · · · , gpN−2)T for 0 � p �
N − 2. Then the p-th column of equation (6.2.10) can be written as

((αλp + 1)M + λpS) v̄p = ḡp, p = 0, 1, · · · , N − 2. (6.2.11)

These are just the N − 1 linear systems from the Legendre- or Chebyshev-Galerkin
approximation of the N − 1 one-dimensional equations

(αλp + 1)vp − λpv
′′
p = gp, vp(±1) = 0.

Note that we only diagonalize in the x-direction and reduce the problem to N − 1
one-dimensional equations (in the y-direction) (6.2.11) for which, unlike in the col-
location case, a fast algorithm is available.

In summary, the solution of (6.2.4) consists of the following steps:

• Step 1 Pre-processing: compute the eigenvalues and eigenvectors of
the generalized eigenvalue problem (6.2.6);

• Step 2 Compute the expansion coefficients of INf (backward Legen-
dre or Chebyshev transform);

• Step 3 Compute F = (fij) with fij = (INf, φi(x)φj(y))ω;

• Step 4 Compute G = E−1S−1F ;

• Step 5 Obtain V by solving (6.2.11);

• Step 6 Set U = EV ;

• Step 7 Compute the values of uN at Gauss-Lobatto points (forward
Legendre or Chebyshev transform).

240 Chapter 6 Spectral methods in Multi-dimensional Domains

Several remarks are in order:

Remark 6.2.1 This algorithm is slightly more complicated than the spectral-
collocation algorithm presented in the last section but it offers several distinct ad-
vantages:

• Unlike in the collocation case, the eigenvalue problems here involve only sparse
(or specially structured) matrices so it can be computed much more efficiently and
accurately.

• This algorithm can be easily applied to problems with general boundary con-
ditions (3.2.2) since we only have to modify the basis functions and the associated
stiffness and mass matrices.

• For the Dirichlet boundary conditions considered here, the basis functions take
the form φk(x) = akpk(x)+bkpk+2(x) where pk(x) is either the Legendre or Cheby-
shev polynomial. Thanks to the odd-even parity of the Legendre or Chebyshev poly-
nomials, the matrices S and M can be split into two sub-matrices of order N/2 and
N/2 − 1. Consequently, (6.2.4) can be split into four sub-equations. Hence, the
cost of matrix-matrix multiplications in the above procedure can be cut by half. The
above remark applies also to the Neumann boundary conditions but not to the general
boundary conditions.

• The main cost of this algorithm is the two matrix multiplications in Steps 4 & 6
plus the backward and forward transforms. However, it offers both the nodal values
of the approximate solution as well as its expansion coefficients which can be used
to compute its derivatives, a necessary step in any real application code, at negligible
cost. Hence, this algorithm is also efficient.

• The above procedure corresponds to diagonalizing in the x direction; one may
of course choose to diagonalize in the y direction. In fact, if different numbers of
modes are used in each direction, one should choose to diagonalize in the direction
with fewer modes to minimize the operational counts of the two matrix-matrix mul-
tiplications in the solution procedure.

Legendre case

Let φk(x) = (Lk(x)−Lk+2(x))/
√

4k + 6. Then, we have S = I and M can be
split into two symmetric tridiagonal sub-matrices so the eigenvalues and eigenvectors
of M can be easily computed in O(N2) operations by standard procedures. Further-
more, we have E−1 = ET. Step 2 consists of solving N − 1 tridiagonal systems of
order N − 1. Therefore, for each right-hand side, the cost of solving system (6.2.4)
is dominated by the two matrix-matrix multiplications in Steps 4 & 6.

6.2 Spectral-Galerkin methods in rectangular domains 241

Chebyshev case:

Let φk(x) = Tk(x) − Tk+2(x). Then, S is a special upper triangular matrix
given in (3.3.8) and M is a symmetric positive definite matrix with three non-zero
diagonals. Similar to the Legendre case, S and M can be split into two sub-matrices
so that the eigen-problem (6.2.6) can be split into four subproblems which can be
solved directly by using a QR method. Note that an interesting O(N2) algorithm for
solving (6.2.6) was developed in [15]. Once again, the cost of solving system (6.2.4)
in the Chebyshev case is also dominated by the two matrix-matrix multiplications in
Steps 4 & 6.

Neumann boundary conditions

The matrix diagonalization approach applies directly to separable elliptic equa-
tions with general boundary conditions including in particular the Neumann bound-
ary conditions. However, the problem with Neumann boundary conditions

αu− ∆u = f in Ω;
∂u

∂n
|∂Ω = 0

(6.2.12)

needs some special care, especially when α = 0 since the solution u of (6.2.12) is
only determined up to an additive constant.

Since one often needs to deal with the problem (6.2.12) in practice, particularly in
a projection method for solving time-dependent Navier-Stokes equations (cf. Section
7.4), we now describe how the matrix diagonalization method needs to be modified
for (6.2.12). In this case, we have from Remark 3.2.1 that in the Legendre case,

φk(x) = Lk(x) − k(k + 1)
(k + 2)(k + 3)

Lk+2(x), k = 1, · · · , N − 2, (6.2.13)

and from Remark 3.3.9 that in the Chebyshev case,

φk(x) = Tk(x) − k2

(k + 2)2
Tk+2(x), k = 1, · · · , N − 2, (6.2.14)

For multidimensional problems, this set of basis functions should be augmented with
φ0(x) = 1/

√
2 in the Legendre case and φ0(x) = 1/

√
π in the Chebyshev case.

For α > 0, we look for an approximate solution in the space

XN = span{φi(x)φj(y) : 0 � i, j � N − 2}. (6.2.15)

242 Chapter 6 Spectral methods in Multi-dimensional Domains

However, for α = 0, where the solution u of (6.2.12) is only determined up to an
additive constant, we fix this constant by setting

∫
Ω uω(x)ω(y)dxdy = 0, assuming

that the function f satisfies the compatibility condition
∫
Ω fω(x)ω(y)dxdy = 0. In

this case, we set

XN = span{φi(x)φj(y) : 0 � i, j � N − 2; i or j �= 0}. (6.2.16)

Using the same notations in (6.2.3), we find that the Legendre-Galerkin approxima-
tion to (6.2.12) can still be written as the matrix equation (6.2.4) with

M =
(

1 0T

0 M1

)
, S =

(
0 0T

0 S1

)
, (6.2.17)

where M1 and S1 are the mass and stiffness matrices of order N − 2 corresponding
to {φk}N−2

k=1 .

Let us now consider the generalized eigenvalue problem M1x̄ = λS1x̄, and let
(Λ1, E1) be such that

M1E1 = S1E1Λ1. (6.2.18)

Setting

E =
(

1 0T

0 E1

)
, Λ =

(
1 0T

0 Λ1

)
, S̃ =

(
1 0T

0 S1

)
, Ĩ =

(
0 0T

0 I1

)
, (6.2.19)

where I1 is the identity matrix of order N − 2, we have

ME = S̃EΛ. (6.2.20)

Now applying the transform U = EV to (6.2.4), we obtain, thanks to (6.2.20),

αS̃EΛVM + SEVM + S̃EΛV ST = F. (6.2.21)

Multiplying E−1S̃−1 to the above equation, we arrive at

αΛVM + ĨV M + ΛV ST = E−1S̃−1F =: G. (6.2.22)

The transpose of the above equation reads

αMV TΛ +MV TĨ + SV TΛ = GT. (6.2.23)

Let v̄p = (vp0, vp1, · · · , vpN−2)T and ḡp = (gp0, gp1, · · · , gpN−2)T for 0 � p �

6.3 Spectral-Galerkin methods in cylindrical domains 243

N − 2. Then the p-th column of equation (6.2.23) can be written as

((αλp + 1)M + λpS) v̄p = ḡp, p = 1, · · · , N − 2, (6.2.24)

(αM + S) v̄0 = ḡ0. (6.2.25)

Note that for α = 0, the last equation is only solvable if g00 = 0 (the compatibility
condition), and we set v00 = 0 so that we have

∫
Ω uNω(x)ω(y)dxdy = 0.

Exercise 6.2

Problem 1 Consider the 2D Poisson type equation with the mixed boundary con-
ditions

(a±u+ b±ux)(x,±1) = 0, (c±u+ d±uy)(±1, y) = 0. (6.2.26)

Write down the Legendre-Galerkin method for this problem and design an efficient
matrix diagonalization algorithm for it.

Problem 2 Consider the following two dimensional separable equation in Ω =
(−1, 1)2:

a(x)uxx + b(x)ux + c(x)u+ d(y)uyy + e(y)uy + f(y)u = g(x, y),

u(x,±1) = 0, x ∈ [−1, 1]; ux(±1, y) = 0, y ∈ [−1, 1].
(6.2.27)

1. Assuming that all the coefficients are constants, design an efficient Legendre-
Galerkin algorithm for solving this equation.

2. Assuming that d, e, f are constants, design an efficient Legendre-Galerkin
method for solving this equation.

Problem 3 Write down the matrix diagonalization algorithm for the Poisson type
equation in Ω = (−1, 1)3 with homogeneous Dirichlet boundary conditions.

6.3 Spectral-Galerkin methods in cylindrical domains
In many practical situations, one often needs to solve partial differential equations in
cylindrical geometries. Since a cylinder is a separable domain under the cylindrical
coordinates, we can still apply, as in the previous sections, the discrete “separation of
variables” to separable equations in a cylinder.

Let us consider for example the Poisson type equation

αU − ∆U = F in Ω̂; U |∂Ω̂ = 0, (6.3.1)

244 Chapter 6 Spectral methods in Multi-dimensional Domains

where Ω̂ = {(x, y, z) : x2 + y2 < 1, −1 < z < 1}. Applying the cylindri-
cal transformations x = r cos θ, y = r sin θ, z = z, and setting u(r, θ, z) =
U(r cos θ, r sin θ, z), f(r, θ, z) = F (r cos θ, r sin θ, z), Eq. (6.3.1) becomes

− 1
r
(rur)r − 1

r2
uθθ − uzz + αu = f (r, θ, z) ∈ (0, 1) × [0, 2π) × (−1, 1),

u = 0 at r = 1 or z = ±1, u periodic in θ.

(6.3.2)

To simplify the notation, we shall consider the axisymmetric case, i.e., f and u are
independent of θ. Note that once we have an algorithm for the axisymmetric case,
the full three-dimensional case can be easily handled by using a Fourier method in
the θ direction, we refer to [142] for more details in this matter.

Assuming f and u are independent of θ, making a coordinate transformation
r = (t+1)/2 and denoting v(t, z) = u(r, z), g(t, z) = (t+1)f(r, z)/4 and β = α/4,
we obtain a two-dimensional equation

− 1
4
(t+ 1)vzz −

(
(t+ 1)vt

)
t
+ β(t+ 1)v = g (t, z) ∈ (−1, 1)2,

v = 0 at t = 1 or z = ±1.
(6.3.3)

Let us denote ψi(z) = pi(z)−pi+2(z) and φi(t) = pi(t)−pi+1(t), where pj is either
the j-th degree Legendre or Chebyshev polynomial. Let

XN = span{φi(t)ψj(z) : 0 � i � N − 1, 0 � j � N − 2}.

Then a spectral-Galerkin approximation to (6.3.3) is to find vN ∈ XN such that
1
4
(
(t+ 1)∂zvN , ∂z(wω)

)
+
(
(t+ 1)∂tvN , ∂t(wω)

)
+ β

(
(t+ 1)vN , w

)
ω

= (IN,ωg,w)ω , for all w ∈ XN ,

(6.3.4)

where ω ≡ 1 in the Legendre case and ω = ω(t, z) =
(
(1 − t2)(1 − z2)

)− 1
2 in

the Chebyshev case, (·, ·)ω is the weighted L2-inner product in (−1, 1)2, and IN,ω is
the interpolation operator based on the Legendre- or Chebyshev-Gauss type points.
Setting

aij =
∫
I
(t+ 1)φ′j

(
φiω(t)

)′ dt, A = (aij)0�i�N−1,0�j�N−2,

cij =
∫
I
(t+ 1)φj φi ω(t) dt, C = (cij)0�i�N−1,0�j�N−2,

6.3 Spectral-Galerkin methods in cylindrical domains 245

mij =
∫
I
ψj ψi ω(z) dz, M = (mij)i,j=0,1,··· ,N−2,

sij =
∫
I
ψ′
j

(
ψi ω(z)

)′ dz, S = (sij)i,j=0,1,··· ,N−2,

and

fij =
∫
I

∫
I
IN,ωg φi(t)ψj(z)ω(t, z) dt dz, F = (fij)0�i�N−1,0�j�N−2,

vN =
N−1∑
i=0

N−2∑
j=0

uijφi(t)ψj(z), U = (uij)0�i�N−1,0�j�N−2.

Then (6.3.4) becomes the matrix equation

1
4
CUSt + (A+ βC)UM = F. (6.3.5)

The non-zero entries ofM and S are given in (3.2.7) and (3.2.6) in the Legendre case,
and in (3.3.7) and (3.3.8) in the Chebyshev case. Using the properties of Legendre
and Chebyshev polynomials, it is also easy to determine the non-zero entries of A
and C .

In the Legendre case, the matrix A is diagonal with a ii = 2i+ 2, and the matrix C is
symmetric penta-diagonal with

cij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 2(i+ 2)
(2i+ 3)(2i+ 5)

, j = i+ 2,

4
(2i+ 1)(2i+ 3)(2i+ 5)

, j = i+ 1,

4(i+ 1)
(2i+ 1)(2i+ 3)

, j = i.

In the Chebyshev case, A is a upper-triangular matrix with

aij =

⎧⎪⎨⎪⎩
(i+ 1)2π, j = i,

(i− j)π, j = i+ 1, i+ 3, i+ 5 · · ·
(i+ j + 1)π, j = i+ 2, i+ 4, i+ 6 · · · ,

,

and C is a symmetric penta-diagonal matrix with non-zero elements
cii =

π

2
, i = 0, 1, · · · , N − 1,

ci,i+2 = ci+2,i = −π
4
, i = 0, 1, · · · , N − 3,

c01 = c10 =
π

4
.

246 Chapter 6 Spectral methods in Multi-dimensional Domains

The matrix equation (6.3.5) can be efficiently solved, in particular, by using the
matrix decomposition method. More precisely, we consider the following general-
ized eigenvalue problem Sx̄ = λMx̄, and let Λ be the diagonal matrix formed by the
eigenvalues and E be the matrix formed by the corresponding eigenvectors. Then,

SE = MEΛ or ETST = ΛETM. (6.3.6)

Making a change of variable U = V ET in (6.3.5), we find

1
4
CV ETST + (A+ βC)V ETM = F.

We then derive from (6.3.6) that

1
4
CV Λ + (A+ βC)V = FM−1E−T := G. (6.3.7)

Let v̄p and ḡp be the p-th column of V and G, respectively. Then (6.3.7) becomes

((
1
4
λp + β)C +A)v̄p = ḡp, p = 0, 1, · · · , N − 2, (6.3.8)

which can be efficiently solved as shown in Sections 3.2 and 3.3.

In summary, after the pre-processing for the computation of the eigenpair (Λ, E)
and E−1 (in the Legendre case, E is a orthonormal matrix, i.e. E−1 = ET), the
solution of (6.3.5) consists of three main steps:

1. Compute G = FM−1E−T : N3 + O(N2) flops;

2. Solving V from (6.3.8): O(N2) flops;

3. Set U = V ET: N3 flops.

Exercise 6.3

Problem 1 Compute the first eigenvalue of the Bessel’s equation

− urr − 1
r
ur +

m2

r2
u = λu, r ∈ (0, 1);

u(1) = 0, |u(0)| <∞.

(6.3.9)

For m = 0 and m = 7, list the results for N = 8, 16, 32, 64.

Problem 2 Design an efficient Legendre-Galerkin method for (6.3.1) where Ω̂ =
{(x, y, z) : a < x2 + y2 < b, 0 < z < h}, assuming F is axisymmetric.

6.4 A fast Poisson Solver using finite differences 247

6.4 A fast Poisson Solver using finite differences

Second-order FDM with FFT
Fourth-order compact FDM with FFT
Thomas Algorithm for tridiagonal system
Order of convergence

It is clear that FFT plays an essential role in the efficient implementation of spectral
methods, it is also interesting that FFT can be exploited to construct fast algorithms
for solving boundary-value problems of elliptic type with finite difference methods
(FDM). To illustrate the idea, we again consider the model problem:{

uxx + uyy = f(x, y), in Ω,
u(x, y) = 0, on ∂Ω,

(6.4.1)

where Ω = {(x, y) : 0 < x < 1, 0 < y < 1}. An uniform mesh for the square
domain is given by xi = ih, yj = jh, (0 � i, j � N + 1), with h = 1

N+1 .

Second-order FDM with FFT

We begin by considering a second-order finite difference approach for the Pois-
son problem (6.4.1), which is described by Kincaid and Cheney[92]. The solution
procedure will be extended to a fourth-order compact scheme in the second part of
this section.

A standard five-point scheme, based on the central differencing approach, is given
by

vi+1,j − 2vij + vi−1,j

h2
+
vi,j+1 − 2vij + vi,j−1

h2
= fij, 1 � i, j � N, (6.4.2)

where vij ≈ u(xi, yj), fij = f(xi, yj). The boundary conditions are

v0,j = vN+1,j = vi,0 = vi,N+1 = 0. (6.4.3)

The traditional way of proceeding at this juncture is to solve system (6.4.2) by an
iterative method. There are N2 equations and N2 unknowns. The computational
effort to solve this system using, say, successive over-relaxation is O(N3 logN).
The alternative approach involving FFT (or Fast Fourier Sine Transform) will bring
this effort down to O(N2 logN).

Below we describe how to solve the system (6.4.2) using the Fast Fourier Sine
Transform method. A solution of system (6.4.2) will be sought in the following form:

248 Chapter 6 Spectral methods in Multi-dimensional Domains

vij =
N∑
k=1

akj sin ikθ (0 � i, j � N + 1), (6.4.4)

where θ = π/(N + 1). Here the numbers akj are unknowns that we wish to de-
termine. They represent the Fourier sine transform of the function v. Once the akj
have been determined, the fast Fourier sine transform can be used to compute vij
efficiently.

If the vij from (6.4.4) are substituted into (6.4.2), the result is

N∑
k=1

akj[sin(i+ 1)kθ − 2 sin ikθ + sin(i− 1)kθ]

+
N∑
k=1

sin ikθ[ak,j+1 − 2akj + ak,j−1] = h2fij.

(6.4.5)

We further introduce the sine transform of fij:

fij =
N∑
k=1

f̂kj sin ikθ . (6.4.6)

This, together with a trigonometric identity for (6.4.5), gives

N∑
k=1

akj(−4 sin ikθ) sin2(kθ/2) +
N∑
k=1

sin ikθ(ak,j+1 − 2akj + ak,j−1)

= h2
n∑
k=1

f̂kj sin ikθ . (6.4.7)

Therefore, we can deduce from (6.4.7) that

akj

(
−4 sin2 kθ

2

)
+ ak,j+1 − 2akj + ak,j−1 = h2f̂kj (6.4.8)

The above equation appears at first glance to be another system of N2 equations
inN2 unknowns, which is only slightly different from the original system (6.4.2). But
closer inspection reveals that in (6.4.8), k can be held fixed, and the resulting system
ofN equations can be easily and directly solved since it is tridiagonal. Thus for fixed
k, the unknowns in (6.4.8) form a vector [ak1, · · · , akN]T in RN . The procedure used
above has decoupled the original system of N2 equations into N systems ofN equa-
tions each. A tridiagonal system of N equations can be solved in O(N) operations

6.4 A fast Poisson Solver using finite differences 249

(in fact, fewer than 10N operations are needed). Thus, we can solve N tridiagonal
systems at a cost of 10N2. The fast Fourier sine transform uses O(N logN) oper-
ations on a vector with N components. Thus, the total computational burden in the
fast Poisson method is O(N2 logN).

Fourth-order compact FDM with FFT

We now extend the fast solution procedure described above to deal with a more
accurate finite difference approach, namely, 4th-order compact finite difference
method for the Poisson problem (6.4.1). The finite difference method (6.4.2) has
an overall O(h2) approximation accuracy. Using a compact 9-point scheme, the ac-
curacy can be improved to 4th-order, and the resulting system can be also solved with
O(N2 logN) operations.

In the area of finite difference methods, it has been discovered that the second-
order central difference approximations (such as (6.4.2)), when being used for solv-
ing the convection-diffusion equations often suffer from computational instability
and the resulting solutions exhibit nonphysical oscillations; see e.g. [133]. The up-
wind difference approximations are computationally stable, although only first-order
accurate, and the resulting solutions exhibit the effects of artificial viscosity. The
second-order upwind methods are no better than the first-order upwind difference
ones for convection-dominated problems. Moreover, the higher-order finite differ-
ence methods of conventional type do not allow direct iterative techniques. An ex-
ception has been found in the high order finite difference schemes of compact type
that are computationally efficient and stable and yield highly accurate numerical so-
lutions [39, 78, 151, 173].

Assuming a uniform grid in both x and y directions, we number the grid points
(xi, yj), (xi+1, yj), (xi, yj+1), (xi−1, yj), (xi, yj−1), (xi+1, yj+1), (xi−1, yj+1),
(xi−1, yj−1), (xi+1, yj−1) as 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively (see Fig. 6.1).
In writing the FD approximations a single subscript k denotes the corresponding
function value at the grid point numbered k.

We first derive the 4th-order compact scheme. A standard Taylor expansion for
the central differencing gives

u1 + u3 − 2u0

h2
= (uxx)0 +

h2

12
(uxxxx)0 + O(h4),

u2 + u4 − 2u0

h2
= (uyy)0 +

h2

12
(uyyyy)0 + O(h4).

(6.4.9)

250 Chapter 6 Spectral methods in Multi-dimensional Domains

Figure 6.1 The mesh stencil for the compact scheme

These results, together with the Poisson equation in (6.4.1), gives

u1 + u3 − 2u0

h2
+
u2 + u4 − 2u0

h2

= f0 +
h2

12
(uxxxx + uyyyy)0 + O(h4).

