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Preface

This book expands lecture notes by the authors for a course on Introduction of Spec-
tral Methods taught in the past few years at Penn State University, Simon Fraser
University, the Chinese University of Hong Kong, Hong Kong Baptist University,
Purdue University and the Chinese Academy of Sciences. Our lecture notes were
also used by Prof. Zhenhuan Teng in his graduate course at Peking University.

The overall emphasis of the present book is to present some basic spectral and
high-order algorithms together with applications to some linear and nonlinear prob-
lems that one frequently encounters in practice. The algorithms in the book are pre-
sented in a pseudocode format or with MATLAB or FORTRAN codes that contain
additional details beyond the mathematical formulas. The reader can easily write
computer routines based on the pseudocodes in any standard computer language. We
believe that the readers learn and understand numerical methods best by seeing how
algorithms are developed from the mathematical theory and then writing and testing
computer implementations of them. For those interested in the numerical analysis of
the spectral methods, we have also provided self-contained error analysis for some
basic spectral-Galerkin algorithms presented in the book. Our aim is to provide a
sufficient background on the implementation and analysis of spectral and high-order
methods so that the readers can approach the current research literature with the nec-
essary tools and understanding.

We hope that this book will be useful for people studying spectral methods on
their own. It may also serve as a textbook for advanced undergraduate/beginning
graduate students. The only prerequisite for the present book is a standard course in
Numerical Anaysis.

This project has been supported by NSERC Canada, National Science Founda-
tion, Research Grant Council of Hong Kong, and International Research Team of
Complex System of the Chinese Academy of Sciences. In writing this book, we have
received much help from our friends and students. In particular, we would like to
thank Dr. Lilian Wang of Nanyang Technical University of Singapore for his many
contributions throughout the book. We are grateful to the help provided by Zhongzhi
Bai of the Chinese Academy of Sciences, Weizhu Bao of National University of Sin-
gapore, Raymond Chan of Chinese University of Hong Kong, Wai Son Don of Brown
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University, Heping Ma of Shanghai University and Xuecheng Tai of Bergen Univer-
sity of Norway. Our gratitude aso goes to Professor Hermann Brunner of Memorial
University of Newfoundland, Dr. Zhengru Zhang of Beijing Normal University, and
the following graduate students at Purdue, Qirong Fang, Yuen-Yick Kwan, HuaLin,
Xiaofeng Yang and Yanhong Zhao, who have read the entire manuscripts and pro-
vided many constructive suggestions. Last but not the least, we would like to thank
our wives and children for their love and support.

A website relevant to this book can be found in
http://www.math.hkbu.edu.hk/~ttang/PGteaching oOr
http://lsec.cc.ac.cn/~ttang/PGteaching

We welcome comments and corrections to the book. We can be reached by
email to

shen@math.purdue.edu(Shen) and ttange@math . hkbu.edu. hk (Tang).

Jie Shen
Purdue University

Tao Tang
Hong Kong Baptist University
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In this chapter, we present some preliminary materials which will be used through-
out the book. The first section set the stage for the introduction of spectral methods.
In Sections 1.2~1.4, we present some basic properties of orthogona polynomials,
which play an essentia role in spectral methods, and introduce the notion of gen-
eralized Jacobi polynomials. Since much of the success and popularity of spectral
methods can be attributed to the invention of Fast Fourier Transform (FFT), an algo-
rithmic description of the FFT is presented in Section 1.5. In the next two sections,
we collect some popular time discretization schemes and iterative schemes which
will be frequently used in the book. In the last section, we present a concise error
analysis for several projection operators which serves as the basic ingredients for the

error analysis of spectral methods.
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1.1 Somebasicideas of spectral methods

Comparison with the finite element method
Computational efficiency

Fourier spectral method

Phase error

Finite Difference (FD) methods approximate derivatives of afunction by local argu-
ments (such as/(z) ~ (u(xz+h) —u(x — h))/2h, where h isasmall grid spacing) -
these methods are typically designed to be exact for polynomials of low orders. This
approach is very reasonable: since the derivative is alocal property of afunction, it
makes little sense (and is costly) to invoke many function values far away from the
point of interest.

In contrast, spectral methods are global. The traditional way to introduce them
starts by approximating the function as a sum of very smooth basis functions:

N
u(@) ~ 3 aydy(a),
k=0

where the & () are polynomials or trigonometric functions. In practice, there are
many feasible choices of the basis functions, such as:

@ () = e™** (the Fourier spectral method);

O (z) = Ti(x) (T (z) are the Chebyshev polynomials; the Chebyshev spec-
tral method);

O (z) = Li(z) (Li(x) are the Legendre polynomials; the Legendre spectral
method).

In this section, we will describe some basic ideas of spectral methods. For ease
of exposition, we consider the Fourier spectral method (i.e. the basis functions are
chosen as ¢/#*). We begin with the periodic heat equation, starting at time 0 from
uo(z):

Up = Ugpg, (1.1.1)

with a periodic boundary condition u(z,0) = wy(z) = ug(z + 27). Since the exact

solution « is periodic, it can be written as an infinite Fourier series. The approximate
solution «!V can be expressed as afinite series. It is

N—

uN (z,t) = Z a(t)e*, x € [0,2m),
k=0

—_
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where each ay(t) isto be determined.

Comparison with the finite element method

We may compare the spectral method (before actually describing it) to the finite
element method. One difference is this. the trial functions 7, in the finite element
method are usually 1 at the mesh-point, 2, = kh with h = 27 /N, and O at the other
mesh-points, whereas e*? is nonzero everywhere. That is not such an important
distinction. We could produce from the exponentials an interpolating function like
Tk, Which is zero at all mesh-points except at = =

1 N 1

Fi(z) = — sin —(z — xy) cot = (x — xy), Neven, (112
N 2 2
1 . N 1

Fy(z) =  Sin E(x — xp) Csc 5(3: — ), N odd. (1.1.3)

Of courseit isnot a piecewise polynomial; that distinction is genuine. A consequence
of this difference is the following:

Each function Fj, spreads over the whole solution interval, whereas 7, is zero
in al elements not containing x;. The stiffness matrix is sparse for the finite
element method; in the spectral method it isfull.

The computational efficiency

Since the matrix associated with the spectral method is full, the spectral method
seems more time-consuming than finite differences or finite elements. In fact, the
spectral method had not been used widely for along time. The main reason is the
expensive cost in computational time. However, the discovery of the Fast Fourier
Transform (FFT) by Cooley and Tukey!*3 solves this problem. We will describe the
Cooley-Tukey agorithm in Chapter 5. The main idea is the following. Let wy =
e27rz‘/N and
2k .. 2mjk

N + 2sin N

(fN)jk:w%“:cos 0<j, k<N-1.

Then for any N-dimensional vector vy, the usual N2 operations in computing F vy
arereduced to N log, N. The significant improvement can be seen from the follow-
ing table:

N N2 Nlog,N N N2 Nlog,N
16 256 64 256 65536 2048
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32 1024 160 512 262144 4608
64 4096 384 1024 1048576 10240
128 16384 896 2048 4194304 22528

TheFourier spectral method

Unlike finite differences or finite elements, which replace the right

-hand side

uz, by differences at nodes, the spectral method uses «), exactly. In the spectral
method, thereisno Axz. The derivatives with respect to space variables are computed

explicitly and correctly.