(6.4.10)

In order to obtain a 4th-order accuracy, a second-order approximation for the term
uxxxx + uyyyy is needed. However, direct central differencing approximations for
uxxxx and uyyyy with O(h2) accuracy requires stencils outside the 9-points in the
box Fig. 6.1. To fix it, we again use the governing equation for u:

(uxxxx + uyyyy)0 = (∇4u)0 − 2(uxxyy)0
=(∇2f)0 − 2(uxxyy)0
=(f1 + f3 − 2f0)/h2 + (f2 + f4 − 2f0)/h2 − 2(uxxyy)0 + O(h2).

(6.4.11)

It can be shown that the mixed derivative uxxyy can be approximated by the 9-points
stencil with O(h2) truncation errors:

1
h2

[
u5 + u6 − 2u2

h2
− 2

u1 + u3 − 2u0

h2
+
u7 + u8 − 2u4

h2

]
=((uxx)2 − 2(uxx)0 + (uxx)4)/h2 + O(h2) (6.4.12)

=(uxxyy)0 + O(h2).

Using the above results, we obtain a 4th-order finite difference scheme using the
compact stencils:

u1 + u3 − 2u0

h2
+
u2 + u4 − 2u0

h2

6.4 A fast Poisson Solver using finite differences 251

=f0 +
1
12

[f1 + f3 − 2f0 + f2 + f4 − 2f0]

− 1
6

[
u5 + u6 − 2u2

h2
− 2

u1 + u3 − 2u0

h2
+
u7 + u8 − 2u4

h2

]
.

(6.4.13)

Using the sine expansion of the form (6.4.4): uij =
∑N

k=1 akj sin(ikθ), θ = π/(N+
1), we can obtain

u5 + u6 − 2u2 =
N∑
k=1

ak,j+1 (−4 sin(ikθ)) sin2(kθ/2) ,

u1 + u3 − 2u0 =
N∑
k=1

ak,j (−4 sin(ikθ)) sin2(kθ/2) ,

u7 + u8 − 2u4 =
N∑
k=1

ak,j−1 (−4 sin(ikθ)) sin2(kθ/2) .

These results, together with the results similar to fj’s, yield an equivalent form for
the finite difference scheme (6.4.13):

N∑
k=1

akj
(− 4 sin(ikθ)

)
sin2 kθ

2
+

N∑
k=1

(
ak,j+1 − 2ak,j + ak,j−1

)
sin(ikθ)

= h2
N∑
k=1

f̂kj sin(ikθ) +
h2

12

N∑
k=1

f̂kj
(− 4 sin(ikθ)

)
sin2 kθ

2

+
h2

12

N∑
k=1

(
f̂k,j+1 − 2f̂k,j + f̂k,j−1

)
sin(ikθ)

− 1
6

N∑
k=1

(ak,j+1 − 2ak,j + ak,j−1)
(− 4 sin(ikθ)

)
sin2 kθ

2
, (6.4.14)

where f̂kj is defined by (6.4.6). Grouping the coefficients of sin(ikθ) gives

−4 sin2(kθ/2)ak,j +
(
ak,j+1 − 2ak,j + ak,j−1

)
=h2f̂k,j +

h2

12

{
−4 sin2(kθ/2)f̂k,j +

(
f̂k,j+1 − 2f̂k,j + f̂k,j−1

)}
−1

6
(
ak,j+1 − 2ak,j + ak,j+1

) (−4 sin2(kθ/2)
)
.

252 Chapter 6 Spectral methods in Multi-dimensional Domains

Finally, we obtain a tridiagonal system for the coefficients akj with each fixed k:(
1 − 2

3
sin2 kθ

2

)
ak,j+1 +

(
−2 − 8

3
sin2 kθ

2

)
ak,j +

(
1 − 2

3
sin2 kθ

2

)
ak,j−1

=
h2

12

[
f̂k,j+1 +

(
10 − 4 sin2(kθ/2)

)
f̂k,j + f̂k,j−1

]
. (6.4.15)

Thomas Algorithm for tridiagonal system

Consider the tridiagonal system

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1
a2 b2 c2

· · ·
ai bi ci

· · ·
aN−1 bN−1 cN−1

aN bN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
...
vi
...

vN−1

vN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2
...
di
...

dN−1

dN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.4.16)
where ai, bi, ci and di are given constants. All terms in the above matrix, other than
those shown, are zero. The Thomas algorithm for solving (6.4.16) consists of two
parts. First, the tridiagonal system (6.4.16) is manipulated into the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c′1
1 c′2

· · ·
1 c′i

· · ·
1 c′N−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
v1
...
vi
...
vN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
d′1
...
d′i
...
d′N

⎤⎥⎥⎥⎥⎥⎥⎦ ,

i.e. the coefficients ai have been eliminated and the coefficients bi normalized to
unity. For the first equation,

c′1 =
c1
b1
, d′1 =

d1

b1
, (6.4.17)

6.4 A fast Poisson Solver using finite differences 253

and for the general equation

c′i =
ci

bi − aic′i−1

, 1 < i < N, d′i =
di − aid

′
i−1

bi − aic′i−1

, 1 < i � N . (6.4.18)

The second stage consists of a backward-substitution:

vN = d′N and vi = d′i − vi+1c
′
i , i = N − 1, · · · , 1. (6.4.19)

The Thomas algorithm is particularly economical; it requires only 5N −4 operations
(multiplications and divisions). But to prevent ill-conditioning (and hence round-off
contamination) it is necessary that

|bi| > |ai| + |ci| .

The procedures of solving the finite difference schemes with FFT described in this
section typically generate tridiagonal systems of equations that can be solved effi-
ciently using the Thomas algorithm.

Order of convergence

If a finite difference scheme is given, one way to find its order of convergence
is to use the Taylor expansion to find its truncation error. Another way is to find the
order by doing some simple numerical tests. The procedure is described below:

(a) Pick up a single test equation in a simple geometry (say, square domain), such
that the exact solution is known;

(b) Solve the test equation using the given finite difference scheme with at least
three sets of mesh sizes: h1, h2, and h3;

(c) Since the exact solution is known, the errors (L1, L∞ or Lc) associated with
h1, h2 and h3 can be obtained easily. They are denoted by e1, e2 and e3, respectively.

Having the above steps, we are able to find the order of convergence as follows.
Assume the leading term of the error is

e ≈ Chα,

for some constant C and α. Here α is the desired order of convergence. Since

ei ≈ Chαi , i = 1, 2, 3,

254 Chapter 6 Spectral methods in Multi-dimensional Domains

we have
e1
e2

≈
(
h1

h2

)α
,

(
e1
e2

)
≈
(
h2

h3

)α
.

This gives

α1 = log
(
e1
e2

)/
log

(
h1

h2

)
, α2 = log

(
e2
e3

)/
log

(
h2

h3

)
.

If the two α’s obtained above are very close to each other, then the value of α gives
a good approximation of the convergence order. If they are not close, a smaller mesh
h4 should be used, and the value

α3 = log
(
e3
e4

)/
log

(
h3

h4

)
should be compared with α2 and α1.

In practice, we choose hi+1 = hi/2, for i = 1, 2, · · · . Namely, we always halve
the mesh size, and to observe the change of the resulting errors. In this case, the
formula for computing the convergence order becomes

order = log2

(
error(h)
error(h/2)

)
. (6.4.20)

We close this section by pointing out that we presented only a simple case for
the many versions of fast Poisson solvers. There are many relevant papers on either
algorithm development or theoretical justifications; see e.g. [14], [128], [140], [143],
[153].

Exercise 6.4.

Problem 1 Consider the Poisson problem{
uxx + uyy = 2ex+y, (x, y) ∈ Ω = (0, 1) × (0, 1),

u|∂Ω = ex+y .
(6.4.21)

The exact solution for the above problem is u(x, y) = ex+y . Solve the above
problem by using the 5-point finite difference scheme (6.4.2) and list the L1-errors
and the L∞ errors. Demonstrate that the scheme (6.4.2) is of second-order accuracy.

6.4 A fast Poisson Solver using finite differences 255

Problem 2 Solve the Poisson problem

uxx + uyy = −2π2 sin(πx) sin(πy), 0 < x, y < 1,

u(x, y) = 0, on the boundary,
(6.4.22)

using the 2nd-order finite difference method (6.4.2) and the fast sine transform, with
N = 10, 20 and 40. The exact solution is u(x, y) = sin(πx) sin(πy). Plot the error
function.

Problem 3 Repeat the above problem using the 4th-order compact scheme (6.4.13)
and the fast sine transform. Moreover, by comparing the L1 errors for the three N ’s
to show that the numerical method used is of 4-th order accuracy.

Chapter 7
Some applications in
multi-dimensions

Contents
7.1 Spectral methods for wave equations 257

7.2 Laguerre-Hermite method for Schrödinger equations 264

7.3 Spectral approximation of the Stokes equations 276

7.4 Spectral-projection method for Narier-stokes equations . . . 282

7.5 Axisymmetric flows in a cylinder 288

We present in this chapter applications of the spectral methods to several problems
in multi-dimensional domains. In Section 7.1, we present two examples of two-
dimensional time-dependent scalar advection equation in Cartesian coordinates. In
Section 7.2, we present a fourth-order time-splitting spectral method for the nu-
merical simulation of the Gross-Pitaevskii equation (GPE) which describes a Bose-
Einstein condensate (BEC) at temperatures T much smaller than the critical tempera-
ture Tc. The scheme preserves all essential features of the GPE. The remaining three
sections are concerned with topics in computational fluid dynamics. In Section 7.3,
we present a spectral approximation for the Stokes equations. In Section 7.4, we
will describe two robust and accurate projection type schemes and the related full
discretization schemes with a spectral-Galerkin discretization in space. Finally, In
Section 7.5, we apply the spectral-projection scheme to simulate an incompressible
flow inside a cylinder.

7.1 Spectral methods for wave equations 257

7.1 Spectral methods for wave equations
Linear advection problems
Numerical algorithms
Grid mapping for the Chebyshev collocation method
Numerical results

In this section, we will present two examples of two-dimensional time-dependent
scalar advection equation in Cartesian coordinates. It is instructive to see how one
should implement the spectral method for this class of problems. The first example
is the pure linear advection equation and the second is the rotational wave equation.
These two equations differ only by the fact that the wave velocity is constant for
the first one while it depends on the spatial variables in the second case. They will
be used to demonstrate some practical issues in implementing the spectral methods
such as smoothing, filtering and Runge-Kutta time stepping discussed in previous
chapters. We will focus on the Fourier and Chebyshev collocation methods. Some
research papers relevant to this section include [22], [29], [118].

Linear advection problems

Example 7.1.1 The first example is

∂U

∂t
+ ax

∂U

∂x
+ ay

∂U

∂y
= 0, (x, y) ∈ (−1, 1)2, t > 0, (7.1.1)

where U(x, y, t) is a function of two spatial variables (x, y) and time t, and the wave
speeds ax � 0 and ay � 0 are constant. We assume a periodic boundary condition
in the y direction and impose a Dirichlet inflow boundary condition at x = −1.

U(−1, y, t) = 0 − 1 � y � 1. (7.1.2)

Equation (7.1.1) models the propagation of a signal initially at rest through its evolu-
tion in space and time. The solution of the partial differential equation (7.1.1) is

U(�x, t) = U0(�x− �at), �x = (x, y), �a = (ax, ay), (7.1.3)

where U0(�x) is an initial function (signal) at t = 0, that is, the shape of the signal
moving in the (x, y)-plane with a constant speed according to the given wave velocity
vector (ax, ay) and elapsed time t (see Figure 7.2). Since the physical domain in x is
finite, the signal will move out from the right boundary in some finite time.

258 Chapter 7 Some applications in multi-dimensions

Example 7.1.2 The second example is a linear rotational problem

∂U

∂t
+ y

∂U

∂x
− x

∂U

∂y
= 0, (x, y) ∈ (−1, 1)2, t > 0, (7.1.4)

whereU(x, y, t) is a function of two spatial variables (x, y) and time t. The boundary
conditions are periodical in the y direction, but no boundary condition is imposed at
x = ±1.

The wave velocity (ax, ay) = (y,−x) in (7.1.4) is the tangential velocity at the
circumference of a circle. In this case, a circular axis-symmetric Gaussian pulse cen-
tered at (Cx, Cy) = (0, 0) (see the initial conditions below) will simply rotate about
its central axis without any displacement in either direction. Hence the theoretical
solution of (7.1.4) will remain unchanged and appeared stationary at all time for the
circular Gaussian pulse centered at (Cx, Cy) = (0, 0). It is an excellent test which
displays the dispersive and dissipative nature of a long time integration by a given
numerical algorithm.

Initial condition For both examples above, the initial condition is speci-
fied as a smooth circular Gaussian function in the form of

U(x, y, t = 0) = U0(x, y) =
{

0, L > 1,
e−α|L|γ , L � 1,

(7.1.5)

where L =
√

(x− Cx)2 + (y − Cy)2/R with (Cx, Cy) the center of the Gaussian
function and R a given parameter that control the compact support of the Gaussian
function; α = − log(ε) with ε the machine roundoff errors; and γ is the order of the
Gaussian function.

In an actual implementation, R is chosen as

R = βmin(Lx, Ly), β � 1, (7.1.6)

where Lx and Ly are the length of the physical domain in the x and y direction,
respectively. In our computations, we choose Lx = Ly = 2. For the linear advection
problem, we will take (ax, ay) = (1, 2.5), (Cx, Cy) = (−1 + Lx/2,−1 + Ly/2),
β = 0.25 and γ = 8. The final time is set at tf = 1.5. For Example 7.1.2, we
will center the Gaussian pulse in the middle of the physical domain with (Cx, Cy) =
(0, 0) while keeping all the other parameters unchanged.

Numerical algorithms

Since both problems are periodic in y, it is natural to employ the Fourier col-

7.1 Spectral methods for wave equations 259

location method in the y direction. In the x direction, both the Legendre and the
Chebyshev collocation methods can be used. We will use the Chebyshev collocation
method in this section, partly due to the fact that with the Chebyshev method the Fast
Cosine Transform method can be employed.

To solve the PDE numerically, we need to replace the continuous differentiation
operators by appropriate discretized counterparts. If we denote the Fourier differ-
entiation matrix by Df

y and the Chebyshev differentiation matrix by Dcx, where the
subscript denotes the coordinate direction on which the differentiation operates, the
discretized version of (7.1.1) can be written in the matrix form

∂�U

∂t
+ axD

c
x
�U + ayD

f
y
�U = 0, (7.1.7)

where the two-dimensional array �U = U(xi, yj , t), with xi = cos(πi/Nx), i =
0 · · ·Nx being the Chebyshev-Gauss-Lobatto collocation points and yj = −1 +
2j/Ny , j = 0 · · ·Ny− 1 being the Fourier collocation points. Since the domain limit
in y is [−1, 1) instead of the classical [0, 2π), the Fourier operator Dfy in (7.1.7) is
scaled by a factor of π. The equation (7.1.7) is a system of ordinary differential equa-
tions which can be advanced by any standard stable high-order Runge-Kutta method.
We used the third-order TVD Runge-Kutta scheme to solve the ODE system[149]:

�U1 = �Un + ∆tL(�Un),

�U2 =
1
4
(3�Un + �U1 + ∆tL(�U1)),

�Un+1 =
1
3
(�Un + 2�U2 + 2∆tL(�U2)),

(7.1.8)

where L = −(axDc
x + ayD

f
y) is the spatial operator, and �U1and �U2 are two tem-

porary arrays at the intermediate Runge-Kutta stages. Notice that this Runge-Kutta
scheme requires only one temporary array to be allocated since�U1 can be overwritten
by �U2 in the second stage. The scheme has been shown to be stable for

CFL = ∆tmax
i,j

(|ax|/∆xi + |ay|/∆yj) � 1. (7.1.9)

In our computations, we used CFL=1. Furthermore, at each Runge-Kutta stage, an
appropriate boundary condition, say �U(−1, yj , t) = 0, should be imposed if it is
prescribed.

As discussed in Section 5.5, filters may be needed to stabilize spectral computa-
tions. For Example 7.1.2, a 16th-order exponential filter is used in the computations.

260 Chapter 7 Some applications in multi-dimensions

Grid mapping for the Chebyshev collocation method

A major disadvantage in using the Chebyshev collocation methods is that when a k-th
derivative (in space) is treated explicitly in a time discretization scheme, it leads to a
very restrictive CFL condition ∆t ≈ O(N−2k). As discussed at the end of Section
2.3, this is due to the clustering of the Chebyshev points at the boundaries. In order
to alleviate the time step restriction, Kosloff and Tal-Ezer[93] devised a grid mapping
technique that maps the original Chebyshev-Gauss-Lobatto points into another set of
collocation points. The mapping has the form of

x = g(ξ, α) =
sin−1(αξ)
sin−1 α

, (7.1.10)

where ξ and x are the original and mapped Chebyshev collocation points, respec-
tively. The main effect of this mapping is that the minimum spacing is increased
from ∆ξ ≈ O(N−2) in the original Chebyshev grid to ∆x ≈ O(N−1) in the new
mapped Chebyshev grid as the mapping parameter α→ 1.

Under the mapping (7.1.10), the differentiation matrix Db becomes

Db = MDb, (7.1.11)

where M is a diagonal matrix with elements

Mii = g′(ξi, α)−1 = g′ (y) =
α

arcsin (α)
1√

1 − (αy)2
. (7.1.12)

However, in order to retain the spectral accuracy of the mapped Chebyshev colloca-
tion method, the parameter α cannot be chosen arbitrarily. It had been shown that if
α is chosen as

α = α(N, ε) = sech (|ln ε|/N) , (7.1.13)

then the approximation error is roughly ε. Note that α is not a constant but a function
of N . By choosing ε to be of machine epsilon, the error of the grid mapping is
essentially guaranteed to be harmless.

A natural question is what will be the extra work of grid mapping for the mapped
Chebyshev collocation method? In Figure 7.1, the eigenvalue spectrum of the original
and the mapped Chebyshev differentiation matrix with the Dirichlet boundary condi-
tion are shown with N = 64 collocation points. It is observed that the largest eigen-
value of the mapped Chebyshev differentiation matrix Db is substantially smaller

7.1 Spectral methods for wave equations 261

than the one computed with the original unmapped counterpart Db. Intuitively, we
can expect that for the k-th derivatives the mapped Chebyshev method will

Figure 7.1

(a) The eigenvalue spectrum of the original;

(b) the mapped Chebyshev differentiation matrix with the Dirichlet boundary condition.

• reduce the roundoff error from O(N2kε) to O(Nkε) as shown in Table 7.1;

• reduce the spectral radius of the differentiation matrix from O(N2k) to O(Nk)
asymptotically for Db and Db respectively, as shown in Table 7.2.

Table 7.1 Absolute maximum error for the second derivative of sin(2x)

N No Mapping with Mapping

32 0.47E-09 0.20E-09
64 0.62E-08 0.20E-08
128 0.71E-07 0.13E-07
256 0.35E-05 0.21E-06
512 0.98E-05 0.33E-06
1024 0.13E-02 0.21E-05

Table 7.2 The spectral radius λ of Db and Db with k = 1

Growth Growth
N λ(Db) Rate λ(Db) Rate

32 91.6 80.8
64 263.8 2 230.4 1.50

128 1452.7 2 555.4 1.27
256 5808.4 2 1219.1 1.13
512 23231.3 2 2553.5 1.07

1024 92922.8 2 5225.8 1.03

262 Chapter 7 Some applications in multi-dimensions

In summary, the spectral algorithm consists of the following features:

• Spatial Algorithm:
Chebyshev and Fourier collocation methods.

– Differentiation and smoothing operations are done via an optimized li-
brary PseudoPack (Costa & Don);

– 16-th order exponential filters are used for the differentiation and solution
smoothing when needed;

– The Kosloff-Tal-Ezer mapping is used for accuracy and stability enhance-
ment for the Chebyshev collocation methods.

• Temporal Algorithm:
Third-order explicit TVD Runge-Kutta method.

Numerical results

The numerical results for Examples 7.1.1 and 7.1.2 are shown in Figures 7.2 and
7.3, respectively, computed by using a 256 × 256 resolution. As depicted in Figure
7.2, the Gaussian pulse, initially at the upper left corner, moves diagonally down
and partially exits the physical domain at the later time. For Example 7.1.2, an one-
dimensional cut through the center of the solution at time t = 0 (square symbol) and
t = 1.5 (circle symbol) is shown in Figure 7.4. The symbols are overlapped with
each other since the difference between them is on the order of 10−7 or smaller.

Figure 7.2 Solution of Example 7.1.1 with the Gaussian pulse at various time.

7.1 Spectral methods for wave equations 263

Figure 7.3 Solution of Example 7.1.2 with the Gaussian pulse at t = 1.5.

Figure 7.4 an one-dimensional cut through the center at

time t = 0 (square) and t = 1.5 (circle).

For both examples, the shape of the pulse remain sharp and well defined without
any distortion and has minimal classical dispersive and dissipative behavior we may
otherwise observe in a finite difference or a finite element computation.

The FORTRAN code can be found in
http://www.math.hkbu.edu.hk/˜ttang/PGteaching;

it is written in FORTRAN 90/95, and is based on the PseudoPack library co-developed
by Wai Sun Don and Bruno Costa. Many important and optimized subroutines for
computing differentiation by the Fourier, Chebyshev and Legendre collocation meth-
ods using various advance algorithms are incorporated into the library. Some further
information of the PseudoPack can be found in Appendix C of this book. Readers

264 Chapter 7 Some applications in multi-dimensions

who are interested in the library can visit
http://www.cfm.brown.edu/people/wsdon/home.html

Exercise 7.1.
Problem 1 Consider the mapping (7.1.10). Show that with this mapping the mini-
mum spacing can be increased from ∆ξ ≈ O(N−2) in the original Chebyshev grid
to ∆x ≈ O(N−1) in the new mapped Chebyshev grid as the mapping parameter
α→ 1.

7.2 Laguerre-Hermite method for Schrödinger equations
The Gross-Pitaevskii equation (GPE)
Hermite pseudospectral method for the 1-D GPE
Two-dimensional GPE with radial symmetry
Three-dimensional GPE with cylindrical symmetry
Numerical results

The nonlinear Schrödinger equation plays an important role in many fields of math-
ematical physics. In particular, at temperatures T much smaller than the critical
temperature Tc, a Bose-Einstein condensate (BEC) is well described by the macro-
scopic wave function ψ = ψ(x, t) whose evolution is governed by a self-consistent,
mean field nonlinear Schrödinger equation (NLSE) known as the Gross-Pitaevskii
equation (GPE)[67, 129]. We present in this section a fourth-order time-splitting spec-
tral method for the numerical simulation of BEC. The scheme preserves all essential
features of the GPE, such as conservative, time reversible and time transverse invari-
ants, while being explicit , unconditionally stable, and spectrally accurate in space
and fourth-order accurate in time.

The Gross-Pitaevskii equation (GPE)

We consider the non-dimensional Gross-Pitaevskii equation in the form

i
∂ψ(x, t)
∂t

= −1
2
∇2ψ(x, t) + V (x)ψ(x, t) + β |ψ(x, t)|2ψ(x, t), (7.2.1)

where the unknown is the complex wave function ψ, i =
√−1, β is a positive con-

stant and
V (x) =

(
γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)
/2 (7.2.2)

is the trapping potential. There are two typical extreme regimes between the trap
frequencies: (i) γx = 1, γy ≈ 1 and γz � 1, it is a disk-shaped condensation; (ii)
γx � 1, γy � 1 and γz = 1, it is a cigar-shaped condensation. Following the
procedure used in [9], [98], the disk-shaped condensation can be effectively modeled

7.2 Laguerre-Hermite method for Schrödinger equations 265

by a 2-D GPE. Similarly, a cigar-shaped condensation can be reduced to a 1-D GPE.
Hence, we shall consider the GPE in d-dimension (d = 1, 2, 3):

i
∂ψ(x, t)
∂t

= −1
2
∇2ψ + Vd(x)ψ + βd |ψ|2ψ, x ∈ Rd,

ψ(x, 0) = ψ0(x), x ∈ Rd,

(7.2.3)

with

βd =

⎧⎨⎩
√
γxγy/2π,√
γz/2π,

1,
Vd(x) =

⎧⎨⎩
γ2
zz

2/2, d = 1,(
γ2
xx

2 + γ2
yy

2
)
/2, d = 2,(

γ2
xx

2 + γ2
yy

2 + γ2
zz

2
)
/2, d = 3,

where γx > 0, γy > 0 and γz > 0 are constants. It is easy to check that this equation
is conservative in the sense that

‖ψ(·, t)‖2 :=
∫

Rd

|ψ(x, t)|2 dx ≡
∫

Rd

|ψ0(x)|2 dx. (7.2.4)

We normalize the initial condition to be∫
Rd

|ψ0(x)|2 dx = 1. (7.2.5)

Moreover, the GPE is time reversible and time transverse invariant (cf. [9]). Hence,
it is desirable that the numerical scheme satisfies these properties as well.

For the time discretization, we shall use the fourth-order splitting scheme (1.6.29).
To this end, we rewrite the GPE (7.2.3) in the form

ut = f(u) = −iAu− iBu, u(t0) = u0, (7.2.6)

Aψ = βd |ψ(x, t)|2ψ(x, t), Bψ = −1
2
∇2ψ(x, t) + Vd(x)ψ(x, t). (7.2.7)

Thus, the key for an efficient implementation of (1.6.29) is to solve efficiently the
following two sub-problems:

i
∂ψ(x, t)
∂t

= Aψ(x, t), x ∈ Rd, (7.2.8)

and

i
∂ψ(x, t)
∂t

= Bψ(x, t), x ∈ Rd; lim
|x|→+∞

ψ(x, t) = 0, (7.2.9)

266 Chapter 7 Some applications in multi-dimensions

where the operators A and B are defined by (7.2.7). Multiplying (7.2.8) by ψ(x, t),
we find that the ordinary differential equation (7.2.8) leaves |ψ(x, t)| invariant in t.
Hence, for t � ts (ts is any given time), (7.2.8) becomes

i
∂ψ(x, t)
∂t

= βd |ψ(x, ts)|2ψ(x, t), t � ts, x ∈ Rd, (7.2.10)

which can be integrated exactly, i.e.,

ψ(x, t) = e−iβd|ψ(x,ts)|2(t−ts)ψ(x, ts), t � ts, x ∈ Rd. (7.2.11)

Thus, it remains to find an efficient and accurate scheme for (7.2.9). We shall con-
struct below suitable spectral basis functions which are eigenfunctions of B so that
e−iB∆tψ can be evaluated exactly (which is necessary for the final scheme to be time
reversible and time transverse invariant). Hence, the only time discretization error of
the corresponding time splitting method (1.6.29) is the splitting error, which is fourth
order in ∆t. Furthermore, the scheme is explicit, time reversible and time transverse
invariant, and as we shall show below, it is also unconditionally stable.

Hermite pseudospectral method for the 1-D GPE

In the 1-D case, Eq. (7.2.9) collapses to

i
∂ψ

∂t
= −1

2
∂2ψ

∂z2
+
γ2
zz

2

2
ψ, z ∈ R, t > 0; lim

|z|→+∞
ψ(z, t) = 0, t � 0, (7.2.12)

with the normalization (7.2.5)

‖ψ(·, t)‖2 =
∫ ∞

−∞
|ψ(z, t)|2dz ≡

∫ ∞

−∞
|ψ0(z)|2dz = 1. (7.2.13)

Since the problem (7.2.12) is posed on the whole line, it is natural to use a spectral
method based on Hermite functions. Although the standard Hermite functions could
be used as basis functions here, they are not the most appropriate ones. Below, we
construct properly scaled Hermite functions which are eigenfunctions of B.

We recall that the standard Hermite polynomials Hl(z) satisfy

H ′′
l (z) − 2zH ′

l(z) + 2lHl(z) = 0, z ∈ R, l � 0, (7.2.14)∫ ∞

−∞
Hl(z)Hn(z)e−z

2
dz =

√
π 2l l! δln, l, n � 0. (7.2.15)

7.2 Laguerre-Hermite method for Schrödinger equations 267

We define the scaled Hermite function

hl(z) = e−γzz2/2Hl (
√
γzz) /

(√
2l l!(π/γz)1/4

)
, z ∈ R. (7.2.16)

Substituting (7.2.16) into (7.2.14) and (7.2.15), we find that

−1
2
h′′l (z) +

γ2
zz

2

2
hl(z) = µzl hl(z), z ∈ R, µzl =

2l + 1
2

γz, l � 0, (7.2.17)∫ ∞

−∞
hl(z)hn(z)dz=

∫ ∞

−∞

1√
π2ll!2nn!

Hl(z)Hn(z)e−z
2
dz=δln, l, n�0.(7.2.18)

Hence, {hl} are the eigenfunctions of B defined in (7.2.12).

Now, let us define XN = span{hl : l = 0, 1, · · · , N}. The Hermite-spectral
method for (7.2.12) is to find ψN (z, t) ∈ XN , i.e.,

ψN (z, t) =
N∑
l=0

ψ̂l(t) hl(z), z ∈ R, (7.2.19)

such that

i
∂ψN (z, t)

∂t
= BψN (z, t) = −1

2
∂2ψN (z, t)

∂z2
+
γ2
zz

2

2
ψN (z, t), z ∈ R. (7.2.20)

Note that lim|z|→+∞ hl(z) = 0 (cf. [155]) so the decaying condition lim|z|→+∞ψN (z, t)
= 0 is automatically satisfied.

Plugging (7.2.19) into (7.2.20), thanks to (7.2.17) and (7.2.18), we find

i
dψ̂l(t)
dt

= µzl ψ̂l(t) =
2l + 1

2
γz ψ̂l(t), l = 0, 1, · · · , N. (7.2.21)

Hence, the solution for (7.2.20) is given by

ψN (z, t) = e−iB(t−ts)ψN (z, ts) =
N∑
l=0

e−iµ
z
l (t−ts) ψ̂l(ts)hl(z), t � ts. (7.2.22)

As is standard in all spectral algorithms, a practical implementation will involve a
Gauss-type quadrature. In this case, we need to use Gauss quadrature points and
weights associated with the scaled Hermite functions.

Let {ẑk, ω̂zk}Nk=0 be the Hermite-Gauss points and weights, i.e., {xk, ωzk}Nk=0 de-

268 Chapter 7 Some applications in multi-dimensions

scribed in Theorem 4.1.1. Then, we have from (4.1.8) and (4.1.2) that

N∑
k=0

ω̂zk
Hl(ẑk)

π1/4
√

2l l!

Hn(ẑk)
π1/4

√
2n n!

= δln, l, n = 0, 1, · · · , N. (7.2.23)

Now let us define the scaled Hermite-Gauss points and weights by

zk = ẑk/
√
γz, ωzk = ω̂zk e

ẑ2k/
√
γz, 0 � k � N. (7.2.24)

We then derive from (7.2.16) that

N∑
k=0

ωzk hl(zk) hm(zk) =
N∑
k=0

ω̂zk e
ẑ2k/

√
γz hl (ẑk/

√
γz) hm (ẑk/

√
γz)

=
N∑
k=0

ω̂zk
Hl(ẑk)

π1/4
√

2l l!

Hn(ẑk)
π1/4

√
2n n!

= δln, 0 � l, n � N.

(7.2.25)

We are now ready to describe the full algorithm. Let ψnk be the approximation of
ψ(zk, tn) and ψn be the solution vector with components ψnk .

The fourth-order time-splitting Hermite-spectral method for 1-D GPE (7.2.3) is given
by

ψ
(1)
k = e−i2w1 ∆t β1|ψn

k |2 ψnk , ψ
(2)
k = Fh(w2, ψ

(1))k,

ψ
(3)
k = e−i2w3 ∆t β1|ψ(2)

k
|2 ψ(2)

k , ψ
(4)
k = Fh(w4, ψ

(3))k,

ψ
(5)
k = e−i2w3 ∆t β1|ψ(4)

k |2 ψ(4)
k , ψ

(6)
k = Fh(w2, ψ

(5))k,

ψn+1
k = e−i2w1 ∆t β1|ψ(6)

k |2 ψ(6)
k , k = 0, 1, · · · , N,

(7.2.26)

where wi, i = 1, 2, 3, 4 are given in (1.6.30), and Fh(w,U)k (0 � k � N) can be
computed from any given w ∈ R and U = (U0, · · · , UN)T:

Fh(w,U)k =
N∑
l=0

e−i2w µz
l ∆t Ûl hl(zk), Ûl =

N∑
k=0

ωzk U(zk) hl(zk). (7.2.27)

The memory requirement of this scheme is O(N) and the computational cost per
time step is a small multiple ofN2 which comes from the evaluation of inner products
in (7.2.27). Since each of the sub-problems (7.2.8) and (7.2.9) is conservative and our

7.2 Laguerre-Hermite method for Schrödinger equations 269

numerical scheme solves the two sub-problems exactly in the discrete space, one can
easily establish the following result (cf. [10]):

Lemma 7.2.1 The time-splitting Hermite-spectral method (7.2.26) is conservative,
i.e.,

‖ψn‖2
l2 =

N∑
k=0

ωzk|ψnk |2 =
N∑
k=0

ωzk|ψ0(zk)|2 = ‖ψ0‖2
l2 , n = 0, 1, · · · , (7.2.28)

where

‖ψ‖2
l2 :=

N∑
k=0

ωzk|ψ(zk)|2. (7.2.29)

Laguerre-spectral method for 2-D GPE with radial symmetry

In the 2-D case with radial symmetry, i.e. d = 2 and γx = γy in (7.2.3), and
ψ0(x, y) = ψ0(r) in (7.2.3) with r =

√
x2 + y2, we can write the solution of (7.2.3)

as ψ(x, y, t) = ψ(r, t). Therefore, equation (7.2.9) collapses to

i
∂ψ(r, t)
∂t

= Bψ(r, t) = − 1
2r

∂

∂r

(
r
∂ψ(r, t)
∂r

)
+
γ2
rr

2

2
ψ(r, t), 0 < r <∞,

lim
r→∞ψ(r, t) = 0, t � 0,

(7.2.30)

where γr = γx = γy . The normalization (7.2.5) reduces to

‖ψ(·, t)‖2 = 2π
∫ ∞

0
|ψ(r, t)|2r dr ≡ 2π

∫ ∞

0
|ψ0(r)|2r dr = 1. (7.2.31)

Note that it can be shown, similarly as for the Poisson equation in a 2-D disk (cf.
[142]), that the problem (7.2.30) admits a unique solution without any condition at
the pole r = 0.

Since (7.2.30) is posed on a semi-infinite interval, it is natural to consider La-
guerre functions which have been successfully used for other problems in semi-
infinite intervals (cf. [52], [143]). Again, the standard Laguerre functions, although
usable, are not the most appropriate for this problem. Below, we construct properly
scaled Laguerre functions which are eigenfunctions of B.

Let L̂m(r) (m = 0, 1, · · · ,M) be the Laguerre polynomials of degree m satis-
fying

270 Chapter 7 Some applications in multi-dimensions

rL̂′′
m(r) + (1 − r)L̂′

m(r) +mL̂m(r) = 0, m = 0, 1, · · · ,∫ ∞

0
e−r L̂m(r) L̂n(r) dr = δmn, m, n = 0, 1, · · · . (7.2.32)

We define the scaled Laguerre functions Lm by

Lm(r) =
√
γr
π
e−γrr2/2 L̂m(γrr2), 0 � r <∞. (7.2.33)

Note that lim|r|→+∞Lm(r) = 0 (cf. [155]) hence, lim|r|→+∞ψM (r, t) = 0 is
automatically satisfied.

Substituting (7.2.33) into (7.2.32), a simple computation shows

− 1
2r

∂

∂r

(
r
∂Lm(r)
∂r

)
+

1
2
γ2
rr

2Lm(r) = µrmLm(r), µrm = γr(2m+ 1), m � 0,

2π
∫ ∞

0
Lm(r)Ln(r)r dr =

∫ ∞

0
e−rL̂m(r)L̂n(r) dr = δmn, m, n � 0.

(7.2.34)

Hence, {Lm} are the eigenfunctions of B defined in (7.2.30).

Let YM = span{Lm : m = 0, 1, · · · ,M}. The Laguerre-spectral method for
(7.2.30) is to find ψM (r, t) ∈ YM , i.e.,

ψM (r, t) =
M∑
m=0

ψ̂m(t) Lm(r), 0 � r <∞, (7.2.35)

such that

i
∂ψM (r, t)

∂t
=BψM(r, t)=− 1

2r
∂

∂r

(
r
∂ψM (r, t)

∂r

)
+
γ2
r r

2

2
ψM (r, t), 0<r<∞.

(7.2.36)
Plugging (7.2.35) into (7.2.36), we find, thanks to (7.2.34),

i
dψ̂m(t)
dt

= µrmψ̂m(t) = γz(2m+ 1)ψ̂m(t), m = 0, 1, · · · ,M. (7.2.37)

Hence, the solution for (7.2.36) is given by

7.2 Laguerre-Hermite method for Schrödinger equations 271

ψM (r, t)=e−iB(t−ts)ψM (r, ts)=
M∑
m=0

e−iµ
r
m(t−ts)ψ̂m(ts)Lm(r), t � ts. (7.2.38)

We now derive the Gauss-Radau points and weights associated with the scaled La-
guerre functions. Let {r̂j , ω̂rj}Mj=0 be the Laguerre-Gauss-Radau points and weights,

i.e., {x(0)
j , ω

(0)
j } given in (4.2.8). We have from (4.2.9) and (4.2.2) that

M∑
j=0

ω̂rj L̂m(r̂j)L̂n(r̂j) = δnm, n,m = 0, 1, · · · ,M.

We define the scaled Laguerre-Gauss-Radau points rj and weights ωzj by

ωrj = πω̂rj e
r̂j/γr, rj =

√
r̂j/γr, j = 0, 1, · · · ,M. (7.2.39)

Hence, we have from (7.2.33) that

M∑
j=0

ωrjLm(rj)Ln(rj) =
M∑
j=0

ω̂rje
r̂jπ/γr Lm(

√
r̂j/γr) Ln(

√
r̂j/γr)

=
M∑
j=0

ω̂rj L̂m(r̂j)L̂n(r̂j) = δnm, n,m = 0, 1, · · · ,M.

(7.2.40)

The time-splitting Laguerre-spectral method can now be described as follows: Let
ψnj be the approximation of ψ(rj , tn) and ψn be the solution vector with components
ψnj . Then, the fourth-order time-splitting Laguerre-pseudospectral (TSLP4) method
for 2-D GPE (7.2.3) with radial symmetry is similar to (7.2.26) except that one needs
to replace β1 by β2, N by M , the index k by j, and the operator Fh by FL which is
defined as

FL(w,U)j =
M∑
l=0

e−i2w µr
l ∆t Ûl Ll(rj), Ûl =

M∑
j=0

ωrj U(rj) Ll(rj). (7.2.41)

Similarly as in the Hermite case, the memory requirement of this scheme is O(M)
and the computational cost per time step is a small multiple of M2. As for the stabil-
ity, we have

272 Chapter 7 Some applications in multi-dimensions

Lemma 7.2.2 The time-splitting Laguerre-pseudospectral (TSLP4) method is con-
servative, i.e.,

‖ψn‖2
l2 =

M∑
j=0

ωrj |ψnj |2 =
M∑
j=0

ωrj |ψ0(rj)|2 = ‖ψ0‖2
l2 , n � 0.

Laguerre-Hermite pseudospectral method for 3-D GPE with cylindrical symme-
try

In the 3-D case with cylindrical symmetry, i.e., d = 3 and γx = γy in (7.2.3),
and ψ0(x, y, z) = ψ0(r, z) in (7.2.3), the solution of (7.2.3) with d = 3 satisfies
ψ(x, y, z, t) = ψ(r, z, t). Therefore, Eq. (7.2.9) becomes

i
∂ψ(r, z, t)

∂t
=Bψ(r, z, t)=−1

2

[
1
r

∂

∂r

(
r
∂ψ

∂r

)
+
∂2ψ

∂z2

]
+

1
2
(
γ2
r r

2+γ2
zz

2
)
ψ,

0 < r <∞, −∞ < z <∞,

lim
r→∞ψ(r, z, t) = 0, lim

|z|→∞
ψ(r, z, t) = 0, t � 0,

(7.2.42)

where γr = γx = γy. The normalization (7.2.5) now is

‖ψ(·, t)‖2 = 2π
∫ ∞

0

∫ ∞

−∞
|ψ(r, z, t)|2r dzdr ≡ ‖ψ0‖2 = 1. (7.2.43)

Since the two-dimensional computational domain here is a tensor product of a semi-
infinite interval and the whole line, it is natural to combine the Hermite-spectral and
Laguerre-spectral methods. In particular, the product of scaled Hermite and Laguerre
functions {Lm(r)hl(z)} are eigenfunctions of B defined in (7.2.42), since we derive
from (7.2.17) and (7.2.34) that

− 1
2

[
1
r

∂

∂r

(
r
∂

∂r

)
+
∂2

∂z2

]
(Lm(r) hl(z))+

1
2
(
γ2
r r

2+γ2
zz

2
)
(Lm(r) hl(z))

=
[
− 1

2r
d

dr

(
r
dLm(r)
dr

)
+

1
2
γ2
r r

2Lm(r)
]
hl(z)

+
[
−1

2
d2hl(z)
dz2

+
1
2
γ2
zz

2hl(z)
]
Lm(r)

= µrmLm(r)hl(z) + µzl hl(z)Lm(r) = (µrm + µzl)Lm(r)hl(z).

(7.2.44)

Now, let

7.2 Laguerre-Hermite method for Schrödinger equations 273

XMN = span{Lm(r)hl(z) : m = 0, 1, · · · ,M, l = 0, 1, · · · , N}.
The Laguerre-Hermite spectral method for (7.2.42) is to findψMN(r, z, t) ∈ XMN,
i.e.,

ψMN (r, z, t) =
M∑
m=0

N∑
l=0

ψ̃ml(t) Lm(r) hl(z), (7.2.45)

such that

i
∂ψMN (r, z, t)

∂t
= BψMN(r, z, t)

= −1
2

[
1
r

∂

∂r

(
r
∂ψMN

∂r

)
+
∂2ψMN

∂z2

]
+

1
2
(
γ2
r r

2 + γ2
zz

2
)
ψMN .

(7.2.46)

Using (7.2.45) into (7.2.46), we find, thanks to (7.2.44),

i
dψ̃ml(t)
dt

= (µrm + µzl) ψ̃ml(t), m = 0, 1, · · · ,M, l = 0, 1, · · · , N. (7.2.47)

Hence, the solution for (7.2.46) is given by

ψMN (r, z, t) = e−iB(t−ts)ψMN (r, z, ts)

=
M∑
m=0

N∑
l=0

e−i(µ
r
m+µz

l)(t−ts)ψ̃ml(ts)Lm(r) hl(z), t � ts.

(7.2.48)

In summary, let ψnjk be the approximation of ψ(rj , zk, tn) and ψn the solu-
tion vector with components ψnjk. The fourth-order time-splitting Laguerre-Hermite-
pseudospectral method for the 3-D GPE (7.2.3) with cylindrical symmetry is es-
sentially the same as (7.2.26), except that now we replace β1 by β3, the index k

(0�k�N) by jk (0�j�M , 0�k�N), and the operator Fh by FLh defined by

FLh(w,U)jk =
M∑
m=0

N∑
l=0

e−i2w∆t(µr
m+µz

l) Ûml Lm(rj)hl(zk),

Ûml =
M∑
j=0

N∑
k=0

ωrj ω
z
k U(rj , zk) Lm(rj)hl(zk).

(7.2.49)

The memory requirement of this scheme is O(MN) and the computational cost per
time step is O(max(M2N,N2M)). Obviously, we have

274 Chapter 7 Some applications in multi-dimensions

Lemma 7.2.3 The time-splitting Laguerre-Hermite pseudospectral method is con-
servative in the sense that

‖ψn‖2
l2 =

M∑
j=0

N∑
k=0

ωrjω
z
k|ψnjk|2

=
M∑
j=0

N∑
k=0

ωrjω
z
k|ψ0(rj , zk)|2 = ‖ψ0‖2

l2 , n � 0.