The Fourier approximation «V is a combination of oscillations ¢+«
guency N — 1, and we simply differentiate them; hence

N N
ut = uxx
becomes
N-1 N-1
al(t)e*® = ax(t)(ik)?e™.
k=0 k=0

Since frequencies are uncoupled, we have d, (t) = —k?ax(t), which gives
a(t) = e*ay(0),

where the values a;, (0) are determined by using theinitial function:

1

G

2m
ax(0) / uo(z)e"*2d.
0

Itis an easy matter to show that

lu(x,t) — u (z,t)] =

Z ak(o)eilme—th

oo
k=N

o0
<max|ax(0)| Z ek

k=N
0 2
< max |u0(x)|/ e " du.
0<e L2 N

Therefore, the error goes to zero very rapidly as N becomes reasonably

up to fre-

large. The
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convergence rate is determined by the integral term

J(t,N) = / e dy = , | Zerfe(VEN),
N At

where erfc(X) is the complementary error function (both FORTRAN and MAT-
LAB have this function). The following table lists the value of J(¢, N) at severa
values of ¢:

N J(0.1, N) J(0.5, N) J(1, N)

1 1.8349e+00 3.9769e-01 1.3940e-01
2 1.0400e+00 5.7026e-02 4.1455e-03
3 5.0364e-01 3.3837e-03 1.9577e-05
4 2.0637e-01 7.9388e-05 1.3663e-08
5 7.1036e-02 7.1853e-07 1.3625e-12
6 2.0431e-02 2.4730e-09 1.9071e-17
7 4.8907e-03 3.2080e-12 3.7078e-23
8 9.7140e-04 1.5594e-15 9.9473e-30

In more general problems, the equation in time will not be solved exactly. It needs a
difference method with time step At, as Chapter 5 will describe. For derivatives with
respect to space variables, there are two ways:

(1) Stay with the harmonics e** or sin kx or cos kz, and use FFT to go between
coefficients a;, and mesh values u™¥ (z;, t). Only the mesh values enter the difference
eguation in time.

(2) Usean expansion U = > Uy (t)Fy.(z), where Fy(z) is given by (1.1.2) and
(1.1.3), that works directly with values Uy, at mesh points (where Fj, = 1). Thereis
a differentiation matrix D that gives mesh values of the derivatives, Dy, = F(x;).
Then the approximate heat equation becomes U; = D2U.

Phase error

The fact that z-derivatives are exact makes spectral methods free of phase error.
Differentiation of the multipliers ¢** give the right factor ik while finite differences
lead to the approximate factor i K:

gik(z+h) _ gik(z—h)
2h

sin kh

1Ke™", N

When kh is small and there are enough mesh points in a wavelength, K is close
to k. When kh islarge, K is significantly smaller than k. In the case of the heat
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equation (1.1.1) it means a slower wave velocity. For details, we refer to Richtmyer
and Morton!'3! and LeVeque 19U, |n contrast, the spectral method can follow even
the nonlinear wave interactions that lead to turbulence. In the context of solving high
Reynolds number flow, thelow physical dissipation will not be overwhelmed by large
numerical dissipation.

Exercise 1.1

Problem 1 Consider the linear heat equation (1.1.1) with homogeneous Dirich-
let boundary conditions u(—1,¢) = 0 and u(1,¢t) = 0. If the initia condition is
u(z,0) = sin(mx), then the exact solution of this problem is given by u(x,t) =
et sin(7x). It hasthe infinite Chebyshev expansion

u(z,t) =Y bp(t)Tn(),
n=0
where 1
by (t) = aJn(w)e*ﬂ%,

witheg =2and¢, =1ifn > 1.

a Cadculate

1 1 '
In () :/1 an(x) sin(7x)dx

by some numerical method (e.g. Simpson’s rule)®;

b. Plot J,(7) against n for n < 25. This will show that the truncation series
converges at an exponentia rate (a well-designed collocation method will do the
same).

1.2 Orthogonal polynomials

Existence

Zeros of orthogonal polynomials

Polynomial interpolations

Quadrature formulas

Discrete inner product and discrete transform

@ Hint: (a) Noticethat J,, (7) = 0 when n iseven; (b) acoordinate transformation like x = cos 6
may be used.
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Orthogonal polynomials play afundamental role in the implementation and analysis
of spectral methods. It is thus essential to understand some general properties of
orthogonal polynomials. Two functions f and ¢ are said to be orthogonal in the
weighted Sobolev space 2 (a, b) if

b
(. 9) = (f, 9w = / w(@)f(2)g(x)de = 0,

wherew isafixed positive weight function in (a, b). It can be easily verified that (-, -)
defined above is an inner product in I2 (a, b).

A sequence of orthogonal polynomials is a sequence {p,}:°, of polynomials
with deg(p,,) = n such that

(pi» pj) =0 for i #j. (1.2.2)

Since orthogonality is not altered by multiplying a nonzero constant, we may nor-
malize the polynomial p,, so that the coefficient of 2™ isone, i.e.,

pal) =" +alhz" " o all,

Such apolynomia is said to be monic.

Existence

Our immediate goal is to establish the existence of orthogonal polynomials. Al-
though we could, in principle, determine the coefficients ag.”) of p, in the natura
basis {27} by using the orthogonality conditions (1.2.1), it is more convenient, and
numerically more stable, to express p, 11 in terms of lower-order orthogonal polyno-
mials. To this end, we need the following general result:

Let {p,}>°, beasequence of polynomials such that p, isexactly of degreen.
If
q(z) = ans”™ + an_12" ' + - + ag, (1.2.2)

then ¢ can be written uniquely in the form

q(x) = bppn + bp—1pn—1 + -+ - + bopo. (1.2.3)

In establishing this result, we may assume that the polynomials {p, } are monic.
We shall prove thisresult by induction. For n = 0, we have

q(z) = ap =agp -1 = agpo(x).
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Hence we must have by = ag. Now assume that ¢ has the form (1.2.2). Since p,, is
the only polynomial in the sequence p,,, pn_1,- - - , po that contains 2™ and since p,
is monic, it follows that we must have b, = a,,. Hence, the polynomia ¢ — a,,p,, is
of degree n — 1. Thus, by the induction hypothesis, it can be expressed uniquely in
the form

q — QnPn = bnflpnfl + -+ bOpO;
which establishes the result.

A consequence of this result is the following:

Lemma 1.2.1 If the sequence of polynomials {p,}5°, is monic and orthogonal,
then the polynomial p,,+; is orthogonal to any polynomial ¢ of degree n or less.

We can establish this by the following observation:

<pn+17 Q> = bn<pn+17 pn> + bn—l(pn-ﬁ-lv pn—1> + -+ b0<pn+17 p0> = 07
where the last equality follows from the orthogonality of the polynomials {p, }.

We now prove the existence of orthogonal polynomials®. Since p, is monic and
of degree zero, we have
po(z) = 1.
Since p; ismonic and of degree one, it must have the form

pi(z) =2 — .
To determine oy, we use orthogonality:

0= (p1, po) = /abw(x)xdx . /abw(a:)dx.