(7.2.50)

Numerical results

We now present some numerical results. We define the condensate width along the
r- and z-axis as

σ2
α =

∫
Rd

α2|ψ(x, t)| dx, α = x, y, z, σ2
r = σ2

x + σ2
y .

Example 7.2.1 The 1-D Gross-Pitaevskii equation: We choose d = 1, γz = 2,
β1 = 50 in (7.2.3). The initial data ψ0(z) is chosen as the ground state of the 1-D
GPE (7.2.3) with d = 1, γz = 1 and β1 = 50. This corresponds to an experimental
setup where initially the condensate is assumed to be in its ground state, and the trap
frequency is doubled at t = 0.

We solve this problem by using (7.2.26) with N = 31 and time step k = 0.001.
Figure 7.5 plots the condensate width and central density |ψ(0, t)|2 as functions of

Figure 7.5 Evolution of central density and condensate width in Example 7.2.1. ‘—’:

‘exact solutions’ obtained by the TSSP [8] with 513 grid points over an interval [−12, 12]; ‘+

+ + ’: Numerical results by (7.2.26) with 31 grid points on the whole z-axis.

(a) Central density |ψ(0, t)|2; (b) condensate width σz.

7.2 Laguerre-Hermite method for Schrödinger equations 275

time. Our numerical experiments also show that the scheme (7.2.26) with N = 31
gives similar numerical results as the TSSP method [8] for this example, with 513 grid
points over the interval [−12, 12] and time step k = 0.001.

In order to test the 4th-order accuracy in time of (7.2.26), we compute a numer-
ical solution with a very fine mesh, e.g. N = 81, and a very small time step, e.g.
∆t = 0.0001, as the ‘exact’ solution ψ. Let ψ∆t denote the numerical solution un-
der N = 81 and time step ∆t. Since N is large enough, the truncation error from
space discretization is negligible compared to that from time discretization. Table 7.3
shows the errors max |ψ(t)−ψ∆t(t)| and ‖ψ(t)−ψ∆t(t)‖l2 at t = 2.0 for different
time steps ∆t. The results in Table 7.3 demonstrate the 4th-order accuracy in time of
(7.2.26).

Table 7.3 Time discretization error analysis for (7.2.26) (At t = 2.0 with N = 81)

∆t 1/40 1/80 1/160 1/320

max |ψ(t) − ψ∆t(t)| 0.1619 4.715E-6 3.180E-7 2.036E-8
‖ψ(t) − ψ∆t(t)‖l2 0.2289 7.379E-6 4.925E-7 3.215E-8

Example 7.2.2 The 2-D Gross-Pitaevskii equation with radial symmetry: we choose
d = 2, γr = γx = γy = 2, β2 = 50 in (7.2.3). The initial data ψ0(r) is chosen as
the ground state of the 2-D GPE (7.2.3) with d = 2, γr = γx = γy = 1 and β2 = 50.
Again this corresponds to an experimental setup where initially the condensate is
assumed to be in its ground state, and the trap frequency is doubled at t = 0.

We solve this problem by using the time splitting Laguerre-spectral method with
M = 30 and time step k = 0.001. Figure 7.6 plots the condensate width and central

Figure 7.6 Evolution of central density and condensate width in Example 7.2.2. ‘—’:

‘exact solutions’ obtained by TSSP [8] with 5132 grid points over a box [−8, 8]2; ‘+’:

Numerical results by our scheme with 30 grid points on the semi-infinite interval [0,∞).
(a) Central density |ψ(0, t)|2; (b) condensate width σr.

276 Chapter 7 Some applications in multi-dimensions

density |ψ(0, t)|2 as functions of time. Our numerical experiments also show that our
scheme with M = 30 gives similar numerical results as the TSSP method [8] for this
example, with 5132 grid points over the box [−8, 8]2 and time step k = 0.001.

Exercise 7.2

Problem 1 Prove Lemma 7.2.1.

7.3 Spectral approximation of the Stokes equations

Spectral-Galerkin method for the Stokes problem
A simple iterative method – the Uzawa algorithm
Error analysis

The Stokes equations play an important role in fluid mechanics and solid mechanics.
Numerical approximation of Stokes equations has attracted considerable attention in
the last few decades and is still an active research direction (cf. [55], [24], [11] and
the references therein).

We consider the Stokes equations in primitive variables:{
− ν∆u + ∇p = f , in Ω ⊂ Rd,

∇·u = 0, in Ω; u|∂Ω = 0.
(7.3.1)

In the above, the unknowns are the velocity vector u and the pressure p; f is a
given body force and ν is the viscosity coefficient. For the sake of simplicity, the
homogeneous Dirichlet boundary condition is assumed, although other admissible
boundary conditions can be treated similarly (cf. [55]).

Let us denote by A : H1
0 (Ω)d → H−1(Ω)d the Laplace operator defined by

〈Au,v〉H−1,H1
0

= (∇u,∇v), ∀u,v ∈ H1
0 (Ω)d. (7.3.2)

Then, applying the operator ∇·A−1 to (7.3.1), we find that the pressure can be deter-
mined by

Bp := −∇·A−1∇p = −∇·A−1f . (7.3.3)

Once p is obtained from (7.3.3), we can obtain u from (7.3.1) by inverting the Laplace
operator, namely,

u =
1
ν
A−1(f −∇p). (7.3.4)

LetL2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω qdx = 0}. The operator B := −∇·A−1∇ : L2

0(Ω) →
L2

0(Ω) is usually referred to as Uzawa operator or the Schur complement associated

7.3 Spectral approximation of the Stokes equations 277

with the Stokes operator. We have

(Bp, q) := −(∇·A−1∇p, q) = (A−1∇p,∇q) = (p,Bq). (7.3.5)

Therefore, B is a “zero-th order” self-adjoint positive definite operator, and we can
expect that the corresponding discrete operator can be inverted efficiently by using a
suitable iterative method such as the conjugate gradient method.

Spectral-Galerkin method for the Stokes problem

To simplify the presentation, we shall consider only Ω = (−1, 1)d with d = 2 or
3. Let XN and MN be a suitable pair of finite dimensional approximate spaces for
H1

0 (Ω)d and L2
0(Ω). The corresponding Galerkin method for the Stokes problem is:

Find (u
N
, p

N
) ∈ XN ×MN such that

ν(∇u
N
,∇v

N
) − (p

N
,∇·v

N
) = (f,v

N
), ∀v

N
∈ XN ,

(∇·u
N
, q

N
) = 0, ∀q

N
∈MN .

(7.3.6)

It is well-known (see [55]) that the discrete problem (7.3.6) admits a unique solution
if and only if there exists a positive constant βN such that

inf
q
N
∈MN

sup
v

N
∈XN

(qN ,∇·vN)
‖q

N
‖0‖∇v

N
‖0

� βN . (7.3.7)

The above condition is referred as Brezzi-Babuska inf-sup condition (cf. [7], [23])
and βN is referred as the inf-sup constant.

Let {φk}Nu
k=1 and {ψk}Np

k=1 be respectively basis functions for XN andMN . Then
we can write

u
N

=
Nu∑
k=1

ũkφk, p
N

=
Np∑
k=1

p̃kψk. (7.3.8)

Set
aij = (∇φj ,∇φi), AN = (aij)i,j=1,··· ,Nu ,

bij = −(ψj ,∇·φi), BN = (bij)i=1,··· ,Nu,j=1,··· ,Np ,

ū = (ũ1, · · · , ũNu
)t, p̄ = (p̃1, · · · , p̃Np

)t,
fj = (INf , φj), f̄ = (f1, · · · , fNu)T.

(7.3.9)

Then the matrix form of (7.3.6) is

νAN ū+Bt
N p̄ = f̄ ,

BN ū = 0.
(7.3.10)

278 Chapter 7 Some applications in multi-dimensions

As in the space continuous case, p̄ can be obtained by inverting the discrete Uzawa
operator:

BNA
−1
N Bt

N p̄ = BNA
−1
N f̄ . (7.3.11)

It is easy to show that the discrete Uzawa operator is positive symmetric definite if and
only if there exists βN > 0 such that the inf-sup condition is satisfied; furthermore,
it is shown (see [114]) that

cond(BNA−1
N Bt

N) = β−2
N . (7.3.12)

Therefore, the effectiveness of the Uzawa algorithm is directly related to the size of
βN .

It is customary in a spectral approximation to take XN = (PN ∩ H1
0 (Ω))d.

However, how to choose MN is a non-trivial question. For any given MN , let us
define

ZN = {q
N
∈MN : (q

N
,∇·v

N
) = 0, ∀v

N
∈ XN}. (7.3.13)

Obviously if (u
N
, p

N
) is a solution of (7.3.6), then so is (u

N
, p

N
+ q

N
) for any

q
N
∈ ZN . Hence, any mode in ZN is called a spurious mode. For the most obvious

choice MN = {q
N

∈ PN :
∫
Ω qN

dx = 0}, one can verify that ZN spans a seven-
dimensional space if d = 2 and 12N + 3-dimensional space if d = 3. Therefore, it is
not a good choice for the pressure space. On the other hand, if we set

MN = {q
N
∈ PN−2 :

∫
Ω
q

N
dx = 0},

then the corresponding ZN is empty and this leads to a well-posed problem (7.3.6)
with the inf-sup constant βN ∼ N−(d−1)/2 (see [11]).

Remark 7.3.1 It is also shown in [12] that for any given 0 < λ < 1, M(λ)
N =

{q
N

∈ PλN :
∫
Ω qN

dx = 0} leads to a well-posed problem (7.3.6) with an inf-sup
constant which is independent of N but is of course dependent on λ in such a way
that βN → 0 as λ→ 1−.

A simple iterative method – the Uzawa algorithm

We now give a brief presentation of the Uzawa algorithm which was originated
from the paper by Arrow, Hurwicz and Uzawa[4] had been used frequently in finite
element approximations of the Stokes problem (see [162] and the references therein).

Given an arbitrary p0 ∈ L2
0(Ω), the Uzawa algorithm consists of defining (uk+1,

7.3 Spectral approximation of the Stokes equations 279

pk+1) recursively by⎧⎨⎩ − ν∆uk+1 + ∇pk = f , u|∂Ω = 0;

pk+1 = pk − ρk∇·uk+1,
(7.3.14)

where ρk is a suitable positive sequence to be specified. By eliminating uk+1 from
(7.3.14), we find that

pk+1 = pk − ρk
ν

(Bpk + ∇ ·A−1f). (7.3.15)

Thus, the Uzawa algorithm (7.3.14) is simply a Richardson iteration for (7.3.3). We
now investigate the convergence properties of the Uzawa algorithm.

It can be shown (cf. [120]) that there exists 0 < β � 1 such that

β‖q‖2 � (Bq, q) � ‖q‖2, ∀q ∈ L2
0(Ω). (7.3.16)

Let us denote α = min{βmink ρk/ν, 2 − maxk ρk/ν}. Then, an immediate conse-
quence of (7.3.16) is that I − ρkB/ν is a strict contraction in L2

0(Ω). Indeed, we
derive from (7.3.16) that(

1 − maxk ρk
ν

)
‖q‖2 �

((
I − ρk

ν
B
)
q, q

)
�
(

1 − β
mink ρk

ν

)
‖q‖2

which implies that ∣∣∣((I − ρk
ν
B
)
q, q

)∣∣∣ � (1 − α)‖q‖2. (7.3.17)

Remark 7.3.2 A particularly simple and effective choice is to take ρk = ν. In this
case, we have α = β and the following convergence result:

‖uk − u‖1 + ‖pk − p‖ � (1 − β)k. (7.3.18)

Remark 7.3.3 Consider the Legendre-Galerkin approximation of the Uzawa algo-
rithm: Given an arbitrary p0

N
, define (uk+1

N
, pk+1

N
) ∈ XN ×MN recursively from

ν(∇uk+1
N

,∇vN) − (pk
N
,∇·vN) = (f,vN), ∀vN ∈ XN ,

(pk+1
N

, q
N

) = (pk
N
− ρk∇·uk+1

N
, q

N
), ∀q

N
∈MN .

(7.3.19)

Then, by using the same procedure as in the continuous case, it can be shown that for

280 Chapter 7 Some applications in multi-dimensions

ρk = ν we have

‖uk
N
− uN ‖1 + ‖pk

N
− pN ‖ � (1 − β2

N)k, (7.3.20)

where (u
N
, p

N
) is the solution of (7.3.6) and βN is the inf-sup condition defined in

(7.3.7). Thus, for a given tolerance ε, the number of Uzawa steps needed is propor-
tional to β−2

N log ε while the number of the CG steps needed for the same tolerance,
thanks to (7.3.12) and Theorem 1.7.1, is proportional to β−1

N log ε. Therefore, when-
ever possible, one should always use the CG method instead of Uzawa algorithm.

Error analysis

The inf-sup constant βN not only plays an important role in the implementation
of the approximation (7.3.6), it is also of paramount importance in its error analysis.
Let us denote

V N = {v
N
∈ XN : (q

N
,∇ · v

N
) = 0, ∀q

N
∈MN}. (7.3.21)

Then, with respect to the error analysis, we have

Theorem 7.3.1 Assuming (7.3.7), the following error estimates hold:

‖u − u
N
‖1 � inf

v
N
∈V N

‖u − v
N
‖1,

βN‖p− pN ‖0 � inf
v

N
∈V N

‖u − vN ‖1 + inf
q
N
∈MN

‖p − qN ‖0,
(7.3.22)

where (u, p) and (u
N
, p

N
) are respectively the solution of (7.3.1) and (7.3.6).

Proof Let us denote

V = {v ∈ H1
0 (Ω)d : (q,∇ · v) = 0, ∀q ∈ L2

0(Ω)}. (7.3.23)

Then, by the definition of V and VN ,

ν(∇u,∇v) = (f ,v), ∀v ∈ V ,

ν(∇u
N
,∇v

N
) = (f,v

N
), ∀v

N
∈ V N .

(7.3.24)

Since V N ⊂ V , we have ν(∇(u − u
N

),v
N

) = 0,∀v
N
∈ V N . Hence,

‖∇(u−uN)‖2 = (∇(u−uN),∇(u−uN)) = inf
v

N
∈V N

(∇(u−uN),∇(u− vN)),

7.3 Spectral approximation of the Stokes equations 281

which implies immediately

‖∇(u − uN)‖ � inf
v

N
∈V N

‖∇(u − vN)‖.

Next, we derive from (7.3.1)–(7.3.6) the identity

ν(∇(u − u
N

),∇v
N

) − (p− p
N
,∇ · v

N
) = 0, ∀v

N
∈ XN . (7.3.25)

Hence, by using (7.3.7) and the above identity, we find that for any q
N
∈MN ,

βN‖qN
− p

N
‖ � sup

v
N
∈XN

(q
N
− p

N
,∇ · v

N
)

‖∇v
N
‖

= sup
v

N
∈XN

ν(∇(u − u
N

),∇v
N

) − (p − q
N
,∇ · v

N
)

‖∇v
N
‖

It follows from the identity ‖∇v‖ = ‖∇ × v‖ + ‖∇ · v‖,∀v ∈ H1
0 (Ω)d, and the

Cauchy-Schwarz inequality that

βN‖qN
− p

N
‖ � ν‖∇(u − u

N
)‖ + ‖p − q

N
‖, ∀q

N
∈MN .

Therefore,

βN‖p− p
N
‖ � βN inf

q
N
∈MN

(‖p− q
N
‖ + ‖q

N
− p

N
‖)

� ‖∇(u − u
N

)‖ + inf
q
N
∈MN

‖p − q
N
‖

� inf
v

N
∈V N

‖u − v
N
‖1 + inf

q
N
∈MN

‖p− q
N
‖.

This completes the proof of this theorem.

We note in particular that the pressure approximation cannot be optimal if βN is
dependent on N .

Exercise 7.3

Problem 1 Implement the Uzawa algorithm for solving the Stokes problem with
MN = PN−2 ∩ L2

0(Ω) and MN = PλN ∩ L2
0(Ω) for λ = 0.7, 0.8, 0.9. Explain your

results.

Problem 2 Prove the statement (7.3.14).

Problem 3 Prove the statements (7.3.18) and (7.3.20).

282 Chapter 7 Some applications in multi-dimensions

7.4 Spectral-projection method for Navier-Stokes equations

A second-order rotational pressure-correction scheme
A second-order consistent splitting scheme
Full discretization

The incompressible Navier-Stokes equations are fundamental equations of fluid dy-
namics. Accurate numerical approximations of Navier-Stokes equations play an im-
portant role in many scientific applications. There have been an enormous amount
of research work, and still growing, on mathematical and numerical analysis of the
Navier-Stokes equations. We refer to the books[162, 89, 40, 56] for more details on the
approximation of Navier-Stokes equations by finite elements, spectral and spectral
element methods. In this section, we briefly describe two robust and accurate projec-
tion type schemes and the related full discretization schemes with a spectral-Galerkin
discretization in space. We refer to [69] for an up-to-date review on the subject related
to projection type schemes for the Navier-Stokes equations.

We now consider the numerical approximations of the unsteady Navier-Stokes
equations: {

ut − ν∆u + u·∇u + ∇p = f , in Ω × (0, T],

∇·u = 0, in Ω × [0, T],
(7.4.1)

subject to appropriate initial and boundary conditions for u. In the above, the un-
knowns are the velocity vector u and the pressure p; f is a given body force, ν is the
kinematic viscosity, Ω is an open and bounded domain in Rd (d = 2 or 3 in practical
situations), and [0, T] is the time interval.

As for the Stokes equation, one of the main difficulties in approximating (7.4.1)
is that the velocity and the pressure are coupled by the incompressibility constraint
∇·u = 0. Although the Uzawa algorithm presented in the previous section is efficient
for the steady Stokes problem, it is in general very costly to apply an Uzawa-type
iteration at each time step. A popular and effective strategy is to use a fractional step
scheme to decouple the computation of the pressure from that of the velocity. This
approach was first introduced by Chorin [30] and Temam[161] in the late 60’s, and its
countless variants have played and are still playing a major role in computational fluid
dynamics, especially for large three-dimensional numerical simulations. We refer
to [69] for an up-to-date review on this subject.

Below, we present an efficient and accurate spectral-projection method for (7.4.1).
The spatial variables will be discretized by the Legendre spectral-Galerkin method

7.4 Spectral-projection method for Navier-Stokes equations 283

described in previous chapters while two time discretization schemes will be de-
scribed: the first is the rotational pressure-correction scheme (see [163], [70]), the
second is the second-order consistent splitting scheme recently introduced by Guer-
mond and Shen [68].

A second-order rotational pressure-correction scheme

Assuming (uk,uk−1, pk) are known, in the first substep, we look for ũk+1 such
that ⎧⎪⎨⎪⎩

1
2δt

(3ũk+1 − 4uk + uk−1) − ν∆ũk+1 + ∇pk = g(tk+1),

ũk+1|∂Ω = 0,

(7.4.2)

where g(tk+1) = f(tk+1) − (2(uk · ∇)uk − (uk−1 · ∇)uk−1). Then, in the second
substep, we determine (uk+1, φk+1) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2δt

(3uk+1 − 3ũk+1) + ∇φk+1 = 0,

∇·uk+1 = 0,

uk+1 · n|∂Ω = 0.

(7.4.3)

The remaining task is to define a suitable pk+1 so that we can advance to the next
time step. To this end, we first notice from (7.4.3) that

∆ũk+1 = ∆uk+1 +
2δt
3

∇∆φk+1 = ∆uk+1 + ∇∇·ũk+1.

We then sum up the two substeps and use the above identity to obtain:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2δt
(3uk+1 − 4uk + uk−1) − ν∆uk+1 + ∇(φk+1 + pk − ν∇·ũk+1) = g(tk+1),

∇·uk+1 = 0,

uk+1 · n|∂Ω = 0.
(7.4.4)

Therefore, it is clear that we should set

pk+1 = φk+1 + pk − ν∇·ũk+1. (7.4.5)

We note that the only difference between (7.4.4) and (7.4.5) and a coupled second-

284 Chapter 7 Some applications in multi-dimensions

order scheme is that

uk+1 · τ
∣∣∣
∂Ω

= −2δt
3

∇φk+1 · τ
∣∣∣
∂Ω

�= 0

(where τ is the tangential direction) but “small”. Hence, it is expected that the scheme
(7.4.2), (7.4.3) and (7.4.5) provides a good approximation to the Navier-Stokes equa-
tions. Indeed, it is shown in [71] that

‖u(tk) − uk‖ +
√
δt(‖u(tk) − uk‖1 + ‖p(tk) − pk‖) � δt2. (7.4.6)

In practice, the coupled system (7.4.3) is decoupled by taking the divergence of the
first equation in (7.4.3), leading to:

∆φk+1 =
3

2δt
∇·ũk+1,

∂φk+1

∂n

∣∣∣
∂Ω

= 0;

uk+1 = ũk+1 − 2δt
3

∇φk+1.

(7.4.7)

Hence, at each time step, the scheme (7.4.2)– (7.4.5) only involves inverting a Poisson-
type equation for each of the velocity componentũk+1 in (7.4.2) and a Poisson equa-
tion for φk+1 in (7.4.7).

Remark 7.4.1 If part of the boundary is open, i.e., the problem is prescibed with the
following boundary conditions:

u|Γ1 = h1, nt(ν∇u − pI)|Γ2 = h2, ∂Ω = Γ1 ∪ Γ2, (7.4.8)

the above scheme should be modified as follows [69]:⎧⎨⎩
1

2δt
(3ũk+1 − 4uk + uk−1) − ν∆ũk+1 + ∇pk = g(tk+1),

ũk+1|Γ1 = hk+1
1 , nt(ν∇ũk+1 − pkI)|Γ2 = hk+1

2 ,
(7.4.9)

⎧⎨⎩
1

2δt
(3uk+1 − 3ũk+1) + ∇φk+1 = 0; ∇·uk+1 = 0,

uk+1 · n|Γ1 = hk+1
1 · n, φk+1|Γ2 = 0;

(7.4.10)

and
pk+1 = φk+1 + pk − ν∇·ũk+1. (7.4.11)

A second-order consistent splitting scheme

Although the rotational pressure-correction scheme is quite accurate, it still suf-

7.4 Spectral-projection method for Navier-Stokes equations 285

fers from a splitting error of order δt
3
2 for the H1-norm of the velocity and L2-norm

of the pressure. We present below a consistent splitting scheme which removes this
splitting error. The key idea behind the consistent splitting schemes is to evaluate
the pressure by testing the momentum equation against gradients. By taking the
L2-inner product of the momentum equation in (7.4.1) with ∇q and noticing that
(ut,∇q) = −(∇ · ut, q), we obtain∫

Ω
∇p · ∇q =

∫
Ω
(f + ν∆u − u·∇u) · ∇q, ∀q ∈ H1(Ω). (7.4.12)

We note that if u is known, (7.4.12) is simply the weak form of a Poisson equation
for the pressure. So, the principle we shall follow is to compute the velocity and the
pressure in two consecutive steps: First, we evaluate the velocity by making explicit
the pressure, then we evaluate the pressure by making use of (7.4.12).

Denoting gk+1 = fk+1 − (
2un ·∇un − un−1 ·∇un−1

)
, a formally second-order

semi-implicit splitting scheme can be constructed as follows: find uk+1 and pk+1

such that

3uk+1 − 4uk + uk−1

2∆t
− ν∆uk+1 + ∇(2pk − pk−1) = gk+1, uk+1|∂Ω = 0,

(7.4.13)
(∇pk+1,∇q) = (gk+1 + ν∆uk+1,∇q), ∀q ∈ H1(Ω). (7.4.14)

Notice that we can use (7.4.13) to replace gk+1 + ν∆uk+1 in (7.4.14) by (3uk+1 −
4uk + uk−1)/(2∆t) + ∇(2pk − pk−1), leading to an equivalent formulation of
(7.4.14):

(∇(pk+1 − 2pk + pk−1),∇q) = (
3uk+1 − 4uk + uk−1

2∆t
,∇q), ∀q ∈ H1(Ω).

(7.4.15)
We observe that if the domain Ω is sufficiently smooth, the solution of the above
problem satisfies the following Poisson equation:

− ∆(pk+1 − 2pk + pk−1) = −∇·(3u
k+1 − 4uk + uk−1

2∆t
);

∂

∂n
(pk+1 − 2pk + pk−1)|∂Ω = 0.

(7.4.16)

Since the exact pressure does not satisfy any prescibed boundary condition, it is clear
that the pressure approximation from (7.4.16) is plaqued by the artificial Neumann
boundary condition which limits its accuracy. However, this defect can be easily
overcome by using the identity ∆uk+1 = ∇∇·uk+1 −∇×∇×uk+1, and replacing

286 Chapter 7 Some applications in multi-dimensions

∆uk+1 in (7.4.14) by −∇×∇×uk+1. this procedure amounts to removing in (7.4.14)
the term ∇∇·uk+1. It is clear that this is a consistent procedure since the exact
velocity is divergence-free. Thus, (7.4.14) should be replaced by

(∇pk+1,∇q) = (gk+1 − ν∇×∇×uk+1,∇q), ∀q ∈ H1(Ω). (7.4.17)

Once again, we can use (7.4.13) to reformulate (7.4.17) by replacing gk+1−ν∇×
∇×uk+1 with (3uk+1 − 4uk + uk−1)/2∆t+∇(2pk − pk−1)− ν∇∇·uk+1. Thus,
the second-order consistent splitting scheme takes the form

3uk+1 − 4uk + uk−1

2∆t
− ν∆uk+1 + ∇(2pk − pk−1) = gk+1, uk+1|∂Ω = 0,

(∇ψk+1,∇q) = (
3uk+1 − 4uk + uk−1

2∆t
,∇q), ∀q ∈ H1(Ω), (7.4.18)

with
pk+1 = ψk+1 + (2pk − pk−1) − ν∇·uk+1. (7.4.19)

Ample numerical results presented in [68] indicate that this scheme provides truly
second-order accurate approximation for both the velocity and the pressure. How-
ever, a rigorous proof of this statement is still not available (cf. [69]).

Full discretization

It is straightforward to discretize in space the two schemes presented above. For a
rectangular domain, we can use, for instance, the spectral-Galerkin method described
in Chapter 6. To fix the idea, let Ω = (−1, 1)d and set

XN = P dN ∩H1
0 (Ω)d, MN = {q ∈ PN−2 :

∫
Ω
q = 0}. (7.4.20)

Then, the scheme (7.4.2)–(7.4.5) can be implemented as follows:

• Step 1 Find ũk+1
N

∈ XN such that

3
2δt

(ũk+1
N

,vN) + ν(∇ũk+1
N

,∇vN)

=
1

2δt
(4uk

N
− uk−1

N
−∇(2pk

N
− pk−1

N
),v

N
)

+ (IN (fk+1 − 2uk
N
· ∇uk

N
+ uk−1

N
· ∇uk−1

N
),vN), ∀vN ∈ XN ;

(7.4.21)

7.4 Spectral-projection method for Navier-Stokes equations 287

• Step 2 Find φk+1
N

∈MN such that

(∇φk+1
N

,∇q
N

) =
3

2δt
(ũk+1

N
,∇q

N
), ∀q

N
∈MN ; (7.4.22)

• Step 3 Set

uk+1
N

= ũk+1
N

− 2δt
3

∇φk+1
N

,

pk+1
N

= φk+1
N

+ pk
N
− ν∇·ũk+1

N
.

(7.4.23)

The scheme (7.4.18) and (7.4.19) can be implemented in a similar way:

• Step 1 Find uk+1
N

∈ XN such that

3
2δt

(uk+1
N

,vN) + ν(∇uk+1
N

,∇vN)

=
1

2δt
(4uk

N
− uk−1

N
− (2∇pk

N
− pk−1

N
),v

N
)

+ (IN (fk+1 − 2uk
N
· ∇uk

N
+ uk−1

N
· ∇uk−1

N
),v

N
), ∀v

N
∈ XN ;

(7.4.24)

• Step 2 Find φk+1
N

∈MN such that

(∇φk+1
N

,∇q
N

) =
1

2δt
(3uk+1

N
− 4uk

N
+ uk−1

N
,∇q

N
), ∀q

N
∈MN ;

(7.4.25)
• Step 3 Set

pk+1
N

= φk+1
N

+ 2pk
N
− pk−1

N
− νΠN−2∇·uk+1

N
. (7.4.26)

Hence, at each time step, the two spectral-projection schemes presented above only
involve a vector Poisson equation for the velocity and a scalar Poisson equation for
the pressure.

In this section, we only discussed the spectral-projection method for the Navier-
Stokes equations. For numerical solutions of the Navier-Stokes equations; relevant
papers using spectral Galerkin/finite element methods include [130], [163], [132],
[116], [147], [44], while spectral collocation methods are treated in [95], [38], [87],
[88], [86].

Exercise 7.4

Problem 1 Write a program implementing the rotational pressure-correction scheme
and consistent splitting scheme using PN for the velocity and PN−2 for the pressure.

288 Chapter 7 Some applications in multi-dimensions

Consider the exact solution of (7.4.1) (u, p) to be

u(x, y, t) = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy),
p(x, y, t) = sin t cos πx sinπy.

Compare the errors of the velocity and pressure at time t = 1 in both the L2-norm
and H1-norm using the two schemes with N = 32 for δt = 0.1, 0.05, 0.025, 0.0125.
Explain your results.

Problem 2 Use the rotatioanal pressure correction scheme to compute the steady
state solution of the regularized driven cavity problem, i.e., Ω = (0, 1)2 with the
boundary condition

u|y=1 = (16x2(1 − x2), 0), u|∂Ω\{y=1} = 0.

TakeN = 32 and Re = 1/ν = 400. Compare your results with th benchmark results
in [138].

7.5 Axisymmetric flows in a cylinder

Governing equations and time discretization
Spatial discretization
Treatment of the singular boundary condition
Numerical results

In this section, we apply the spectral-projection method presented in the last section
to simulate an incompressible flow inside a cylinder. We assume that the flow is
axisymmetric so we are effectively dealing with a two-dimensional problem. For
more detail on the physical background of this problem and its numerical simulations,
we refer to [106], [25], [109], [111], [108].

Governing equations and the time discretization

Consider a flow in an enclosed cylinder with the height H and radius R. The
flow is driven by a bottom rotation rate of Ω rad s−1. We shall non-dimensionalize
the governing equations with the radius of the cylinder R as the length scale and
1/Ω as the time scale. The Reynolds number is then Re = ΩR2/ν, where ν is the
kinematic viscosity. The flow is governed by another non-dimensional parameter, the
aspect ratio of the cylinder Λ = H/R. Therefore, the domain for the space variables
(r, z) is the rectangle

D = {(r, z) : r ∈ (0, 1) and z ∈ (0,Λ)}.

7.5 Axisymmetric flows in a cylinder 289

Let (u, v,w) be the velocity field in the cylindrical polar coordinates (r, θ, z) and
assume the flow is axisymmetric, i.e., independent of the azimuthal θ direction, the
Navier-Stokes equations (7.4.1) governing this axisymmetric flow in the cylindrical
polar coordinates reads (cf. [111])

ut + uur + wuz − 1
r
v2 = −pr +

1
Re

(
∇̃2u− 1

r2
u

)
, (7.5.1)

vt + uvr + wvz +
1
r
uv =

1
Re

(
∇̃2v − 1

r2
v

)
, (7.5.2)

wt + uwr + wwz = −pz +
1
Re

∇̃2w, (7.5.3)

1
r
(ru)r + wz = 0, (7.5.4)

where

∇̃2 = ∂2
r +

1
r
∂r + ∂2

z (7.5.5)

is the Laplace operator in axisymmetric cylindrical coordinates. The boundary con-
ditions for the velocity components are zero everywhere except that (i) v = r at
{z = 0} which is the bottom of the cylinder; and (ii) wr = 0 at ∂D\{z = 0}.

To simplify the presentation, we introduce the following notations:

∆̃ =

⎛⎝∇̃2 − 1/r2, 0, 0
0, ∇̃2 − 1/r2, 0
0, 0, ∇̃2

⎞⎠ , ∇̃ =

⎛⎝∂r0
∂z

⎞⎠ ,

Γ1 = {(r, z) : r ∈ (0, 1) and z = 0}, Γ2 = {(r, z) : r = 0 and z ∈ (0,Λ)},
and rewrite the equations (7.5.1)–(7.5.4) in vector form,

ut + N(u) = −∇̃p+
1
Re

∆̃u,

∇̃ · u :=
1
r
(ru)r + wz = 0,

u|∂D\(Γ1∪Γ2) = 0, u|Γ1 = (0, r, 0)T, (u, v,wr)T|Γ2 = 0,

(7.5.6)

where u = (u, v,w)T and N(u) is the vector containing the nonlinear terms in
(7.5.1)–(7.5.3).

To overcome the difficulties associated with the nonlinearity and the coupling of

290 Chapter 7 Some applications in multi-dimensions

velocity components and the pressure, we adapt the following semi-implicit second-
order rotational pressure-correction scheme (cf. Section 7.4) for the system of equa-
tions (7.5.6):⎧⎪⎨⎪⎩

1
2∆t

(3ũk+1 − 4uk + uk−1) − 1
Re

∆̃ũk+1 = −∇̃pk − (2N(uk) − N(uk−1)),

ũk+1|∂D\(Γ1∪Γ2) = 0, ũk+1|Γ1 = (0, r, 0)T, (ũk+1, ṽk+1, w̃k+1
r)T|Γ2 = 0.

(7.5.7)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3

2∆t
(uk+1 − ũk+1) + ∇̃φk+1 = 0,

∇̃ · uk+1 = 0,

(uk+1 − ũk+1) · n|∂D = 0,

(7.5.8)

and

pk+1 = pk + φk+1 − 1
Re

∇̃ · uk+1, (7.5.9)

where ∆t is the time step, n is the outward normal at the boundary, and ũk+1 =
(ũk+1, ṽk+1, w̃k+1)T and uk+1 = (uk+1, vk+1, wk+1)T are respectively the inter-
mediate and final approximations of u at time t = (k + 1)∆t.

It is easy to see that ũk+1 can be determined from (7.5.7) by solving three
Helmholtz-type equations. Instead of solving for (uk+1, φk+1) from the coupled
first-order differential equations (7.5.8), we apply the operator “∇̃·” (see the defini-
tion in (7.5.6)) to the first equation in (7.5.8) to obtain an equivalent system

∇̃2φk+1 =
3

2∆t
∇̃ · ũk+1,

∂nφ
k+1|∂D = 0,

(7.5.10)

and

uk+1 = ũk+1 − 2∆t
3

∇̃φk+1. (7.5.11)

Thus, (uk+1, φk+1) can be obtained by solving an additional Poisson equation (7.5.10).

Next, we apply the spectral-Galerkin method for solving these equations.

Spatial discretization

We first transform the domain D to the unit square D∗ = (−1, 1) × (−1, 1) by
using the transformations r = (y+1)/2 and z = Λ(x+1)/2. Then, at each time step,
the systems (7.5.7) and (7.5.10) lead to the following four Helmholtz-type equations:

7.5 Axisymmetric flows in a cylinder 291

αu− βuxx − 1
y + 1

((y + 1)uy)y +
γ

(y + 1)2
u = f in D∗,

u|∂D∗ = 0;
(7.5.12)

αv − βvxx − 1
y + 1

((y + 1)vy)y +
γ

(y + 1)2
v = g in D∗,

v|∂D∗\Γ∗
1

= 0, v|Γ∗
1

=
1
2
(y + 1);

(7.5.13)

αw − βwxx − 1
y + 1

((y + 1)wy)y = h, in D∗,

w|∂D∗\Γ∗
2

= 0, wr|Γ∗
2

= 0;
(7.5.14)

and

− βpxx − 1
y + 1

((y + 1)py)y = q in D∗,

∂np|∂D∗ = 0.
(7.5.15)

In the above, Γ∗
1 = {(x, y) : x = −1 and y ∈ (−1, 1)}, Γ∗

2 = {(x, y) : x ∈
(−1, 1) and y = −1}, α = 3

8Re/∆t, β = Λ−2, γ = 1, and f, g, h, q are known
functions depending on the solutions at the two previous time steps.

The spectral-Galerkin method of [142] can be directly applied to (7.5.12)–(7.5.15).
We shall discuss the method for solving (7.5.12) in some detail. The other three
equations can be treated similarly.

Let PK be the space of all polynomials of degree less than or equal to K and set
PNM = PN × PM . We set

XNM = {w ∈ PNM : w|∂D∗ = 0}.

Then the spectral-Galerkin method for (7.5.12) is to find u
NM

∈ XNM such that

α
(
(y + 1)u

NM
, v
)
ω̃
− β

(
(y + 1)∂2

xuNM
, v
)
ω̃
−
((

(y + 1)∂yuNM

)
y
, v

)
ω̃

+ γ
(1
y + 1

uNM , v
)
ω̃

=
(
(y + 1)f, v

)
ω̃
, ∀ v ∈ XNM ,

(7.5.16)

where (u, v)ω̃ =
∫
D∗ u v ω(x)ω(y) dxdy with ω(s) to be respectively 1 or (1 −

s2)−
1
2 , depending on whether Legendre or Chebyshev polynomials are used. The

292 Chapter 7 Some applications in multi-dimensions

equation (7.5.16) is derived by first multiplying (7.5.12) by (y + 1)ω(x)ω(y) and
then integrating over D∗. The multiplication by (y + 1) is natural since the Jacobian
of the transformation from the Cartesian coordinates to cylindrical coordinates is
r = ((y + 1)/2) in the axisymmetric case. Since u

NM
= 0 at y = −1, we see that

all terms in (7.5.16) are well defined and that no singularity is present.

For this problem, it is easy to verify that

XNM = span{φi(x)ρj(y) : i = 0, 1, · · · , N − 2; j = 0, 1, · · · ,M − 2},

with φl(s) = ρl(s) = pl(s) − pl+2(s) where pl(s) is either the l-th degree Legendre
or Chebyshev polynomial. Set

uNM =
N−2∑
i=0

M−2∑
j=0

uijφi(x)ρj(y),

and

aij =
∫ 1

−1
φj(x)φi(x)ω(x) dx, bij = −

∫ 1

−1
φ′′j (x)φi(x)ω(x) dx,

cij =
∫ 1

−1
(y + 1) ρj(y) ρi(y)ω(y) dy,

dij = −
∫ 1

−1
((y + 1) ρ′j(y))

′ ρi(y)ω(y) dy,

eij =
∫ 1

−1

1
y + 1

ρj(y) ρi(y)ω(y) dy,

fij =
∫
D∗

(y + 1)f ρj(y)φi(x)ω(x)ω(y) dxdy,

(7.5.17)

and let A, B, C, D, E, F and U be the corresponding matrices with entries given
above. Then (7.5.16) is equivalent to the matrix system

αAUC + βBUC +AUD + γAUE = F. (7.5.18)

Note that eij is well defined in spite of the term 1
y+1 , since ρi(−1) = 0. In the Leg-

endre case, the matrices A, B, C , D, and E are all symmetric and sparsely banded.

Treatment of the singular boundary condition

The boundary condition for v is discontinuous at the lower right corner (r =

7.5 Axisymmetric flows in a cylinder 293

1, z = 0). This singular boundary condition is a mathematical idealization of the
physical situation, where there is a thin gap over which v adjusts from 1.0 on the
edge of the rotating endwall to 0.0 on the sidewall. Therefore, it is appropriate to use a
regularized boundary condition (so that v is continuous) which is representative of the
actual gap between the rotating endwall and the stationary sidewall in experiments.

In finite difference or finite element schemes, the singularity is usually regular-
ized over a few grid spacings in the neighborhood of the corner in an ad hoc manner.
However, this simple treatment leads to a mesh-dependent boundary condition which
in turn results in mesh-dependent solutions which prevents a sensible comparison be-
tween solutions with different meshes. Essentially, the grid spacing represents the
physical gap size.

The singular boundary condition at r = 1 is

v(z) = 1 at z = 0, v(z) = 0 for 0 < z � Λ,

which is similar to that of the driven cavity problem. Unless this singularity is treated
appropriately, spectral methods may have severe difficulty dealing with it. In the past,
most computations with spectral methods avoided this difficulty by using regularized
boundary conditions which, unfortunately, do not approximate the physical bound-
ary condition (e.g., [138], [38]). A sensible approach is to use the boundary layer
function

vε(z) = exp
(
− 2z

Λε

)
,

which has the ability to approximate the singular boundary condition to within any
prescribed accuracy. Outside a boundary layer of width O(ε), vε(z) converges to
v(z) exponentially as ε→ 0. However, for a given ε, approximately ε−

1
2 collocation

points are needed to represent the boundary layer function vε. In other words, for
a fixed number of modes M , we can only use ε � ε(M) where ε(M) can be ap-
proximately determined by comparing IMvε and vε, where IMvε is the polynomial
interpolant of vε at the Gauss-Lobatto points.

Although it is virtually impossible to match the exact physical condition in the ex-
perimental gap region, the function vε with ε = 0.006 does provide a reasonable rep-
resentation of the experimental gap. The function vε can be resolved spectrally with
M � Mε modes, where Mε is such that IMvε for a given ε is non-oscillatory. Due
to the nonlinear term v2/r in (7.5.1), we also require that IMvε/2 be non-oscillatory
(since (vε)2 = vε/2). Figure 7.7(a) shows IMv0.006 for various M . It is clear that
I48v0.006 is non-oscillatory. However, from Figure 7.7(b) we see that I48v0.003 is os-
cillatory near z = 0, while I64v0.003 is not. Thus, M ≈ 64 is required for ε = 0.006.

294 Chapter 7 Some applications in multi-dimensions

Figure 7.7

Variation of IMvε (with Λ = 2.5) in the vicinity of the singularity at z = 0 for (a) ε = 0.006 and (b)

ε = 0.003, and various M as indicated.

Numerical results

For better visualization of the flow pattern, it is convenient to introduce the az-
imuthal vorticity η, the Stokes stream function ψ and the angular momentum Γ.
These can be obtained from the velocity field (u, v,w) as follows:

Γ = rv; η = uz − wr; −
(
∂2
r −

1
r
∂r + ∂2

z

)
ψ = rη, ψ|∂D = 0. (7.5.19)

Figure 7.8 shows plots of the solution for Stokes flow (Re = 0) for this problem. The
governing equations (7.5.1)–(7.5.4) in the case Re = 0 reduce to

Figure 7.8

Contours of Γ for Stokes flow (Re = 0), using v0.006 (a) and the ad hoc (b) regularization of the corner

singularity. The leftmost plot in each set has N = 56, M = 80, the middle plots have N = 48,

M = 64, and the right plots have N = 40, M = 48. All have been projected on to 201 uniform radial

locations and 501 uniform axial locations.

7.5 Axisymmetric flows in a cylinder 295

Table 7.4
N,M min(Γ) with ε = 0.006 min(Γ) with ad hoc B.C.
56, 80 −2.472 × 10−6 −4.786 × 10−3

48, 64 −9.002 × 10−6 −6.510 × 10−3

40, 48 −1.633 × 10−4 −6.444 × 10−3

Largest negative values of Γ on the grid points of a 201 × 501 uniform mesh, corresponding to

the solutions for Stokes flow shown in Figure 7.8.

∇̃2v − 1
r2
v = ∇̃2Γ = 0,

with Γ = 0 on the axis, top endwall and sidewall, and Γ = r2 on the rotating bottom
endwall. The singular boundary condition on the sidewall has been regularized in
Figure 7.8(a) with v0.006 and in Figure 7.8(b) with the ad hoc method. For the solution
of the Stokes problem with ε = 0.006, we judge that the error is acceptably small
at M = 64 and is very small at M = 80. The measure of error used here is the
largest value of negative Γ of the computed solution at the grid points of a uniform
201× 501 mesh; the true solution has Γ � 0. These values are listed in Table 7.4. In
contrast, with the ad hoc method the error does not decrease as M increases and the
computed solutions exhibit large errors for all values of M considered.