Since the weight function is positive in (a, b), it follows that

o = / ' (@) / / ' (@),

Ingeneral weseek p,, .1 intheformp;, 1 = xp,—an 1190 —Bnr1Pn—1—Vn+1Pn—2—
---. Asin the construction of p;, we use orthogonality to determine the coefficients
above. To determine oy, 1, write

0= <pn+17 pn> = <$Pm pn> - Oén+1<Pm pn> - ﬁnJrl <pn717 pn> — .

@ The procedure described here is known as Gram-Schmidt orthogonalization.
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By orthogonality, we have

b b
/ zwpAda — a1 / wpdz = 0,
a a

which yields

b b
Qpt1 = / :pridx// wp?dz.
a a

For (3,11, using the fact (p,+1, pn—1) = 0 gives

b b
Bn+1 = / xwpnpnldx// wpi_ldx.
a a

The formulas for the remaining coefficients are similar to the formulafor 4..1; €.g.

b b
Vil = / xwpnpngdx// wpi_de.
a a

However, there is a surprise here. The numerator (xp,, p,—2) can be written in the
form (p,, zp,—2). Since xp,_o is of degree n — 1 it is orthogonal to p,. Hence
Ynt1 = 0, and likewise the coefficients of p,_3, p,—4, €tC. are al zeros.

To summarize:

The orthogonal polynomials can be generated by the following recurrence:

Po = 17
pr=a—ar (1.2.4)

Pn+1 = (x - anJrl)pn - ﬁn+1pn—1, n = 17

where
’ 2 b,

Oén+1—/ xwpndx// wp;,dx and Bn+1_/
a a a

The first two equations in the recurrence merely start things off. The right-hand
side of the third equation contains three terms and for that reason is called the three-
term recurrence relation for the orthogonal polynomials.

b b
xwpnpn_ldw// wpi_ldw.
a
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Zeros of orthogonal polynomials

The zeros of the orthogonal polynomials play a particularly important rolein the
implementation of spectral methods.

Lemmal.2.2 Thezerosof p,,; arereal, smple, and liein the open interval (a,b).
The proof of thislemmais|eft as an exercise. Moreover, one can derive from the
three term recurrence relation (1.2.4) the following useful result.

Theorem 1.2.1 The zeros {z; };?:0 of the orthogonal polynomial p, ., arethe eigen-
values of the symmetric tridiagonal matrix

[ a0 VD1
VB a1 ViR
Apy1 = : (1.2.5)
Bn-1 an-1 VDBn
VBn  an |

where .
aj=-L for j>0; fj=—"— for j>1, (1.26)

(lj aj,laj

with {ag, bi, cr} being the coefficients of the three term recurrence relation (cf.
(1.2.4)) written in the form:

Pe+1 = (ax — br)pr — ckpe—1, k= 0. (1.2.7)

Proof The proof is based on introducing

bn ) = bn\T),
(z) e (z)
where ~,, is defined by
o= 1 m2 1 =1 (128)
We deduce from (1.2.7) that

.G [ b . I [t - .
Tp; = -J ]—pjfl 4 _]pj + — ]—ijrlv 720, (129)
Vi aj i

a; a; j



1.2 Orthogona polynomials 11
with p_; = 0. Owing to (1.2.6) and (1.2.8), it can be rewritten as
zpj(z) = /Bibj-1(x) + ojpj(x) + /Bj+1hj+1(z), j = 0. (1.2.10)
Wenow takej = 0,1,--- ,ntoformasystem
2P(2) = Ap1P(x) + v/ Bur1hn i1 (2)En, (1.2.11)

where P(z) = (fo(x), p1(z), - ,pn(z))T and E, = (0,0,---,0,1)T. Since
Pnti(zj) =0, 0 < j < n,theequation (1.2.11) at x = x; becomes

Hence, the zeros {x; };P:O are the eigenvalues of the symmetric tridiagonal matrix
Apia. O
Polynomial inter polations

Let us denote
Py = {polynomials of degree not exceeding N }. (1.2.13)

Given aset of pointsa = xp < z1--- < zny = b (weusualy take {z;} to be zeros
of certain orthogonal polynomials), we define the polynomial interpolation operator,
Iy : C(a,b) — Py, associated with {x;}, by

Inu(z;) = u(z;), j=0,1,--- N. (1.2.14)

The following result describes the discrepancy between a function « and its polyno-
mial interpolant Iyu. Thisis a standard result and its proof can be found in most
numerical analysis textbook.

Lemma1.2.3 If zg,x1, - ,xn aredistinct numbers in the interval [a,b] and u €
CN*[a, b], then, for each z € [a, b], there exists a number ¢ in (a, b) such that

u(NJrl)(C) N
(Ni_i_ 0 kl;IO(x — ), (1.2.15)

u(z) — Iyu(z) =
where I yu isthe interpolating polynomial satisfying (1.2.14).

It iswell known that for an arbitrary set of {x;}, in particular if {x;} are equally
spaced in [a, b], the error in the maximum norm, max,¢q4) [u(z) — Iy ()|, may
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not converge as N — +oo even if u € C*[a, b]. A famous example is the Runge

function )

1@ =gy

z e [-1,1], (1.2.16)

see Figure 1.1.

0.8

0.6 +

04

=021

0.4 F

-1 -08-06-04-02 0 02 04 06 08 |
Figure1.1 Rungefunction f and the equidistant interpolations I 5 f and Io f for (1.2.16)

The approximation gets worse as the number of interpolation points increases.

Hence, it is important to choose a suitable set of points for interpolation. Good
candidates are the zeros of certain orthogonal polynomials which are Gauss-type
quadrature points, as shown below.

Quadrature formulas

We wish to create quadrature formulas of the type

b N
| f@l@ids = 3" Aufn).
a n=0

If the choice of nodes y, 1, - ,v» IS made a priori, then in general the above
formulais exact for polynomials of degree < N. However, if we are free to choose
the nodes ~,, we can expect quadrature formulas of the above form be exact for
polynomials of degree up to 2N + 1.

There are three commonly used quadrature formulas. Each of them is associated
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with a set of collocation points which are zeroes of a certain orthogonal polynomial.
Thefirst is the well-known Gauss quadrature which can be found in any elementary
numerical analysis textbook.

Gauss Quadrature Letxg,zq, - ,xy bethezeroesof pyi. Then, thelinear
system
N b
Zpk(xj)wj = / pr(z)w(x)dz, 0< k<N, (L.217)
j=0 a
admits a unique solution (wy, w1, - -+ ,wn), withw; > 0for j =0,1,--- , N. Fur-
thermore,
N b
Zp(xj)wj :/ p(z)w(z)dx, foral pe Piygg. (1.2.18)
=0 a

The Gauss quadrature is the most accurate in the sense that it is impossible to find
xj,w; such that (1.2.18) holds for al polynomias p € Ry2. However, by Lemma
1.2.1 this set of collocation points {z;} does not include the endpoint a or b, so it
may cause difficulties for boundary value problems.

The second is the Gauss-Radau quadrature which is associated with the roots of
the polynomial
q(x) = pny1(z) + apn (), (1.2.19)

where « isaconstant such that ¢(a) = 0. It can be easily verified that ¢(z)/(x —a) is
orthogonal to all polynomials of degree less than or equal to N — 1 in IZ (a, b) with
@(x) = w(x)(x — a). Hence, the N roots of ¢(z)/(x — a) aredl real, smpleand lie
in(a,b).

Gauss-Radau Quadrature Letxy = a and x1,---,xn be the zeroes of
q(x)/(x — a), where g(x) is defined by (1.2.19). Then, the linear system (1.2.17)
admits a unique solution (wp, w1, - -+ ,wn)" Withw; > 0 for j = 0,1,--- , N. Fur-
thermore,

N b

Zp(xj)wj = / p(z)w(z)dz, foral pe Py. (1.2.20)
=0 a

Similarly, one can construct a Gauss-Radau quadrature by fixing 2y = b. Thus, the
Gauss-Radau quadrature is suitable for problems with one boundary point.

The third is the Gauss-Lobatto quadrature which is the most commonly used in
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spectral approximations since the set of collocation pointsincludes the two endpoints.
Here, we consider the polynomial

q(x) = pns1(z) + apn(z) + Bpn—1(x), (1.2.22)

where « and 3 are chosen so that ¢(a) = ¢(b) = 0. One can verify that ¢(z)/((z —
a)(x — b)) is orthogonal to al polynomials of degree less than or equal to N — 2 in
L2(a,b) with @ (z) = w(z)(x — a)(x — b). Hence, the N — 1 zeroes of ¢(z)/((x —
a)(x — b)) areall real, smpleand liein (a, b).

Gauss-Lobatto Quadrature Letxg=a,zy =bandxq, - ,xn_1 bethe
(N —1)-rootsof ¢(z)/((z — a)(xz — b)), where ¢(z) isdefined by (1.2.21). Then, the
linear system (1.2.17) admits a unique solution (wy, w1, - -+ ,wn)*, withw; > 0, for
j=0,1,---, N. Furthermore,

N b
Zp(xj)ouj = / p(z)w(z)dx, foradl pe Poy_;. (1.2.22)

§=0 @

Discrete inner product and discrete transform

For any of the Gauss-type quadratures defined above with the points and weights
{zj,w; };VZO, we can define adiscrete inner product in Ca, b] and its associated norm
by:

N 1
(U, U)N,w = Z u(xj)v(xj)wj, HUHN,w = (’LL, u)]a\ﬂw? (1223)
=0

and for u € Cla, b], we can write

N
w(z;) = Inu(z;) = Zﬂkpk(xj). (1.2.24)
k=0

One often needs to determine {4, } from {u(x;)} or vice versa. A naive approach is
to consider (1.2.24) as alinear system with unknowns {4 } and use a direct method,
such as Gaussian elimination, to determine {7, }. This approach requires O(N?)
operations and is not only too expensive but al so often unstable due to roundoff errors.
We shall now describe a stable O(N?)-approach using the properties of orthogonal
polynomials.

A direct consequence of Gauss-quadrature is the following:
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Lemmal.2.4 Letxy,xy,---,2zy bethe zeros of the orthogonal polynomial py 1,
and let {w;} be the associated Gauss-quadrature weights. Then

N
Zpi(wn)pj(wn)wn =0, if i#£j5<N. (1.2.25)
n=0

We derive from (1.2.24) and (1.2.25) that

N N N
Z w(a;)pi(z)w; = > inpr(a;)pi(@s)w; = t(pr pr) . (1.2.26)

j=0 7=0 k=0

Hence, assuming the values of {p;(z})} are precomputed and stored asan (N +1) x
(N + 1) matrix, the forward transform (1.2.24) and the backward transform (1.2.26)
can be performed by a simple matrix-vector multiplication which costs O(N?) oper-
ations. We shall seein later sections that the O(N?) operations can be improved to
O(N log N) if specia orthogona polynomials are used.

Exercise 1.2

Problen 1 Letw(xz) =1and (a,b) = (—1,1). Derive the three-term recurrence
relation and compute the zeros of the corresponding orthogonal polynomial R (x).

Problem 2 ProveLemmal.2.2.

Problemn 3 ProveLemmal.2.4.

1.3 Chebyshev and L egendre polynomials

Chebyshev polynomials

Discrete norm and discrete Chebyshev transform
Legendre polynomias

Zeros of the Legendre polynomials

Discrete norm and discrete L egendre transform

The two most commonly used sets of orthogonal polynomials are the Chebyshev and
L egendre polynomials. In this section, we will collect some of their basic properties.

Chebyshev polynomials

The Chebyshev polynomias {7,,(x)} are generated from (1.2.4) with w(z) =
(1 —22)72, (a,b) = (—1,1) and normalized with T;,(1) = 1. They satisfy the
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following three-term recurrence relation

n = T Tnf ) 2 17
Toa(2) = 2T (o) = Toa(@), s
To(z) =1, Ti(z) ==,
and the orthogonality relation
1 1
/ Ty (2)T;(2)(1 — 22) " 2dx = C’;”a,q, (1.3.2)
-1

wherecy = 2 and ¢, = 1 for k£ > 1. A unique feature of the Chebyshev polynomials
istheir explicit relation with a trigonometric function:

T, (x) = cos (n cos™! :):) , n=0,1,---. (1.3.3)

One may derive from the above many specia properties, e.g., it follows from (1.3.3)
that

2T, = —T —T > 2
n(x) n+1 n+1( ) n—l nfl(x)v n ) (134)

Ty(z) =Ti(x), 2Ti(z)= §T2'(1’)-

One can aso infer from (1.3.3) that 7,,(x) has the same parity as n. Moreover, we
can derive from (1.3.4) that

n—1 1 n—2 1

= — T/ (x —n(n? - E)Ti(z). (1.35
Z o (), Z ” (n )Ty (). (1.3.5)
k:+nodd k:+neven

By (1.3.3), it can be easily shown that

T (x)| <1, T ()| < n?, (1.3.68)
T, (£1) = (£1)",  Th(x1) = (£1)" n? (1.3.6b)
2T (2)Th(x) = Topgn (2) + T (), m > n. (1.3.6¢)

The Chebyshev polynomials {7},(x)} can aso be defined as the normalized eigen-
functions of the singular Sturm-Liouville problem

(\/1 - x2T,g(g;))' + 1k2 Te(x) =0, aze(-1,1). (1.3.7)

— X
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We infer from the above and (1.3.2) that

1 2
/ Ti(2)T)(z)V1 — 22dz = "”f’; s, (1.3.8)

-1

i.e. the polynomias {7} (x)} are mutually orthogonal with respect to the weight
function w(z) = V1 — z2.

Animportant feature of the Chebyshev polynomialsisthat the Gauss-type quadra-
ture points and weights can be expressed explicitly as follows®

Chebyshev-Gauss:
25+ 1)m s .
Chebyshev-Gauss-Radau:
s 21y 27 .
=1 = = = I1<j< N
=L TN T YTON T YT ANt J
(1.3.10)
Chebyshev-Gauss-L obatto:
ro=1, znx=-1, woszzﬁ, mj:cos%, wj—%, 1<j<N-1
(1.3.11)

Discrete norm and discrete Chebyshev transform

For the discrete norm || - || v, associated with the Gauss or Gauss-Radau quadra-
ture, we have ||u||n. = |lull, for @l v € Py. For the discrete norm || - ||
associated with the Chebyshev-Gauss-L obatto quadrature, the following result holds.