We now present some numerical results using the spectral-projection scheme for
Re = 2494 with Λ = 2.5. This Re is large enough that boundary layers are thin
(thickness O(Re−

1
2)), but small enough that the flow becomes steady. The primary

interests here are to determine the level of spatial resolution required for an asymp-
totically grid/mode independent solution, and to examine the accuracy of transients
during the evolution to the steady state. We use rest as the initial condition and impul-
sively start the bottom endwall rotating at t = 0. This test case was well documented,
both experimentally (cf. [43]) and numerically (cf. [107], [110]).

We begin by determining the level of resolution needed for a spectral computation
of the case with Re = 2494, Λ = 2.5, and ε = 0.006. From the Stokes flow problem,
we have seen that for ε = 0.006, the proper treatment of the singularity at the corner
requires M ≈ 64. Figure 7.9 shows the solutions at t = 3000, which are essentially
at steady state (i.e. changes in any quantity being less than one part in 105 between
successive time steps), from spectral computations using a variety of resolutions. The
plots are produced by projecting the spectral solutions onto 201 radial and 501 axial
uniformly distributed physical locations. A comparison of these contours shows very
little difference, except for some oscillations in η, the azimuthal component of the
vorticity, near the axis where η ≈ 0. These oscillations are considerably reduced
with an increase in the number of spectral modes used. Figure 7.10(a) presents a

296 Chapter 7 Some applications in multi-dimensions

detail time history of the azimuthal velocity at (r, z) = (1/2,Λ/2), a point which
is not particularly sensitive. It illustrates the convergence of the solutions as N and
M are increased. It also demonstrates that the temporal characteristics of the flow
transients are not sensitive to the level of spatial resolution.

Figure 7.9

Contours of ψ, η, and Γ for Re = 2494 and Λ = 2.5 at t = 3000. Solutions are from spectral

computations with ∆t = 0.04 and ε = 0.006 and N and M as indicated. All have been projected on

to 201 uniform radial locations and 501 uniform axial locations.

We have also computed cases with the same spatial resolution, but with two dif-
ferent temporal resolutions. Computations with ∆t = 0.04 and ∆t = 0.01 agree to
four or five digits, which is of the same order as the time discretization error, and cor-
responding plots of the form shown in Figure 7.10(a) are indistinguishable for these
cases.

In Figure 7.10(b), we show how the energy contribution Ek, from different levels
of modes (k = 0, · · · , N) decreases as k increases. Ek is defined as the sum of

7.5 Axisymmetric flows in a cylinder 297

the energy contribution from the modes vik for i = 0, · · · ,M − N + k and vk,j
for j = 0, · · · , k (vij are the coefficients of the Legendre expansion of v). The
exponential decrease of Ek exhibited in Figure 7.10(b) is a good indication that the
solutions are well resolved. Note also that except for a few of the highest modes, the
energy distributions of differently resolved solutions overlap each other, providing
another indication of their convergence.

From these convergence tests, we conclude that for N = 40, M = 56, ∆t =
0.04, we already have very good results for the primitive variables (u, v,w) but the
approximation for the azimuthal vorticity η at this resolution is not acceptable. We
recall that η is computed by taking derivatives of u and w, so it is not unexpected that
η requires more resolution than the velocity. At N = 56, M = 80, ∆t = 0.04, the
η contours are very smooth and this solution can be taken as being independent of
discretization.

Figure 7.10

(a) Detail of the time history of v(r = 1/2, z = Λ/2) for Re = 2494, Λ = 2.5, from spectral

computations with ε = 0.006, and N and M as indicated. (b) log(Ek) versus k, where Ek is the

energy contribution, from v, from different levels of modes (k = 0, · · · ,M), corresponding to the

solutions in left.

As a further illustration of the convergence of the solutions, we list in Table 7.5
the values and locations (on a 201 × 501 uniform physical grid for the spectral solu-
tions, and on their own grids for the finite difference solutions) of three local maxima
and minima of ψ and η.

298 Chapter 7 Some applications in multi-dimensions

For more details on these simulations, we refer to [111].

Table 7.5
N , M ψ1 ψ2 ψ3

(r1, z1) (r2, z2) (r3, z3)
64, 96 7.6604 × 10−5 −7.1496 × 10−3 1.8562 × 10−5

(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
56, 80 7.6589 × 10−5 −7.1495 × 10−3 1.8578 × 10−5

(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
40, 56 7.6592 × 10−5 −7.1498 × 10−3 1.8582 × 10−5

(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)

N , M η1 η2 η3
(r1, z1) (r2, z2) (r3, z3)

64, 96 0.54488 -0.52342 −8.9785 × 10−3

(0.235, 2.04) (0.335, 2.28) (0.0500, 1.91)
56, 80 0.54488 -0.52343 −8.9797 × 10−3

(0.235, 2.04) (0.335, 2.28) (0.0500, 1.92)
40, 56 0.54502 -0.52341 −8.8570 × 10−3

(0.235, 2.04) (0.335, 2.28) (0.0500, 1.92)

Local maxima and minima of ψ and η, and their locations for Re = 2494, Λ = 2.5, and ε =

0.006, at t = 3000.

Appendix A
Some online software

Contents
A.1 MATLAB Differentiation Matrix Suite 300

A.2 PseudoPack . 308

Differentiation matrices are derived from the spectral collocation (also known as
pseudo-spectral) method for solving differential equations of boundary value type.
This method is discussed in some detail in the last two chapters, but for more com-
plete descriptions we refer to Canuto et al.[29], Fornberg[49], Fornberg and Sloan
[50], Funaro[52], Gottlieb et al.[36], and Weideman and Reddy[168]. In the pseudo-
spectral method the unknown solution to the differential equation is expanded as
a global interpolant, such as a trigonometric or polynomial interpolant. In other
methods, such as finite elements or finite differences, the underlying expansion in-
volves local interpolants such as piecewise polynomials. In practice, this means that
the accuracy of the spectral method is superior: for problems with smooth solu-
tions convergence rates of O(e−cN) or O(e−c

√
N) are routinely achieved, where N

is the number of degrees of freedom in the expansion (see, e.g., Canuto et al.[29],
Stenger [152]; Tadmor[156]). In contrast, finite elements or finite differences yield con-
vergence rates that are only algebraic in N , typically O(N−2) or O(N−4).

There is, however, a price to be paid for using a spectral method instead of a finite
element or a finite difference method: full matrices replace sparse matrices; stability
restrictions may become more severe; and computer implementations, particularly
for problems posed on irregular domains, may not be straightforward. Nevertheless,

300 Appendix A Some online software

provided the solution is smooth the rapid convergence of the spectral method often
compensates for these shortcomings.

There are several general software packages for spectral computations, in FOR-
TRAN or MATLAB. A FORTRAN package is written by Funaro[53] and available
from

http://cdm.unimo.it/home/matematica/funaro.daniele/rout.htm.

This package provides subroutines for computing first and second derivative ma-
trices and has support for general Jacobi polynomials, many quadrature formulas,
and routines for computing expansion coefficients.

Another FORTRAN package, PseudoPack 2000 is written by Don and Costas[31]

and available from

http://www.cfm.brown.edu/people/wsdon/home.html.

PseudoPack can compute up to fourth-order Fourier, Chebyshev, and Legendre col-
location derivatives. Additional features include routines for filtering, coordinate
mapping, and differentiation of functions of two and three variables.

Some MATLAB codes for spectral computations can be found in Trefethen[165];
the corresponding programs are available online at

http://www.comlab.ox.ac.uk/oucl/work/nick.trefethen.

where the readers will find many model problems in mechanics, vibrations, linear
and nonlinear waves and other fields.

Another MATLAB package is the MATLAB Differentiation Matrix Suite writ-
ten by Weideman and Reddy[168] and available from

http://dip.sun.ac.za/∼weideman/research/differ.html.
In this appendix, we shall provide a rather detailed description for the MATLAB

Differentiation Matrix Suite and PseudoPack 2000.

A.1 MATLAB Differentiation Matrix Suite
Below we present a rather detailed description to the MATLAB Differentiation Ma-
trix Suite by Weideman and Reddy[168]. The suite consists of 17 MATLAB functions
for solving differential equations by the spectral collocation (i.e., pseudo-spectral)
method. It includes functions for computing derivatives of arbitrary order corre-
sponding to Chebyshev, Hermite, Laguerre, Fourier, and sinc interpolants. Auxiliary
functions are included for incorporating boundary conditions, performing interpola-

A.1 MATLAB Differentiation Matrix Suite 301

tion using barycentric formulas, and computing roots of orthogonal polynomials. It
is demonstrated how to use the package for solving eigenvalue, boundary value, and
initial value problems arising in the fields of special functions, quantum mechanics,
nonlinear waves, and hydrodynamic stability.

The Differentiation Matrix Suite is available at

http://ucs.orst.edu/∼weidemaj/differ.html
and at

http://www.mathworks.com/support/ftp/diffeqv5.shtml

in the Differential Equations category of the Mathworks user-contributed (MATLAB
5) M-file repository. The MATLAB functions in the suite are listed below:

a. Differentiation Matrices (Polynomial Based)

(I) poldif.m: General differentiation matrices

(II) chebdif.m: Chebyshev differentiation matrices

(III) herdif.m: Hermite differentiation matrices

(IV) lagdif.m: Laguerre differentiation matrices

b. Differentiation Matrices (Nonpolynomial)

(I) fourdif.m: Fourier differentiation matrices

(II) sincdif.m: Sinc differentiation matrices

c. Boundary Conditions

(I) cheb2bc.m: Chebyshev second-derivative matrix incorporating Robin
conditions

(II) cheb4c.m: Chebyshev fourth-derivative matrix incorporating clamped
conditions

d. Interpolation

(I) polint.m: Barycentric polynomial interpolation at arbitrary distinct
nodes

(II) chebint.m: Barycentric polynomial interpolation at Chebyshev nodes

(III) fourint.m: Barycentric trigonometric interpolation at equidistant nodes

e. Transform-Based Derivatives

(I) chebdifft.m: FFT-based Chebyshev derivative

(II) fourdifft.m: FFT-based Fourier derivative

(III) sincdifft.m: FFT-based sinc derivative

302 Appendix A Some online software

f. Roots of Orthogonal Polynomials
(I) legroots.m: Roots of Legendre polynomials

(II) lagroots.m: Roots of Laguerre polynomials

(III) herroots.m: Roots of Hermite polynomials
g. Examples

(I) cerfa.m: Function file for computing the complementary error func-
tion with boundary condition (a) in (A.1)

(II) cerfb.m: Same as cerfa.m, but boundary condition (b) in (A.1) is
used

(III) matplot.m: Script file for plotting the characteristic curves of Math-
ieu Rs equation

(IV) ce0.m: Function file for computing the Mathieu cosine-elliptic function

(V) sineg.m: Script file for solving the sine-Gordon equation

(VI) sgrhs.m: Function file for computing the right-hand side of the sine-
Gordon system

(VII) schrod.m: Script file for computing the eigenvalues of the Schrödinger
equation

(VIII) orrsom.m: Script file for computing the eigenvalues of the Orr
-Sommerfeld equation

In the above, the boundary condition (A.1) is one of the two boundary conditions
below:

y = 0 at x = 1, or y = 1 at x = −1. (A.1)

In Weideman and Reddy’s software, they consider the case in which the set of in-
terpolating functions {φj(x)} consists of polynomials of degree N − 1. The two
main functions in their suite, poldif.m and chebdif.m, deal with this situation.
The former function computes differentiation matrices for arbitrary sets of points and
weights; the latter function is restricted to Chebyshev nodes and constant weights.

The idea of a differentiation matrix of the spectral collocation method for solving
differential equations is based on weighted interpolants of the form:

f(x) ≈ pN−1(x) =
N∑
j=1

α(x)
α(xj)

φj(x)fj . (A.2)

Here {xj}Nj=1 is a set of distinct interpolation nodes; α(x) is a weight function; fj =
f(xj); and the set of interpolating functions {φj(x)}Nj=1 satisfies φj(xk) = δjk (the

A.1 MATLAB Differentiation Matrix Suite 303

Kronecker delta). This means that pN−1(x) defined by (A.2) is an interpolant of the
function f(x), in the sense that

f(xk) = pN−1(xk), k = 1, · · · , N.

Associated with an interpolant such as (A.2) is the concept of a collocation derivative
operator. This operator is generated by taking � derivatives of (A.2) and evaluating
the result at the nodes {xk}:

f (�)(xk) ≈
N∑
j=1

d�

dx�

[
α(x)
α(xj)

φj(x)
]
x=xk

fj, k = 1, · · · , N.

The derivative operator may be represented by a matrix D(�), the differentiation ma-
trix, with entries

D
(�)
k,j =

d�

dx�

[
α(x)
α(xj)

φj(x)
]
x=xk

. (A.3)

The numerical differentiation process may therefore be performed as the matrix-
vector product

f (�) = D(�)f , (A.4)

where f (resp. f(�)) is the vector of function values (resp. approximate derivative
values) at the nodes {xk}.

The computation of spectral collocation differentiation matrices for derivatives
of arbitrary order has been considered by Huang and Sloan[84], (constant weights)
and Welfert [170](arbitrary α(x)). The algorithm implemented in poldif.m and
chebdif.m follows these references closely.

As discussed in Section 1.3 that in some cases (such as the set of Chebyshev
points) explicit formulas are available, but this is the exception rather than the rule.
The suite[168] has included three MATLAB functions for computing the zeros of the
Legendre, Laguerre, and Hermite polynomials (called legroots.m,lagroots.m,
and herroots.m respectively). The basis of these three functions is the three-term
recurrence relation

qn+1(x) = (x− αn)qn(x) − β2
nqn−1(x), n = 0, 1, · · · ,

q0(x) = 1, q−1(x) = 0.
(A.5)

It is well known that the roots of the orthogonal polynomial qN (x) are given by the
eigenvalues of the N ×N tridiagonal Jacobi matrix

304 Appendix A Some online software

J =

⎛⎜⎜⎜⎝
α0 β1

β1 α1 β2

. . . βN−1

βN−1 αN−1

⎞⎟⎟⎟⎠ . (A.6)

The coefficients (αn, βn) are given in the following table:

Legendre Laguerre Hermite
αn 0 2n+ 1 0
βn n/

√
4n2 − 1 n2 1/2n

Using MATLAB’s convenient syntax the Jacobi matrix can easily be generated. For
example, in the Legendre case this requires no more than three lines of code:

>>n = [1:N-1];
>>b = n./sqrt(4*n.ˆ2-1);
>>J = diag(b,1) + diag(b,-1);

Once J has been created MATLAB’s built-in eig routine can be used to compute
its eigenvalues:

>>r = eig(J);

The functions legroots.m, lagroots.m, and herroots.m may be used in
conjunction with poldif.m to generate the corresponding differentiation matrices.
For example, in the Legendre case, assuming a constant weight the following two
lines of code will generate first-and second-derivative matrices of order N × N on
Legendre points:

>> x = legroots(N);
>> D = poldif(x,2);

Some calling commands for different basis functions are given below.

1. Chebyshev method

a. The calling command for chebdif.m is

A.1 MATLAB Differentiation Matrix Suite 305

>>[x, D] = chebdif(N, M);

On input the integer N is the size of the required differentiation matrices, and the
integer M is the highest derivative needed. On output the vector x, of length N ,
contains the Chebyshev points

xk = cos ((k − 1)π/(N − 1)) , k = 1, · · · , N, (A.7)

and D is aN ×N ×M array containing differentiation matrices D(�), � = 1, . . . ,M .
It is assumed that 0 < M � N − 1.

b. The calling command for chebint.m is

>>p = chebint(f, x);

The input vector f, of length N , contains the values of the function f(x) at the
Chebyshev points (A.7). The vector x, of arbitrary length, contains the co-ordinates
where the interpolant is to be evaluated. On output the vector p contains the corre-
sponding values of the interpolant pN−1(x).

c. The calling command for chebdifft.m is

>>Dmf = chebdifft(f, M);

On input the vector f, of length N , contains the values of the function f(x) at the
Chebyshev points (A.7). M is the order of the required derivative. On output the
vector Dmf contains the values of the M th derivative of f(x) at the corresponding
points.

2. Hermite function

a. The calling command for herdif.m is

>>[x, D] = herdif(N, M, b);

On input the integer N is the size of the required differentiation matrices, and the
integer M is the highest derivative needed. The scalar b is the scaling parameter b
defined by the change of variable x = bx̃. On output the vector x, of length N ,
contains the Hermite points scaled by b. D is an N × N ×M array containing the
differentiation matrices D(�), � = 1, · · · ,M .

b. The calling command for herroots.m is

306 Appendix A Some online software

>>r = herroots(N);

The input integer N is the degree of the Hermite polynomial, and the output vector r
contains its N roots.

3. Laguerre function

a. The calling command for lagdif.m is

>>[x, D] = lagdif(N, M, b);

On input the integer N is the size of the required differentiation matrices, and the
integer M is the highest derivative needed. The scalar b is the scaling parameter b
discussed above. On output the vector x, of length N , contains the Laguerre points
scaled by b, plus a node at x = 0. D is anN×N×M array containing differentiation
matrices D(�), � = 1, · · · ,M .

b. The calling command for lagroots.m is

>>r = lagroots(N);

The input integer N is the degree of the Laguerre polynomial, and the output vector r
contains its N roots.

4. Fourier function

a. The calling command of fourdif.m is

>>[x, DM] = fourdif(N, M);

On input the integer N is the size of the required differentiation matrix, and the in-
teger M is the derivative needed. On output, the vector x, of length N , contains the
equispaced nodes given by (1.5.3), and DM is theN×N containing the differentiation
matrix D(M). Unlike the other functions in the suite, fourdif.m computes only
the single matrix D(M), not the sequence D(1), · · · ,D(M).

b. The calling command of fourint.m is

>>t = fourint(f, x)

On input the vector f, of length N , contains the function values at the equispaced
nodes (1.5.3). The entries of the vector x, of arbitrary length, are the ordinates where

A.1 MATLAB Differentiation Matrix Suite 307

the interpolant is to be evaluated. On output the vector t contains the corresponding
values of the interpolant tN (x) as computed by the formula (2.2.9a) or (2.2.9b).

c. The calling command for fourdifft.m is

>>Dmf = fourdifft(f, M);

On input the vector f, of length N , contains the values of the function f(x) at the
equispaced points (1.5.3); M is the order of the required derivative. On output the
vector Dmf contains the values of the M th derivative of f(x) at the corresponding
points.

The subroutine cheb2bc.m is a function to solve the general two-point bound-
ary value problem

u′′(x) + q(x)u′(x) + r(x)u(x) = f(x), −1 < x < 1, (A.8)

subject to the boundary conditions

a+u(1) + b+u
′(1) = c+, a−u(−1) + b−u′(−1) = c−. (A.9)

It is assumed that a+ and b+ are not both 0, and likewise for a− and b−. The function
cheb2bc.m generates a set of nodes {xk}, which are essentially the Chebyshev
points with perhaps one or both boundary points omitted. (When a Dirichlet con-
dition is enforced at a boundary, that particular node is omitted, since the function
value is explicitly known there.) The function also returns differentiation matrices
D̃(1) and D̃(2) which are the first- and second-derivative matrices with the bound-
ary conditions (A.9) incorporated. The matrices D̃(1) and D̃(2) may be computed
from the Chebyshev differentiation matrices D(1) and D(2), which are computed by
chebdif.m.

Table A.1 Solving the boundary value problem (A.10)

>>N = 16;
>>g = [2 -1 1; 2 1 -1]; % Boundary condition array
>>[x, D2t, D1t, phip, phim] = cheb2bc(N, g); % Get nodes, matrices, and

% vectors
>>f = 4*exp(x.2);
>>p = phip(:,2)-2*x.*phip(:,1); % psi+
>>m = phim(:,2)-2*x.*phim(:,1); % psi-
>>D = D2t-diag(2*x)*D1t+2*eye(size(D1t)); % Discretization matrix
>>u = D\(f-p-m); % Solve system

308 Appendix A Some online software

The function cheb2bc.m computes the various matrices and boundary condi-
tion vectors described above. The calling command is

>>[x, D2t, D1t, phip, phim] = cheb2bc(N, g);

On input N is the number of collocation points used. The array g = [ap bp cp;
am bm cm] contains the boundary condition coefficients, with a+, b+ and c+ on
the first row and a−, b− and c− on the second. On output x is the node vector
x. The matrices D1t and D2t contain D̃(1) and D̃(2), respectively. The first and
second columns of phip contain φ̃′+(x) and φ̃′′+(x), evaluated at the points in the
node vector. Here φ̃′±(x) are some modified basis functions, see [168]. Similarly, the
first and second columns of phim contain φ̃′−(x) and φ̃′′−(x), evaluated at points in
the node vector. Since φ̃+(x) and φ̃−(x) are both 0 at points in the node vector, these
function values are not returned by cheb2bc.m.

Using cheb2bc.m, it becomes a straightforward matter to solve the two-point
boundary value problem (A.8) and (A.9). Consider, for example,

u′′ − 2xu′ + 2u = 4ex
2
, 2u(1) − u′(1) = 1, 2u(−1) + u′(−1) = −1. (A.10)

The MATLAB code for solving (A.10) is given in Table A.1.

A.2 PseudoPack

Global polynomial pseudo-spectral (or collocation) methods[29],[60] have been used
extensively during the last decades for the numerical solution of partial differential
equations (PDE). Some of the methods commonly used in the literatures are the
Fourier collocation methods for periodical domain and the Jacobi polynomials with
Chebyshev and Legendre polynomials as special cases for non-periodical domain.
They have a wide range of applications ranging from 3-D seismic wave propagation,
turbulence, combustion, non-linear optics, aero-acoustics and electromagnetics.

The underlying idea in those methods is to approximate the unknown solution
in the entire computational domain by an interpolation polynomial at the quadrature
(collocation) points. The polynomial is then required to satisfy the PDEs at the collo-
cation points. This procedure yields a system of ODEs to be solved. These schemes
can be very efficient as the rate of convergence (or the order of accuracy) depends
only on the smoothness of the solution. This is known in the literature as spectral

This section is kindly provided by Dr. W. S. Don of Brown University.