Lemmal.3.1 For all u € Py,

lull e, < lullve < V2ulls - (13.12)

Proof Foru = 3", @ Tk, we have

N
9 CLTr
lull3, = Zuz’“T. (1.3.13)
k=0

On the other hand,

@ For historical reasons and for simplicity of notation, the Chebyshev points are often ordered
in descending order. We shall keep this convention in this book.
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o CLT
ullyy = Z g + AR ATN TN N (13.14)

The inequality (1.3.12) follows from the above results and the identity

N
_ 4 2, _
(Tn, TN) N = ZO oy s im=m (1.3.15)
]:
wherecy = ¢y =2and ¢, =1forl <k <N —1. O

Let {&}1Y,, be the Chebyshev-Gauss-Lobatto points, i.e. & = cos(in/N), and
let » be a continuous function on [—1, 1]. We write

N
(gz —INufz Zuka gz Zﬂkcos(kiﬂ/N)v izoala"'aN-
k=0

(1.3.16)
One derives immediately from the Chebyshev-Gauss-quadrature that
i = 203" Lu(e) cos (ki /). (13.17)
uk_ckN 3 j)cos (kym 3.

The main advantage of using Chebyshev polynomials is that the backward and for-
ward discrete Chebyshev transforms (1.3.16) and (1.3.17) can be performed in
O(N log, N) operations, thanks to the Fast Fourier Transform (FFT), see Section
1.5. The main disadvantage is that the Chebyshev polynomials are mutually orthogo-
nal with respect to asingular weight function (1 — xz)*% which introduces significant
difficulties in the analysis of the Chebyshev spectral method.

L egendre polynomials

The Legendre polynomials { L, (z)} are generated from (1.2.4) with w(z) = 1,
(a,b) = (—1,1) and the normalization L,(1) = 1. The Legendre polynomials
satisfy the three-term recurrence relation

Lo(z) =1, Li(z) ==z,

(1.3.18)
(n+1)Lpti(z) = 2n + DaLly(z) — nlp—1(z), n>1,
and the orthogonality relation
1
/ Li(a)Ly(2)dz = —— 8y, (1.3.19)
1 k+3

The Legendre polynomials can aso be defined as the normalized eigenfunctions of
the singular Sturm-Liouville problem
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(1= 2L (2)) +nn+ )Ly(x) =0,  ze(-1,1), (1.3.20)
from which and (1.3.19) we infer that
! k(k+1
/ Li(x)L(x)(1 — 2*)dx = %%, (1.3.21)

i.e. the polynomias {L; (z)} are mutually orthogonal with respect to the weight

function w(z) =1 — 22

Other useful properties of the Legendre polynomials include:

[ @t = g L@ - L@,z (3229
In(@) = 5 (L () = Ly (0)); (1.3.220)
Lo(£1) = (£1)", Ll (1) = %(ﬂ)”*ln(n +1); (1.3.22c)
L (z) = S (2k + 1)Ly (2): (1.3.22d)
ket odd
L!(z) = Sf <k+%>0un+1y—Mk+1»LMm. (1.3.22¢)
part
k+n even

For the Legendre series, the quadrature points and weights are

Legendre-Gauss:. x; arethe zeros of L1 (z), and

2
(1 = a)[Liy 4 ()]

Legendre-Gauss-Radau: z; arethe N 4 1 zerosof L y(z) + Ly11(x), and

0<j<N. (1.3.23)

w; =

2 1 1- 2,
_ 1<j<N. 1324
S A A S S VR P ER (13249

wo =

Legendre-Gauss-Lobatto: 2o = —1,zy = 1, {x,}}_;" arethe zerosof Ly (x), and

2 1
N(N +1) [Ly(z;)]?

0<j<N. (1.3.25)

wj =
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Zeros of Legendre polynomials

We observe from the last subsection that the three types of quadrature points for
the Legendre polynomials are related to the zeros of the L1, Ly+1 + Ly and L'y,

Theorem 1.2.1 provides a smple and efficient way to compute the zeros of or-
thogonal polynomials, given the three-term recurrence relation. However, thismethod
may suffer from round-off errors as N becomes very large. As a result, we will
present an alternative method to compute the zeros of Lg\’,”) () numerically, where
m < N istheorder of derivative.

We start from the left boundary —1 and try to find the small interval of width
H which contains the first zero z;. The idea for locating the interval is similar to
that used by the bisection method. In the resulting (small) interval, we use Newton's
method to find the first zero. The Newton's method for finding aroot of f(z) = 0is

apy1 = o — flax)/f (2r). (1.3.26)

After finding the first zero, we use the point z + H as the starting point and repeat
the previous procedure to get the second zero . Thiswill give us al the zeros of
Lg\’,”) (x). The parameter H, which isrelated to the smallest gap of the zeros, will be
chosen as N—2.

The following pseudo-code generates the zeros of Lg\’,”) ().

CODE LGauss.1l

Input N, €, m %e is the accuracy tolerence

H=N"2; a=-1

For k=1 to N-m do

$The following is to search the small interval containing

a root
b=a+H
while LU (a)*L{" (b) > o
a=b; b=a+H
endwhile

$the Newton’s method in (a,b)
x=(a+b) /2; xright=b
while |x-xright|>e
xright=x; X=X—L%W(X)/LX?+U(X)
endwhile
z (k) =x
a=x+H %move to another interval containing a root
endFor
Output z (1), z(2),---,z(N-m)
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In the above pseudo-code, the parameter ¢ is used to control the accuracy of the
zeros. Also, we need to use the recurrence formulas (1.3.18) and (1.3.22b) to obtain
L () which are used in the above code.

CODE LGauss.2
$This code is to evaluate Lgnkx).
function r=Legendre(n,m,x)
For j=0 to m do
If j=0 then
s(0,3)=1; s(1,j)=x
for k=1 to n-1 do
s(k+1,3)=((2k+1) *x*s (k,j) -k*s(k-1,73))/ (k+1)
endfor
else s(0,3j)=0
if j=1 then s(1,j)=2
else s(1,3)=0
endif
for k=1 to n-1 do
s(k+1,3j)=(2k+1)*s(k,j-1)+s(k-1,73)
endfor
endIf
endFor
r=s(n,m)

As an example, by setting N = 7,m = 0 and e = 10~® in CODE LGauss.1,
we obtain the zeros for L;(z):

2 -0.94910791 25 0.40584515
2o -0.74153119 26 0.74153119
23 -0.40584515 27 0.94910791
24 0.00000000

By setting N = 6, = 1 and e = 107% in CODE LGauss.1, we obtain the
zerosfor L (x). Together with Z; = —1 and Z; = 1, they form the Legendre-Gauss-
L obatto points:

Z1 -1.00000000 Zs 0.46884879
Zy -0.83022390 Zg 0.83022390
Zs -0.46884879 Zn 1.00000000
Zy 0.00000000

Discrete norm and discrete Legendre transform

Asopposed to the Chebyshev polynomials, the main advantage of Legendre poly-
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nomialsis that they are mutually orthogonal in the standard IZ-inner product, so the
analysis of Legendre spectral methods is much easier than that of the Chebyshev
spectral method. The main disadvantage is that there is no practical fast discrete
Legendre transform available. However, it is possible to take advantage of both
the Chebyshev and Legendre polynomials by constructing the so called Chebyshev-
L egendre spectral methods; we refer to [41] and [141] for more details.