A.2 PseudoPack 309

accuracy. In particular, if the solution of the PDE is analytic, the error decays expo-
nentially. By contrast, in finite difference methods, the order of accuracy is fixed by
the scheme.

While several software tools for the solution of partial differential equations
(PDEs) exist in the commercial (e.g. DiffPack) as well as the public domain (e.g.
PETSc), they are almost exclusively based on the use of low-order finite difference,
finite element or finite volume methods. Geometric flexibility is one of their main
advantages.

For most PDE solvers employing pseudo-spectral (collocation) methods, one ma-
jor component of the computational kernel is the differentiation. The differentiation
must be done accurately and efficiently on a given computational platform for a suc-
cessful numerical simulation. It is not an easy task given the number of choice of
algorithms for each new and existing computational platform.

Issues involving the complexity of the coding, efficient implementation, geomet-
ric restriction and lack of high quality software library tended to discourage the gen-
eral use of the pseudo-spectral methods in scientific research and practical applica-
tions. In particularly, the lack of standard high quality library for pseudo-spectral
methods forces individual researchers to build codes that were not optimal in terms
of efficiency and accuracy.

Furthermore, while pseudo-spectral methods are at a fairly mature level, many
critical issues regarding efficiency and accuracy have only recently been addressed
and resolved. The knowledge of these solutions is not widely known and appears to
restrict a more general usage of this class of algorithm in applications.

This package aims at providing to the user, in a high performance computing
environment, a library of subroutines that provide an accurate, versatile, optimal and
efficient implementation of the basic components of global pseudo-spectral methods
on which to address a variety of applications of interest to scientists.

Since the user is shielded from any coding errors in the main computational ker-
nels, reliability of the solution is enhanced. PseudoPack will speed up code develop-
ment, increase scientific productivity and enhance code re-usability.

Major features of the PseudoPack library

PseudoPack is centered on subroutines for performing basic operations such as
generation of proper collocation points, differentiation and filtering matrices. These
routines provide a highly optimized computational kernel for pseudo-spectral meth-
ods based on either the Fourier series for periodical problems or the Chebyshev or

310 Appendix A Some online software

Legendre polynomials in simple non-periodical computational domain for the solu-
tion of initial-boundary value problems. State-of-the-art numerical techniques such
as Even-Odd Decomposition[150] and specialized fast algorithms are employed to
increase the efficiency of the library. Advance numerical algorithms, including accu-
racy enhancing mapping and filtering, are incorporated in the library.

The library contain a number of user callable routines that return the derivatives
and/or filtering (smoothing) of, possibly multi-dimensional, data sets. As an appli-
cation extension of the library, we have included routines for computing the conser-
vative and non-conservative form of the derivative operators Gradient ∇, Divergence
∇·, Curl ∇× and Laplacian ∇2 operators in the 2D/3D general curvilinear coordina-
tion.

The source codes of the library is written in FORTRAN 90. The macro and
conditional capability of C Preprocessor allows the software package be compiled
into several versions with several different computational platforms. Several popular
computational platforms (IBM RS6000, SGI Cray, SGI, SUN) are supported to take
advantages of any existing optimized native library such as General Matrix-Matrix
Multiply (GEMM) from Basic Linear Algebra Level 3 Subroutine (BLAS 3), Fast
Fourier Transform (FFT) and Fast Cosine/Sine Transform (CFT/SFT). In term of
flexibility and user interaction, any aspect of the library can be modified by minor
change in a small number of input parameters.

Summary of major features

1. Derivatives of up to order four are supported for the Fourier, Chebyshev and
Legendre collocation methods that are based on the Gauss-Lobatto, Gauss-Radau and
Gauss quadrature nodes.

2. Matrix-Matrix Multiply, Even-Odd Decomposition and Fast Fourier Trans-
form Algorithms are supported for computing the derivative/smoothing of a function.

3. Makefiles are available for compilation on system by IBM (RS/6000), SGI
Cray, SGI, SUN and Generic UNIX machine.

4. Native fast assembly library calls such as General Matrix-Matrix Multiply
(GEMM) from Basic Linear Algebra Level 3 Subroutine (BLAS 3), Fast Fourier
Transform (FFT) and Fast Cosine/Sine Transform (CFT/SFT) when available, are
deployed in the computational kernel of the PseudoPack.

5. Special fast algorithms, e.g. Fast Quarter-Wave Transform and Even-Odd
Decomposition Algorithm, are provided for cases when the function has either even
or odd symmetry.

A.2 PseudoPack 311

6. Kosloff-Tal-Ezer mapping is used to reduce the round-off error for the Cheby-
shev and Legendre differentiation.

7. Extensive built-in and user-definable grid mapping function suitable for finite,
semi-infinite and infinite domain are provided.

8. Built-in filtering (smoothing) of a function and its derivative are incorporated
in the library.

9. Differentiation and smoothing can be applied to either the first or the second
dimension of a two-dimensional data array.

10. Conservative and non-conservative form of Derivative operators, namely,
Gradient ∇, Divergence ∇·, Curl ∇× and Laplacian ∇2 operators in the 2D/3D
general curvilinear coordination using pseudo-spectral methods are available.

11. Memory usage by the PseudoPack is carefully minimized. User has some
control over the amount of temporary array allocation.

12. Unified subroutine call interface allows modification of any aspect of the
library with minor or no change to the subroutine call statement.

Illustration

As an illustration of the functionality of PseudoPack, we present a Pseudo-Code
for computing the derivative of a two-dimensional data array fij using FORTRAN
90 language syntax.

The procedure essentially consists of four steps:

a. Specify all necessary non-default parameters and options that determine a
specific spectral collocation scheme, for example, Chebyshev collocation method :
call PS_Setup_Property (Method=1)

b. Finds the storage requirement for the differentiation operator D :
call PS_Get_Operator_Size (M_D, ...)
ALLOCATE (D(M_D))

c. Setup the differentiation operator D :
call PS_Setup_Operator (D, ...)

d. Performs the differentiation operation by compute D_f = ∂xf
call PS_Diff (D, f, D_f, ...)

312 Appendix A Some online software

These subroutine calls shall remain unchanged regardless of any changes made
to the subroutine arguments such as Method,Algorithm etc. It provides to the
user a uniform routine interface with which to work with. For example, to change the
basis of approximation from Chebyshev polynomial to Legendre polynomial, it can
be easily accomplished by changing the input parameter Method=1 to Method=2.

Some general remarks

Some general remarks for the library are listed below:

1. The numerical solution of the PDE U(x, y, t) at any given time t is stored in a
two dimensional array u(0:LDY-1,0:M)with the leading dimension LDY >= N,
where N and M are the number of collocation points in x and y direction respectively.

2. The suffix _x and _y denote the coordinate direction in which the variable is
referring to.

3. The differentiation operator is D and the smoothing operator is S with the
suffice _x and _y to denote the coordinate direction.

4. The name of subroutines with prefix PS_ designates library routine calls to
the PseudoPack library. Please consult the PseudoPack’s manual for details.

5. The derived data type

Property, Grid_Index, Domain, Mapping,Filtering_D,

Filtering_S

are used to store the specification of a specific differentiation operator.

6. The differentiation D and smoothing S operators are specified by calling the
setup subroutine PS_Setup. The behavior of the operators can be modified by
changing one or more optional arguments of the subroutine by changing the data in
the respective derived data type such as Property.

To specify the Fourier, Chebyshev and Legendre method, one set Method=0,1,
2, respectively.

To specify the matrix, Even-Odd Decomposition and Fast Transform Algorithm,
one set Algorithm=0,1,2, respectively.

7. The important library calls are PS_Diff and PS_Smoothwhich perform the
differentiation and smoothing according to the given differentiation and smoothing
operators D and S as specified in PS_Setup.

A demonstration program for the use of PseudoPack can be found in
http://www.cfm.brown.edu/people/wsdon/home.html

Bibliography

[1] M. Abramowitz and I. A. Stegun. 1972. Handbook of Mathematical Functions.
Dover, New York

[2] B. K. Alpert and V. Rokhlin. 1991. A fast algorithm for the evaluation of Legendre
expansions. SIAM J. Sci. Stat. Comput., 12:158–179

[3] B.-Y. Guo an L.-L. Wang. Jacobi approximations in certain Besov spaces. To appear
in J. Approx. Theory

[4] K. Arrow, L. Hurwicz, and H. Uzawa. 1958. Studies in Nonlinear Programming.
Stanford University Press

[5] U. Ascher, J. Christiansen, and R. D. Russell. 1981. Collocation software for boundary
value odes. ACM Trans. Math. Software, 7:209–222

[6] K. E. Atkinson. 1997. The Numerical Solution of Integral Equations of the Second
Kind. Cambridge Monographs on Applied and Computational Mathematics, Vol. 4.
Cambridge University Press

[7] I. Babuska. 1972. The finite element method with Lagrangian multipliers. Numer.
Math., 20:179–192

[8] W. Bao, D. Jaksch, and P.A. Markowich. 2003. Numerical solution of the Gross-
Pitaevskii equation for Bose-Einstein condensation. J. Comput. Phys., 187

[9] W. Bao, S. Jin, and P.A. Markowich. 2003. Numerical study of time-splitting spectral
discretizations of nonlinear Schrödinger equations in the semi-clasical regimes. SIAM
J. Sci. Comp., 25:27–64

[10] W. Bao and J. Shen. 2005. A fourth-order time-splitting Laguerre-Hermite pseudo-
spectral method for Bose-Einstein condensates. SIAM J. Sci. Comput., 26:2110–2028

[11] C. Bernardi and Y. Maday. 1997. Spectral method. In P. G. Ciarlet and L. L. Lions,
editors, Handbook of Numerical Analysis, V. 5 (Part 2). North-Holland

[12] C. Bernardi and Y. Maday. 1999. Uniform inf-sup conditions for the spectral dis-
cretization of the Stokes problem. Math. Models Methods Appl. Sci., 9(3): 395–414

[13] G. Birkhoff and G. Fix. 1970. Accurate eigenvalue computation for elliptic problems.
In Numerical Solution of Field Problems in Continuum Physics, Vol 2, SIAM–AMS
Proceedings, pages 111–151. AMS, Providence

[14] P. Bjørstad. 1983. Fast numerical solution of the biharmonic Dirichlet problem on
rectangles. SIAM J. Numer. Anal., 20: 59–71

[15] P. E. Bjørstad and B. P. Tjostheim. 1997. Efficient algorithms for solving a fourth
order equation with the spectral-Galerkin method. SIAM J. Sci. Comput., 18

314 Bibliography

[16] J. L. Bona, S. M. Sun, and B. Y Zhang. A non-homogeneous boundary-value problem
for the Korteweg-de Vries equation posed on a finite domain. Submitted.

[17] J. P. Boyd. 1982. The optimization of convergence for Chebyshev polynomial methods
in an unbounded domain. J. Comput. Phys., 45: 43–79

[18] J. P. Boyd. 1987. Orthogonal rational functions on a semi-infinite interval. J. Comput.
Phys., 70: 63–88

[19] J. P. Boyd. 1987. Spectral methods using rational basis functions on an infinite inter-
val. J. Comput. Phys., 69: 112–142

[20] J. P. Boyd. 1989. Chebyshev and Fourier Spectral Methods, 1st ed. Springer-Verlag,
New York

[21] J. P. Boyd. 1992. Multipole expansions and pseudospectral cardinal functions: a new
generation of the fast Fourier transform. J. Comput. Phys., 103: 184–186

[22] J. P. Boyd. 2001. Chebyshev and Fourier Spectral Methods, 2nd ed. Dover, Mineola,
New York

[23] F. Brezzi. 1974. On the existence, uniqueness and approximation of saddle-point
problems arising from Lagrangian multipliers. Rev. Française Automat. Informat.
Recherche Opérationnelle Sér. Rouge, 8(R-2): 129–151

[24] F. Brezzi and M. Fortin. 1991. Mixed and Hybrid Finite Element Methods. Springer-
Verlag, New York

[25] G. L. Brown and J. M. Lopez. 1990. Axisymmetric vortex breakdown. II. Physical
mechanisms. J. Fluid Mech., 221: 553–576

[26] H. Brunner. 2004. Collocation Methods for Volterra Integral and Related Functional
Differential Equations. Cambridge Monographs on Applied and Computational Math-
ematics, Vol. 15. Cambridge University Press

[27] J. C. Butcher. 1987. The Numerical Analysis of Ordinary Differential Equations:
Runge-Kutta and General Linear Methods. John Wiley & Sons, New York

[28] W. Cai, D. Gottlieb, and C.-W. Shu. 1989. Essentially nonoscillatory spectral Fourier
methods for shock wave calculation. Math. Comp., 52: 389–410

[29] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. 1988 Spectral Methods for
Fluid Dynamics. Springer-Verlag, New York

[30] A. J. Chorin. 1968. Numerical solution of the Navier-Stokes equations. Math. Comp.,
22: 745–762

[31] B. Ciosta and W. S. Don. 1999. Pseudopack 2000: a spectral method libraray. See
http://www.labma.ufrj.br/∼costa/PseudoPack2000/Main.htm.

[32] T. Colin and J.-M. Ghidaglia. 2001. An initial-boundary value problem for the
Korteweg-de-Vries equation posed on a finite interval. Adv. Diff. Eq., 6(12): 1463–
1492

[33] J. W. Cooley and J. W. Tukey. 1965. An algorithm for the machine calculation of
complex Fourier series. Math. Comp., 19: 297–301

Bibliography 315

[34] O. Coulaud, D. Funaro, and O. Kavian. 1990. Laguerre spectral approximation of
elliptic problems in exterior domains. Comp. Mech. in Appl. Mech and Eng., 80:
451–458

[35] M. Crandall and A. Majda. 1980. The method of fractional steps for conservation
laws. Numer. Math., 34: 285–314

[36] M. Y. Hussaini D. Gottlieb and S. A. Orszag. 1984. Theory and applications of spectral
methods. In D. Gottlieb R. Voigt and M. Y. Hussaini, editors, Spectral Methods for
Partial Differential Equations., pages 1–54. SIAM

[37] P. J. Davis. 1975. Interpolation and Approximation. Dover Publications, New York

[38] P. Demaret and M. O. Deville. 1991. Chebyshev collocation solution of the Navier-
Stokes equations using multi-domain decomposition and finite element precondition-
ing. J. Comput. Phys., 95: 359–386

[39] S.C.R. Dennis and J. D. Hudson. 1989. Compact h4 finite-difference approximations
to operators of Navier-Stokes type. J. Comput. Phys., 85: 390–416

[40] M. O. Deville, P. F. Fischer and E. H. Mund. 2002. High-order methods for incom-
pressible fluid flow. Volume 9 of Cambridge Monographs on Applied and Computa-
tional Mathematics. Cambridge University Press

[41] W.S. Don and D. Gottlieb. 1994. The Chebyshev-Legendre method: implementing
Legendre methods on Chebyshev points. SIAM J. Numer. Anal., 31: 1519–1534

[42] H. Eisen, W. Heinrichs, and K. Witsch. 1991. Spectral collocation methods and polar
coordinate singularities. J. Comput. Phys., 96: 241–257

[43] M. P. Escudier. 1994. Observations of the flow produced in a cylindrical container by
a rotating endwall. Expts. Fluids, 2: 189–196

[44] P. F. Fischer. 1997. An overlapping Schwarz method for spectral element solution of
the incompressible Navier-Stokes equations. J. Comput. Phys., 133: 84–101

[45] J. C. M. Fok, B.-Y. Guo, and T. Tang. 2002. Combined Hermite spectral-finite differ-
ence method for the fokker-planck equations. Math. Comp., 71: 1497–1528

[46] B. Fornberg. 1988. Generation of finite difference formulas on arbitrarily spaced grids.
Math. Comp., 51: 699–706

[47] B. Fornberg. 1990. An improved pseudospectral method for initial boundary value
problems. J. Comput. Phys., 91: 381–397

[48] B. Fornberg. 1995. A pseudospectral approach for polar and spherical geometries.
SIAM J. Sci. Comput., 16: 1071–1081

[49] B. Fornberg. 1996. A Practical Guide to Pseudospectral Methods. Cambridge Uni-
versity Press, New York

[50] B. Fornberg and D.M. Sloan. 1994. A review of pseudospectral methods for solving
partial differential equations. In A. Iserles, editor, Acta Numerica, pages 203–267.
Cambridge University Press, New York

316 Bibliography

[51] B. Fornberg and G. B. Whitham. 1978. A numerical and theoretical study of cer-
tain nonlinear wave phenomena. Philosophical Transactions of the Royal Society of
London, 289: 373–404

[52] D. Funaro. 1992. Polynomial Approxiamtions of Differential Equations. Springer-
verlag

[53] D. Funaro. Fortran routines for spectral methods, 1993. available via anonymous
FTP at ftp.ian.pv.cnr.it in pub/splib.

[54] D. Funaro and O. Kavian. 1991. Approximation of some diffusion evolution equations
in unbounded domains by Hermite functions. Math. Comp., 57: 597–619

[55] V. Girault and P. A. Raviart. 1986. Finite Element Methods for Navier-Stokes Equa-
tions. Springer-Verlag

[56] R. Glowinski. 2003. Finite element methods for incompressible viscous flow. In
Handbook of numerical analysis, Vol. IX, Handb. Numer. Anal., IX, pages 3–1176.
North-Holland, Amsterdam

[57] S. K. Godunov. 1959. Finite difference methods for numerical computations of dis-
continuous solutions of the equations of fluid dynamics. Mat. Sb., 47:271–295. in
Russian

[58] D. Gottlieb and L. Lustman. 1983. The spectrum of the Chebyshev collocation oper-
ator for the heat equation. SIAM J. Numer. Anal., 20: 909–921

[59] D. Gottlieb, L. Lustman, and S. A. Orszag. 1981. Spectral calculations of one-
dimensional inviscid compressible flow. SIAM J. Sci. Stat. Comput., 2: 286–310

[60] D. Gottlieb and S. A. Orszag. 1977. Numerical Analysis of Spectral Methods. SIAM,
Philadelphia, PA

[61] D. Gottlieb and S. A. Orszag. 1977. Numerical Analysis of Spectral Methods: Theory
and Applications. SIAM-CBMS, Philadelphia

[62] D. Gottlieb and C.-W. Shu.1994. Resolution properties of the Fourier method for
discontinuous waves. Comput. Methods Appl. Mech. Engrg., 116: 27–37

[63] D. Gottlieb and C.-W. Shu. 1997. On the gibbs phenomenon and its resolution. SIAM
Rev., 39(4): 644–668

[64] L. Greengard. 1991. Spectral integration and two-point boundary value problems.
SIAM J. Numer. Anal., 28:1071–1080

[65] L. Greengard and V. Rokhlin. 1987. A fast algorithm for particle simulations. J.
Comput. Phys., 73: 325–348

[66] C. E. Grosch and S. A. Orszag. 1977. Numerical solution of problems in unbounded
regions: coordinates transforms. J. Comput. Phys., 25: 273–296

[67] E.P. Gross. 1961. Structure of a quantized vortex in boson systems. Nuovo. Cimento.,
20: 454–477

[68] J. L. Guermond and J. Shen. 2003. A new class of truly consistent splitting schemes
for incompressible flows. J. Comput. Phys., 192(1): 262–276

Bibliography 317

[69] J.L. Guermond, P. Minev and J. Shen. An overview of projection methods for incom-
pressible flows. Inter. J. Numer. Methods Eng., to appear

[70] J.L. Guermond and J. Shen. On the error estimates of rotational pressure-correction
projection methods. To appear in Math. Comp

[71] J.L. Guermond and J. Shen. 2004. On the error estimates of rotational pressure-
correction projection methods. Math. Comp, 73: 1719–1737

[72] B.-Y. Guo. 1999. Error estimation of Hermite spectral method for nonlinear partial
differential equations. Math. Comp., 68: 1067–1078

[73] B.-Y. Guo, H.-P. Ma, and E. Tadmor. 2001. Spectral vanishing viscosity method for
nonlinear conservation laws. SIAM J. Numer. Anal., 39(4): 1254–1268

[74] B.-Y. Guo and J. Shen. 2000. Laguerre-Galerkin method for nonlinear partial differ-
ential equations on a semi-infinite interval. Numer. Math., 86: 635–654

[75] B.-Y. Guo, J. Shen and L. Wang. Optimal spectral-Galerkin methods using generalized
jacobi polynomials. To appear in J. Sci. Comput

[76] B.-Y. Guo, J. Shen, and Z. Wang. 2000. A rational approximation and its applications
to differential equations on the half line. J. Sci. Comp., 15: 117–147

[77] B.-Y. Guo and L.-L. Wang. 2001. Jacobi interpolation approximations and their ap-
plications to singular differential equations. Adv. Comput. Math., 14: 227–276

[78] M. M. Gupta. 1991. High accuracy solutions of incompressible Navier-Stokes equa-
tions. J. Comput. Phys., 93: 345–359

[79] D. B. Haidvogel and T. A. Zang. 1979. The accurate solution of Poisson’s equation
by expansion in Chebyshev polynomials. J. Comput. Phys., 30: 167–180

[80] P. Haldenwang, G. Labrosse, S. Abboudi, and M. Deville. 1984. Chebyshev 3-d
spectral and 2-d pseudospectral solvers for the helmholtz equation. J. Comput. Phys.,
55: 115–128

[81] P. Henrici. 1986. Applied and Computational Complex Analysis, volume 3. Wiley,
New York

[82] M. Hestenes and E. Stiefel. 1952. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Stand., 49: 409–436

[83] M. H. Holmes. 1995. Introduction to Perturbation Methods. Springer-Verlag, New
York

[84] W.-Z. Huang and D. Sloan. 1994. The pseudospectral method for solving differential
eigenvalue problems. J. Comput. Phys., 111: 399–409

[85] W.-Z. Huang and D. M. Sloan. 1993. Pole condition for singular problems: the pseu-
dospectral approximation. J. Comput. Phys., 107: 254–261