Lemmal.3.2 Let |||y bethediscrete normrelative to the Legendre-Gauss-Lobatto
quadrature. Then

lulle < |lully < V3|ulz2, foral ue Py. (1.3.27)

Proof Settingu = Y5, ix Ly, we have from (1.3.19) that |[ul2, = S, 2i}/(2k
+1). On the other hand,

lullF = Z ka +UN(LN7LN)
The desired result (1.3.27) follows from the above results, the identity

(LNaLN)N = LN((L‘j)2u.Jj = 2/]\77 (1328)

\
11>

and the fact that < 3 <353 O

2N+1 2N+1

Let {x; }o<i<n be the Legendre-Gauss-Lobatto points, and let v be a continuous
function on [—1, 1]. We may write

w(z;) = Inu(xj) ZUkLk: (). (1.3.29)

We then derive from the L egendre-Gauss-L obatto quadrature points that the discrete
Legendre coefficients @, can be determined by the relation

N
U = N— ZU(xj)LN((L‘j), k=0,1,---,N. (1330)

Thevalues { L;(x;)} can be pre-computed and stored asa (N +1) x (N+1) matrix by
using the three-term recurrence relation (1.3.18). Hence, the backward and forward
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discrete Legendre transforms (1.3.30) and (1.3.29) can be performed by a matrix-
vector multiplication which costs O(N?) operations.

Exercise 1.3

Problem1 Prove (1.3.22).

Problem 2 Derive the three-term recurrence relation for { I + Ly 1} and use the
method in Theorem 1.2.1 to find the L egendre-Gauss-Radau points with N = 16.

Problem 3 Prove (1.3.30).

1.4 Jacobi polynomials and generalized Jacobi polynomials

Basic properties of Jacobi polynomials
Generalized Jacobi polynomials

An important class of orthogonal polynomials are the so called Jacobi polynomials,
which are denoted by Job (z) and generated from (1.2.4) with

wx)=01—-2)*1+2z)’ fora, 3> -1, (a,b) = (—1,1), (1.4.2)
and normalized by ( )
aBqy T(n+a+l

JP(1) = 771!1“(04 1) (1.4.2)

where I'(z) is the usual Gamma function. In fact, both the Chebyshev and Legen-
dre polynomials are special cases of the Jacobi polynomials, namely, the Chebyshev
polynomials T,,(z) correspond to a = 3 = —3 with the normalization 7,,(1) = 1,
and the Legendre polynomials L, (x) correspond to a = 3 = 0 with the normaliza-
tion L, (1) = 1.

Basic properties of Jacobi polynomials

We now present some basic properties of the Jacobi polynomias which will be
frequently used in the implementation and analysis of spectral methods. We refer to
[155] for a complete and authoritative presentation of the Jacobi polynomials.

The three-term recurrence relation for the Jacobi polynomialsis:
Teb (@) = (apg e = 03P TP () = P T (), no> 1,

1.4.3
Jg’ﬁ(x)zl, Jla’ﬁ(x):%(a+ﬁ+2)x+%(a—ﬁ), ( )
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where
ap_ Cnta+B+1)2n+a+p+2)
ap™ = 2(77, + 1)(n +a+ 08+ 1) ’ (1.4.49)
a8 (82— a?)(2n+a+B+1)
b = 2n+1)(n+a+B+1)2n+a+B)’ (1.4.4b)
B (n+a)(n+B)2n+a+ B +2) (1449

" (n+1l)(n+a+p+1)2n+a+p)

The Jacobi polynomials satisfy the orthogonality relation

/1 Jg’ﬁ(ﬂc)J%”g(x)(l —z)*(1+ x)’gdx =0 forn # m. (1.4.5)
-1

A property of fundamenta importance is the following:

Theorem 1.4.1 The Jacobi polynomials satisfy the following singular Sturm-
Liouville problem:

(1—2)" %1+ :1:)*ﬁdi {(1 —z)t1+ x)ﬁJFl%Jgﬁ(x)}

i

+nn+1+a+3)J%x)=0, -1<z<l.

Proof We denote w(z) = (1 — 2)*(1 + 2)”. By applying integration by parts twice,
wefind that for any ¢ € P,,_1,

L d "’ ! dJy’d

/la{(l—x)aﬂ(l—l—:):)ﬁﬂw}qﬁdx——/1w(1—:):2) T d—id:):
1 2

_/ J;;ﬂ{[—(a+1>(1+x)+(ﬁ+1>(1_x>]%+(1—x2)ﬂ}wdx_o.

1 d$2

Thelast equality follows from the fact thatffl1 JPpw(z)de = 0forany ¢ € P,_;.
An immediate consequence of the above relation isthat there exists A such that

d

0 {(1 — ac)o‘+1(1 + :):)ﬂH%Jg”g(:):)} = )\Jg”g(:):)w(:):).

To determine )\, we take the coefficients of the leading term 22+2*# in the above
relation. Assuming that J3*7 () = kna™ + {lower order terms}, we get k,n(n+1+
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a+ 3) =k, A, whichimpliesthat A = n(n + 1+ a + 3). O

From Theorem 1.4.1 and (1.4.5), one immediately derives the following result:
Lemmal.4.l For n # m,

! dJi? dg’

The above relation indicates that %Jf{’ﬂ forms a sequence of orthogonal polyno-

mials with weight w(z) = (1 — z)**1(1 + 2)7*+!. Hence, by the uniqueness, we
find that -2 .77 is proportional to J2*"#*!. In fact, we can prove the following
important derivative recurrence relation:

Lemmald4.2 Fora,0 > —1,

1
ud¥(x) = (n+a+ 4+ DI @), O (14.7)

Generalized Jacobi polynomials

Sincefor a < —1 and/or 5 < —1, the function w®? isnot in LY(I) so it cannot
be used as a usual weight function. Hence, the classical Jacobi polynomials are only
defined for o, 3 > —1. However, as we shall see later, it is very useful to extend the
definition of J%*? to the cases where o and/or 0 are negative integers.

We now define the generalized Jacobi polynomials (GJPs) with integer indexes
(k,1). Let usdenote

—(k+1) if k1<-1,
ng :=no(k,l) =< —k if k<—-1,1> -1, (1.4.8)
- if &>-—1,1<-1,
Then, the GJPs are defined as

1—2) k1 +a2) T ) if kol < -1,
(I -2 -0

Tty =< (1 —a) kT M (2) if k<—1,1>-1, n>ng.
1+ 2)~ Il (@) if k>—1,1<—1,
(1.4.9)

It is easy to verify that Ji' € P,.

We now present some important properties of the GJPs. First of all, it is easy
to check that the GJPs are orthogonal with the generalized Jacobi weight ! for all
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integersk and [, i.e.,

1
/ Iy (@) ! ()™ () de = 0, Vn £ m. (1.4.10)
1

It can be shown that the GJPs with negative integer indexes can be expressed as
compact combinations of Legendre polynomials.

Lemma 143 Letk,l > 1andk,l € Z. There exists a set of constants {a; } such
that

L) = Y aLix), n>k+l (1.4.11)
j=n—k—l

As some important special cases, one can verify that

Jnflﬁl — M(LrﬁQ - Ln>’

2n —1

2n — 2 o —3 o —3
P R Gl )} ( L, =3, g a3 Ln)7

2n —3 2n—1 2n—1

(14.12)

J71772:2(n—2)(L +2n—3L I _2n—3L>
n on—3 \ gy e g )
0y An—1)(n—2) 2(2n — 3) o —5
5 = (L - 223y L)
" 2n—3)2n -5\ Tap =1 TP a1

It can be shown (cf. [75]) that the generalized Jacobi polynomials satisfy the deriva-
tive recurrence relation stated in the following lemma.

Lemmal4.4 For k,l € Z, we have

OpJF () = CRLIN | (2), (1.4.13)
where
2n4+k+1+1) if k1< -1,
. -n if k<—-1,1>-1,
Com =19 -n it k> -1,1< 1, (1.4.14)
1 .
§(n+k:+l+1) if k1> —1.

Remark 1.4.1 Since w®? ¢ L'(I) fora < —1and 3 < —1, it isnecessary that the
generalized Jacobi polynomials vanish at one or both end points. In fact, an important
feature of the GIPsisthat for k,1 > 1, we have
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g l1y=0, i=0,1,--- ,k—1;

. 1.4.15
ol (=1) =0, j=0,1,---,I-1. (1419

Thus, they can be directly used as basis functions for boundary-value problems with
corresponding boundary conditions.

Exercise 1.4
Problem 1 Prove (1.4.12) by the definition (1.4.9).

Problem 2 ProvelLemmal.4.4.

1.5 Fast Fourier transform

Two basic lemmas
Computational cost

Tree diagram

Fast inverse Fourier transform
Fast Cosine transform

The discrete Fourier transform

Much of this section will be using complex exponentials. We first recall Euler’s
formula; ¢ = cos@ + isin®, wherei = /—1. It is also known that the functions
E}, defined by

Ep(z) = e*®, k=041, (15.1)

form an orthogonal system of functionsin the complex space [0, 27], provided that
we define the inner-product to be

1 2

(f,9) = 5= f(z)g(z)dx.

_277'0

This means that (Ey, E,,) = 0 when k # m, and (Ey, Fy) = 1. For discrete values,
it will be convenient to use the following inner-product notation:

1 N-1
(frov =5 > f) gy, (15.2)
5=0

where
zj=2mj/N, 0<j<N-1 (L5.3)

The above is not a true inner-product because the condition (f, f)x = 0 does not
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imply f = 0. Itimpliesthat f(z) takes the value O at each node ;.

The following property isimportant.

Lemmal5.1 Forany N > 1, wehave

1 if kK —misdivisible by IV,

0 otherwise. (1.54)

(B, Em)N = {

A 27-periodic function p(x) issaid to be an exponential polynomial of degree at most
n if it can be written in the form

p(z) = Z cpett = Z e Ex(x). (1.5.5)
k=0 k=0

The coefficients {c;} can be determined by taking the discrete inner-product of
(1.5.5) with E,,,. More precisdly, it follows from (1.5.4) that the coefficients @), ¢1,
- ,en—1 in(1.5.5) can be expressed as:

N—
> flz)e ™, 0<k<N -1, (1.5.6)
j=0

[y

1
Ci — N
where z; is defined by (1.5.3). In practice, one often needs to determine {q, } from
{f(x;)}, or vice versa. It is clear that a direct computation using (1.5.6) requires
O(N?) operations. In 1965, a paper by Cooley and Tukey [*3 described a different
method of calculating the coefficients ¢, 0 < & < N — 1. The method requires only
O(N logy, N) multiplications and O(N log, N) additions, provided N is chosen in
an appropriate manner. For a problem with thousands of data points, this reduces the
number of calculations to thousands compared to millions for the direct technique.

The method described by Cooley and Tukey has become to be known either as
the Cooley-Tukey Algorithm or the Fast Fourier Transform (FFT) Algorithm, and has
led to arevolution in the use of interpolating trigonometric polynomials. We follow
the exposition of Kincaid and Cheneyt® to introduce the algorithm.

Two basic lemmas

Lemma 1.5.2 Letp and g be exponential polynomials of degree NV — 1 such that, for
the points y; = 75 /N, we have

p(y25) = f(y25), q(y25) = f(y25+1), 0<j<N-1 (15.7)
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Then the exponential polynomial of degree < 2NV — 1 that interpolates f at the points
y;,0 < j < 2N — 1, isgiven by
1 iNz 1 iNz
P(x) = 5(1 + e )p(x) + 5(1 —e""")q(x — w/N). (1.5.8)

Proof Since p and ¢ have degrees < N — 1, whereas ¢V* is of degree N, it is clear
that P has degree < 2N — 1. It remains to show that P interpolates f at the nodes.
We have, for 0 < j < 2N —1,

Plyy) = 51+ En(y)p(s;) +

5 (1= En(y;))aly; — /).

Noticethat Ey (y;) = (—1)7. Thusfor even j, weinfer that P(y;) = p(y;) = f(y;),
whereas for odd j, we have

P(y;) = qly; — n/N) = q(y;j-1) = f(y;)-
This completes the proof of Lemma 1.5.2. O

Lemma 1.5.3 Let the coefficients of the polynomials described in Lemma 1.5.2 be
as follows:

N-1 N-1 IN—1
aE;,  q=)Y BB, P=) vkE
=0 j=0 =
Then,for0 < j < N —1,
1 1 . 1 1 .
7= 505+ 5¢ NG i = Sag - 5e TN, (159

Proof To prove (1.5.9), we will be using (1.5.8) and will require aformulafor ¢(z —
w/N):

N-1 N-1 N-1
g(x —w/N) = Z BiEj(x —7m/N) = Z ﬁ]e” z—m/N) _ Z ﬁje_”r]/NE (z).
7=0 7=0 7=0

Thus, from equation (1.5.8),

N-1
1 —iT)
P=33 {4+ Ex)a B + (1 — Bx)Bje ™V E; |
=0
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=2

{(a+ BN E; + (0 — Bje /M) By}

DN | =
<
I
=)

The formulas for the coefficients ; can now be read from this equation. This com-
pletes the proof of Lemma 1.5.3. O

Computational cost

It follows from (1.5.6), (1.5.7) and (1.5.8) that

| Nl B
aj =~ Y fwg)e >IN,
N &~
| Nl B
By = 2 Flaajsn)e 20/,
5=0
1 2N—-1 3
"= N Y fla)e N,
j=0

For the further analysis, let R(V) denote the minimum number of multiplications
necessary to compute the coefficients in an interpolating exponential polynomial for
the set of points {27j/N : 0 < j < N —1}.