[86] W.-Z. Huang and T. Tang. 2000. Pseudospectral solutions for steady motion of a
viscous fluid inside a circular boundary. Appl. Numer. Math., 33: 167–173

[87] A. Karageorghis. 1992. The numerical solution of a laminar flow in a reentrant tube
geometry by a Chebyshev spectral element collocation method. Comput. Methods
Appl. Mech. Engrg., 100: 339–358

318 Bibliography

[88] A. Karageorghis and T. N. Phillips. 1989. Spectral collocation methods for Stokes
flow in contraction geometries and unbounded domains. J. Comput. Phys., 80: 314–
330

[89] G. E. Karniadakis and S. .J. Sherwin. 1999. Spectral/hp Element Methods for CFD.
Oxford UniversityPress

[90] I. K. Khabibrakhmanov and D. Summers. 1998. The use of generalized Laguerre
polynomials in spectral methods for nonlinear differential equations. Comput. Math.
Appl., 36: 65–70

[91] S. D. Kim and S. V. Parter. 1997. Preconditioning Chebyshev spectral collocation by
finite difference operators. SIAM J. Numer. Anal., 34, No. 3: 939–958

[92] D. Kincaid and E. W. Cheney. 1999. Numerical Analysis, Mathematics of Scientific
Computing. Brooks/Cole, 3rd edition

[93] D. Kosloff and H. Tal-Ezer. 1993. A modified Chebyshev pseudospectral method with
an o(n−1) time step restriction. J. Comput. Phys., 104: 457–469

[94] M. D. Kruskal and N. J. Zabusky. 1996. Exact invariants for a class of nonlinear wave
equations. J. Math. Phys., 7: 1256–1267

[95] H. C. Ku, R. S. Hirsh, and T. D. Taylor. 1987. A pseudospectral method for solution
of the three-dimensional incompressible Navier-Stokes equations. J. Comput. Phys.,
70: 439–462

[96] P. D. Lax. 1978. Accuracy and resolution in the computation of solutions of linaer
and nonlinear equations. In Recent Advances in Numerical Analysis, pages 107–117.
Academic Press, London, New York

[97] P. D. Lax and B. Wendroff. 1960. Systems of conservation laws. Commun. Pure
Appl. Math., 13: 217–237

[98] P. Leboeuf and N. Pavloff. 2001. Bose-Einstein beams: Coherent propagation through
a guide. Phys. Rev. A, 64: aritcle 033602

[99] J. Lee and B. Fornberg. 2003. A split step approach for the 3-d Maxwell’s equations.
J. Comput. Appl. Math., 158: 485–505

[100] M. Lentini and V. Peyrera. 1977. An adaptive finite difference solver for nonlinear
two-point boundary problems with mild boundary layers. SIAM J. Numer. Anal., 14:
91–111

[101] R. J. LeVeque. 1992. Numerical Methods for Conservation Laws. Birkhauser, Basel,
2nd edition

[102] A. L. Levin and D. S. Lubinsky. 1992. Christoffel functions, orthogonal polynomials,
and Nevai’s conjecture for Freud weights. Constr. Approx., 8: 461–533

[103] W. B. Liu and J. Shen. 1996. A new efficient spectral-Galerkin method for singular
perturbation problems. J. Sci. Comput., 11: 411–437

[104] W.-B. Liu and T. Tang. 2001. Error analysis for a Galerkin-spectral method with
coordinate transformation for solving singularly perturbed problems. Appl. Numer.
Math., 38: 315–345

Bibliography 319

[105] Y. Liu, L. Liu, and T. Tang. 1994. The numerical computation of connecting orbits in
dynamical systems: a rational spectral approach. J. Comput. Phys., 111: 373–380

[106] J. M. Lopez. 1990. Axisymmetric vortex breakdown. I. Confined swirling flow. J.
Fluid Mech., 221: 533–552

[107] J. M. Lopez. 1990. Axisymmetric vortex breakdown. Part 1. Confined swirling flow.
J. Fluid Mech., 221: 533–552

[108] J. M. Lopez, F. Marques, and J. Shen. 2002. An efficient spectral-projection method
for the Navier-Stokes equations in cylindrical geometries. II. Three-dimensional cases.
J. Comput. Phys., 176(2): 384–401

[109] J. M. Lopez and A. D. Perry. 1992. Axisymmetric vortex breakdown. III. Onset of
periodic flow and chaotic advection. J. Fluid Mech., 234: 449–471

[110] J. M. Lopez and A. D. Perry. 1992. Axisymmetric vortex breakdown. Part 3. Onset of
periodic flow and chaotic advection. J. Fluid Mech., 234: 449–471

[111] J. M. Lopez and J. Shen. 1998. An efficient spectral-projection method for the Navier-
Stokes equations in cylindrical geometries I. axisymmetric cases. J. Comput. Phys.,
139: 308–326

[112] R. E. Lynch, J. R. Rice, and D. H. Thomas. 1964. Direct solution of partial differential
equations by tensor product methods. Numer. Math., 6: 185–199

[113] H.-P. Ma, W.-W. Sun, and T. Tang. 2005. Hermite spectral methods with a time-
dependent scaling for second-order differential equations. SIAM J. Numer. Anal.

[114] Y. Maday, D. Meiron, A. T. Patera, and E. M. Rønquist. 1993. Analysis of iterative
methods for the steady and unsteady Stokes problem: application to spectral element
discretizations. SIAM J. Sci. Comput., 14(2): 310–337

[115] Y. Maday, S. M. Ould Kaber, and E. Tadmor. 1993. Legendre pseudospectral viscosity
method for nonlinear conservation laws. SIAM J. Numer. Anal., 30(2): 321–342

[116] Y. Maday and T. Patera. 1989. Spectral-element methods for the incompressible
Navier-Stokes equations. In A. K. Noor, editor, State-of-the-art Surveys in Computa-
tional Mechanics, pages 71–143

[117] Y. Maday, B. Pernaud-Thomas, and H. Vandeven. 1985. Reappraisal of Laguerre type
spectral methods. La Recherche Aerospatiale, 6: 13–35

[118] Y. Maday and A. Quarteroni. 1988. Error analysis for spectral approximations to the
Korteweg de Vries equation. MMAN, 22: 539–569

[119] G.I. Marchuk. 1974. Numerical Methods in Numerical Weather Prediction. Aca-
demic Press, New York

[120] M. Marion and R. Temam. 1998. Navier-Stokes equations: theory and approximation.
In Handbook of numerical analysis, Vol. VI, Handb. Numer. Anal., VI, pages 503–688.
North-Holland, Amsterdam

[121] G. Mastroianni and D. Occorsio. 2001. Lagrange interpolation at Laguerre zeros in
some weighted uniform spaces. Acta Math. Hungar., 91(1-2): 27–52

320 Bibliography

[122] R. M. M. Mattheij and G. W. Staarink. 1984. An efficient algorithm for solving
general linear two point bvp. SIAM J. Sci. Stat. Comput., 5: 745–763

[123] M. J. Mohlenkamp. 1997. A Fast Transform for Spherical Harmonics. PhD thesis,
Yale University

[124] S. A. Orszag. 1970. Transform method for calculation of vector coupled sums: Ap-
plications to the spectral form of the vorticity equation. J. Atmos. Sci., 27: 890–895

[125] S. A. Orszag. 1980. Spectral methods for complex geometries. J. Comput. Phys., 37:
70–92

[126] S. A. Orszag. 1986. Fast eigenfunction transforms. Science and Computers: Ad-
vances in mathematics supplementary studies, 10: 23–30

[127] S. V. Parter. 2001. Preconditioning Legendre spectral collocation methods for elliptic
problems. II. Finite element operators. SIAM J. Numer. Anal., 39(1): 348–362

[128] A. T. Patera. 1986. Fast direct Poisson solvers for high-order finite element discretiza-
tions in rectangularly decomposable domains. J. Comput. Phys., 65: 474–480

[129] L.P. Pitaevskii. 1961. Vortex lines in an imperfect Bose gase. Sov. Phys. JETP, 13:
451–454

[130] L. Quartapelle. 1993. Numerical Solution of the Incompressible Navier-Stokes Equa-
tions. Birkhauser

[131] R. D. Richtmyper and K. W. Morton. 1967. Difference Methods for Initial-Value
Problems. Interscience, New York, 2nd edition

[132] E. M. Ronquist. 1988. Optimal spectral element methods for the unsteady three-
dimensional incompressible Navier-Stokes equations. MIT Ph.D thesis

[133] H. G. Roos, M. Stynes, and L. Tobiska. 1996. Numerical Methods for Singularly
Perturbed Differential Equations. Springer Series in Computational Mathematics.
Springer-Verlag, New York

[134] Y. Saad. 2003. Iterative methods for sparse linear systems. SIAM Philadelphia, PA,
and edition

[135] Y. Saad and M. Schultz. 1986. Gmres: A genralized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7: 856–869

[136] W. W. Schultz, Lee, and J. P. Boyd. 1989. Chebyshev pseudospectral method of
viscous flows with corner singularities. J. Sci. Comput., 4: 1–24

[137] J. W. Schumer and J. P. Holloway. 1998. Vlasov simulations using velocity-scaled
Hermite representations. J. Comput. Phys., 144(2): 626–661

[138] J. Shen. 1991. Hopf bifurcation of the unsteady regularized driven cavity flows. J.
Comput. Phys., 95: 228–245

[139] J. Shen. 1995. Efficient spectral-Galerkin method II. direct solvers for second- and
fourth-order equations by using Chebyshev polynomials. SIAM J. Sci. Comput., 16:
74–87

[140] J. Shen. 1995. On fast Poisson solver, inf-sup constant and iterative Stokes solver by
Legendre Galerkin method. J. Comput. Phys., 116: 184–188

Bibliography 321

[141] J. Shen. 1996. Efficient Chebyshev-Legendre Galerkin methods for elliptic problems.
In A. V. Ilin and R. Scott, editors, Proceedings of ICOSAHOM’95, pages 233–240.
Houston J. Math.

[142] J. Shen. 1997. Efficient spectral-Galerkin methods III. polar and cylindrical geome-
tries. SIAM J. Sci. Comput., 18: 1583–1604

[143] J. Shen. 2000. A new fast Chebyshev-Fourier algorithm for the Poisson-type equa-
tions in polar geometries. Appl. Numer. Math., 33: 183–190

[144] J. Shen. 2000. Stable and efficient spectral methods in unbounded domains using
Laguerre functions. SIAM J. Numer. Anal. 38: 1113–1133

[145] J. Shen. 2003. A new dual-Petrov-Galerkin method for third and higher odd-order
differential equations: application to the KDV equation. SIAM J. Numer. Anal., 41:
1595–1619

[146] J. Shen, T. Tang, and L. Wang. Spectral Methods: Algorithms, Analysis and Applica-
tions. in preparation.

[147] S. J. Sherwin and G. E. Karniadakis. 1995. A triangular spectral element method;
applications to the incompressible Navier-Stokes equations. Comput. Methods Appl.
Mech. Engrg., 123(1-4): 189–229

[148] C.-W. Shu and S. Osher. 1988. Efficient implementation of essentially non-oscillatary
shock capturing schemes. J. Comput. Phys., 77: 439–471

[149] C.-W. Shu and S. Osher. 1989. Efficient implementation of essentially non-oscillatary
shock-wave schemes, II. J. Comput. Phys., 83: 32–78

[150] A. Solomonoff. 1992. A fast algorithm for spectral differentiation. J. Comput. Phys.,
98: 174–177

[151] W.F. Spotz and G.F. Carey. 1998. Iterative and parallel performance of high-order
compact systems. SIAM J. Sci. Comput., 19: 1–14

[152] F. Stenger. 1993. Numerical Methods Based on Sinc and Analytic Functions.
Springer-Verlag, New York, NY

[153] J. Strain. 1994. Fast spectrally-accurate solution of variable-coefficient elliptic prob-
lems. Proc. Amer. Math. Soc., 122: 843–850

[154] G. Strang. 1968. On the construction and comparison of difference schemes. SIAM
J. Numer. Anal., 5: 506–517

[155] G. Szegö. 1975. Orthogonal Polynomials, volume 23. AMS Coll. Publ, 4th edition

[156] E. Tadmor. 1986. The exponential accuracy of Fourier and Chebyshev differencing
methods. SIAM J. Numer. Anal., 23(1): 1–10

[157] E. Tadmor. 1987. The numerical viscosity of entropy stable schemes for systems of
conservation laws. I. Math. Comp., 49(179): 91–103

[158] T. Tang. 1993. The Hermite spectral method for Gaussian-type functions. SIAM J.
Sci. Comput., 14: 594–606

[159] T. Tang and Z.-H. Teng. 1995. Error bounds for fractional step methods for conserva-
tion laws with source terms. SIAM J. Numer. Anal., 32: 110–127

322 Bibliography

[160] T. Tang and M. R. Trummer. 1996. Boundary layer resolving pseudospectral methods
for singular perturbation problems. SIAM J. Sci. Comput., 17: 430–438

[161] R. Temam. 1969. Sur l’approximation de la solution des équations de Navier-Stokes
par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal., 33: 377–385

[162] R. Temam. 1984. Navier-Stokes Equations: Theory and Numerical Analysis. North-
Holland, Amsterdam

[163] L. J. P. Timmermans, P. D. Minev, and F. N. Van De Vosse. 1996. An approximate
projection scheme for incompressible flow using spectral elements. Int. J. Numer.
Methods Fluids, 22: 673–688

[164] L. N. Trefethen. 1988. Lax-stability vs. eigenvalue stability of spectral methods. In
K. W. Morton and M. J. Baines, editors, Numerical Methods for Fluid Dynamics III,
pages 237–253. Clarendon Press, Oxford

[165] L. N. Trefethen. 2000. Spectral Methods in MATLAB. SIAM, Philadelphia, PA

[166] H. Vandeven. 1991. Family of spectral filters for discontinuous problems. J. Sci.
Comput., 8: 159–192

[167] J. A. C. Weideman. 1992. The eigenvalues of Hermite and rational spectral differen-
tiation matrices. Numer. Math., 61: 409–431

[168] J. A. C. Weideman and S. C. Reddy. 2000. A matlab differentiation matrix suite.
ACM Transactions on Mathematical Software, 26: 465–511

[169] J. A. C. Weideman and L. N. Trefethen. 1988. The eigenvalues of second-order spec-
tral differentiation matrices. SIAM J. Numer. Anal., 25: 1279–1298

[170] B. D. Welfert. 1997. Generation of pseudospectral differentiation matrices. SIAM J.
Numer. Anal., 34(4): 1640–1657

[171] N.N. Yanenko. 1971. The Method of Fractional Steps. Springer-Verlag, New York

[172] H. Yoshida. 1990. Construction of higher order symplectic integrators. Phys. Lett.
A., 150: 262–268

[173] J. Zhang. 1997. Multigrid Acceleration Techniques and Applications to the Numer-

ical Solution of Partial Differential Equations. PhD thesis, The George Washington

University http://cs.engr.uky.edu/∼jzhang/pub/dissind/html

Index

A
Adams-Bashforth method, 43, 44
Advection equation, 256, 257

B

BiCGM, 48, 50
BiCGSTAB method, 48, 53, 54, 60,

122
Boundary layer, 91, 92, 98, 183–186,

293, 295
Burgers’ equation, 152, 196, 200–202,

214–216, 221

C

Cauchy-Schwarz inequality, 65, 133,
134, 137, 138, 141, 181, 281

Chebyshev
coefficients, 116
collocation method, 68, 84, 86, 91,

92, 98, 102, 126, 132, 133, 136,
223, 234, 235, 257, 259, 260,
262, 263, 310, 311

derivative matrix, 301
differentiation matrix, 259, 260, 301,

307
expansions, 6, 119, 233
interpolant, 300
polynomial, 2, 15–18, 21–23, 61,

70, 113, 115, 118, 119, 122, 125,
170, 172–174, 192, 196, 240,
244, 245, 291, 292, 308, 310,
312

spectral method, 2, 18, 22, 167, 183,

196, 203
transform, 116–118, 239
discrete, 15, 17, 18, 113

Chebyshev Gauss points, 244
Chebyshev Gauss-Lobatto points, 18,

66, 67, 74, 77, 87, 88, 113, 114,
118, 119, 197, 234, 236, 237,
259, 260

Condition number, 49, 58, 68, 85, 87–
89, 91, 104, 121, 122, 124, 126

Conjugate gradient method, 48, 49, 58,
125, 126, 277, 280

Conjugate gradient squared, 48, 51, 122,
125

Coordinate transformation, 6, 152, 244,
292, 300

Differentiation matrix, 5, 6, 46, 69, 73,
74, 76, 78, 79, 81, 82, 84, 85,
93, 148, 154, 163, 168, 234, 236,
299, 300, 309

Chebyshev, 259, 260, 301
Fourier, 259, 301
Hermite, 301
Laguerre, 301
sinc, 301

E

Explicit scheme, 41, 85, 91, 262, 264

F

Fast Cosine Transform, 27, 34, 259,
310

Fast Fourier Transform, 1, 3, 5, 18,
27, 28, 31, 33–35, 37, 84, 113,

324 Index

116–119, 125, 195, 199, 206,
247, 249, 253, 310

Filter
exponential, 217, 259, 262
Lanczos, 217
raised cosine, 217
sharpened raised cosine, 217
spectral, 183, 214, 217, 218

Filtering, 218, 223, 226–228, 257, 300,
310, 311

Finite-difference method, 3, 4, 69, 97,
185, 200, 247, 249, 293, 299,
309

Finite-element method, 2–4, 109, 282,
287, 293, 299, 309

Fourier
coefficients, 216, 218–220, 222–225,

228
collocation method, 79, 84, 223, 257,

259, 262, 263, 308, 310
differentiation matrix, 259, 301
expansion, 233
series, 2, 79, 80, 143, 170, 216,

309
sine transform, 247–249, 310
spectral method, 2, 4, 81, 82, 183,

204, 214, 223
transform
continuous, 36
discrete, 27, 36, 206, 207

G

Gauss points, 267
Gauss-Lobatto points, 65, 66, 91, 107,

126, 239, 293
Gauss-Radau points, 271

H

Heat equation, 2, 5, 6, 46, 85, 153,

154, 196–198
Helmholtz equation, 290, 291
Hermite polynomials, 70, 266, 302, 303,

306
Hermite-Gauss points, 148, 149, 267

I

Inner product, 7, 22, 61, 80, 112, 124,
125, 133, 146, 152, 181, 237,
244, 285

discrete, 6, 14, 100, 103, 136

J

Jacobi polynomial, 23–26, 61, 64, 131,
138, 143, 300

L

Lagrange interpolation polynomial, 71,
76, 92, 136

Lagrange polynomial, 70, 75, 78, 83,
105, 190, 192, 234

Laguerre Gauss-Lobatto points, 167,
168

Laguerre polynomial, 143, 158, 159,
161, 162, 167, 178, 269, 302,
303, 306

Laguerre-Gauss points, 160
Laguerre-Gauss-Radau points, 160, 161,

163, 167, 168, 271
Laplace operator, 276, 289
Legendre

coefficients, 22, 112, 118, 128, 131
collocation method, 102, 104, 126,

234, 259, 263, 310
expansion, 118, 119, 297
polynomial, 2, 15, 18–20, 22, 23,

26, 61, 70, 78, 118, 119, 122,

Index 325

127, 130, 240, 244, 245, 291,
292, 302, 303, 308, 310, 312

spectral method, 2, 22, 167
spectral-Galerkin method, 283
transform, 112, 118, 120, 128, 131,

239
discrete, 15, 22, 23, 113, 118

Legendre Gauss points, 244
Legendre Gauss-Lobatto points, 21, 22,

78, 79, 112, 113, 127, 128, 130,
131, 234, 237

Legendre Gauss-Radau points, 23

M

Matrix diagonalization method, 237
Multistep method, 38, 42, 44

N

Navier-Stokes equations, 241, 282, 284,
287, 289

Neumann boundary condition, 84, 88,
89, 110, 115, 237, 240, 241, 285

O

Orthogonal polynomials, 1, 6, 7, 9, 10,
12–15, 20, 23, 25, 105, 109, 143,
301, 303

Orthogonal projection, 61, 62, 64, 132,
135, 138, 177–179, 181, 182

Orthogonality property, 215, 216
Chebyshev, 119
Legendre, 119, 127, 130

P

Poisson equation, 182, 233, 235, 237,
243, 250, 269, 284, 285, 287,
290

Preconditioning, 48, 58, 121, 122, 125
conjugate gradient, 58
finite difference, 99, 101
finite element, 99, 102
GMRES, 59
iterative method, 122

Projection method, 241
Pseudospectral methods, 68, 106, 107,

172, 173, 184, 185, 190, 193,
264, 266, 271–274

Q

Quadrature rule, 162
Gauss type, 12–14, 17, 147, 150,

159, 267, 310
Chebyshev, 18
Laguerre, 159

Gauss-Lobatto type, 13, 310
Chebyshev, 17, 100, 136
Legendre, 22, 100, 124

Gauss-Radau type, 13, 17, 310
Laguerre, 160–163

Hermite-Gauss type, 145, 146, 148

R

Recurrence relations, 9, 16, 18, 20, 22,
23, 25, 26, 51, 52, 120, 127,
144, 146, 148, 159, 161, 163,
303

Reynolds number, 6, 288
Robin condition, 301
Runge-Kutta scheme, 38, 39, 41, 44,

203, 204, 216, 218, 219, 229,
259, 262

RK2, 39, 46
RK3, 40, 216, 220
RK4, 40, 41, 47, 204, 206, 209
stability, 41, 42

326 Index

S

Scaling factor, 144, 150, 152, 153, 155,
157, 158, 167, 168, 170, 175

Shocks, 222, 223, 225, 226
Sobolev inequality, 178
Sobolev space, 7, 61, 66, 181
Spectral accuracy, 157, 171, 176, 222,

223, 228, 260, 299, 309
Spectral projection method, 282, 287,

288, 295

Spectral radius, 68, 85–89, 91, 261
Splitting

error, 266, 285
method, 38, 45, 265, 266, 282–287

Stokes flow, 294, 295
Stokes problem, 295

U

Uzawa
algorithm, 276, 278–281
operator, 276, 278