First, we can show that
R(2N) < 2R(N) + 2N. (1.5.10)

Itisseenthat R(2.NV) isthe minimum number of multiplications necessary to compute
7v;, and R(N) is the minimum number of multiplications necessary to compute «;

or 3;. By Lemma 1.5.3, the coefficients ; can be obtained from «; and j3; at the
cost of 2NV multiplications. Indeed, we require N multiplications to compute%aj for

0 < j < N—1, and another N multiplications to compute (%e*ij“/N)ﬁj for0 <j <

N — 1. (Inthe latter, we assume that the factors e =%/~ have aready been made
available.) Since the cost of computing coefficients {c;} is R(N) multiplications,

and the same is true for computing {/3; }, the total cost for P isat most 2R(N) + 2N
multiplications. It follows from (1.5.10) and mathematical induction that R(2") <

m 2™. As aconsegquence of the above result, we see that if N is a power of 2, say
2™ then the cost of computing the interpolating exponential polynomial obeys the
inequality

R(N) < Nlogy N.
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The agorithm that carries out repeatedly the procedure in Lemma 1.5.2 is the fast
Fourier transform.

Tree diagram

The content of Lemma 1.5.2 can be interpreted in terms of two linear operators,
Ly and T},. For any f, let Ly f denote the exponential polynomial of degree N — 1
that interpolates f at the nodes 275 /N for 0 < j < N — 1. Let T;, be atrandation
operator defined by (7}, f)(x) = f(z + h). We know from (1.5.4) that

N-1
Lyf=Y <[ Ex>n B
k=0
Furthermore, in Lemma 1.5.2, P = Lonf,p = Lyf and q = LyT;/nf. The
conclusion of Lemmas 1.5.2 and 1.5.3 isthat L, f can be obtained efficiently from

Our goal now is to establish one version of the fast Fourier transform algorithm
for computing Ly f, where N = 2. We define

P = LonTopenf,  0<n<m, 0<k<2m" — 1. (1.5.11)

An aternative description of Pkf") is as the exponentia polynomial of degree 2" — 1
that interpolates f in the following way:

(n) ( 27) 2wk 27y .
(5 = (e S). o<

A straightforward application of Lemma 1.5.2 shows that

n 1 2"y n 1 2" n 7T
P @) = S (14 e )P+ S = TP, (- o) (1512)

We can illustrate in a tree diagram how the exponential polynomials F,ﬁ") are
related. Suppose that our objective isto compute

7

P =Lsf =Y _ < f, Ep>n Ey.
k=0

In accordance with (1.5.12), this function can be easily obtained from 1%2) and P1(2).
Each of these, in turn, can be easily obtained from four polynomials of lower order,
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and so on. Figure 1.2 shows the connections.

Figurel.2 Anillustration of atree diagram

Algorithm

Denote the coefficients of P™ by A,EZ’. Here0 <n < m,0 <k <2m ™ —1,
and0 < j < 2" — 1. Wehave

27 —1 27 —1
P (@)= Y AV E(x) = Y A,
§=0 j=0
By Lemma 1.5.3, the following equations hold:
(n+1) _ LT ) | —ijmjan 4(0)
Akj D) [Akj +emm/ Ak:+2mfn71,j] ’

(1) _ LT ) _ —ijmjan ()
Apjgan = B [Akj —e i/ Ak+2m*"*1,j} :

For a fixed n, the array A™ requires N = 2™ storage locations in memory
because 0 < kK < 2™ —1and0 < j < 2" — 1. One way to carry out the
computations is to use two linear arrays of length V, one to hold A™ and the other
to hold A1), At the next stage, one array will contain At and the other A("+2),
Let us call these arrays C and D. The two-dimensional array A™ is stored in C by
therule

CEk+j) =AY,  0<k<2"" -1, 0<j<2" 1.

Itisnoted that if 0 < k, ¥ < 2™ ™ —1and0 < 7,5 < 2" — 1 satisfying 2"k + j =
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2"k + j', then (k, j) = (K, "). Similarly, thearray A1 isstored in D by therule
D™ k+j) =AUV, o<k<2mT o1 o< <2 o

Thefactors Z(j) = e~2™/N are computed at the beginning and stored. Then we use
the fact that
e—ijw/2” _ Z(ij—n—l).

Below isthe fast Fourier transform agorithm:

CODE FFT.1
% Cooley-Tukey Algorithm
Input m
N=2", w=e 27/N
for k=0 to N-1 do
z (k) =wk, c(k)=f (27k/N)
endfor
For n=0 to m-1 do
for k=0 to 2™ " !'-1 do
for j=0 to 2"-1 do
u=C (2"k+3) ; v=Z(§2m 1) *C (2"k+2m " 14+5)
D(2"T1k+9)=0.5% (u+v); D (2" k+j+27)=0.5% (u-v)
endfor
endfor
for j=0 to N-1 do
C(3)=D(3)
endfor
endFor
Output C(0), C(1), ---, C(N-1).

By scrutinizing the pseudocode, we can also verify the bound N log, N for the
number of multiplications involved. Notice that in the nested loop of the code, n
takes on m values; then k takes on 2*~"~1 values, and k takes on 2" values. In this
part of the code, there isreally just one command involving a multiplication, namely,
the one in which v is computed. This command will be encountered a number of
times equal to the product m x 27"~ x 27 = m2m~1, At an earlier point in the
code, the computation of the Z-array involves 2" — 1 multiplications. On any binary
computer, a multiplication by 1/2 need not be counted because it is accomplished
by subtracting 1 from the exponent of the floating-point number. Therefore, the total
number of multiplications used in CODE FFT.1is

m2™ 4 2™ — 1 < m2™ = Nlog, N.
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Fast inverse Fourier transform

The fast Fourier transform can also be used to evaluate the inverse transform:
| Nl ‘
dk:—Zg(xj)emj, 0<k<N-1.

N “4
7=0

Letj = N — 1 — m. Itiseasy to verify that

N—-1
1 .
di = e*m’“N E g(xN,l,m)eﬂkxm, 0<k<N-1.

m=0

Thus, we apply the FFT algorithm to get €%+ d;,. Then extra N operations give dj,. A
pseudocade for computing dy, is given below.

CODE FFT.2
% Fast Inverse Fourier Transform
Input m
N=2", w=e 2™/N
for k=0 to N-1 do
Z(k)=wk, C(k)=g(27(N-1-k)/N)
end
For n=0 to m-1 do
for k=0 to 2™ " !'-1 do
for j=0 to 2™-1 do
u=C (2"k+73) ; v=Z (32 "1y *C(27k+2" " 1+5)
D(2"1k+9)=0.5% (u+v) ; D(2" 1 k+j+2")=0.5% (u-v)
endfor
endfor
for j=0 to N-1 do
C(3)=D(3)
endfor
endFor
for k=0 to N-1 do
D(k)=2 (k) *C (k)
endfor
Output D(0), D(1), ---, D(N-1).

Fast Cosinetransform

The fast Fourier transform can also be used to evaluate the cosine transform:

N
ak:Zf(xj)cos(ﬂjk:/N), 0< k<N,
7=0
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where the f(z;) are real numbers. Let v; = f(z;) for0 < j < N andv; = 0 for
N +1<j<2N — 1. Wecompute

0<k<2N —1.

Since the v; are real numbersand v; = 0 for j > NN + 1, it can be shown that the real
part of A is

N
1
:ﬁfo] cos (mjk/N), 0<k<2N—1.
7=0

In other words, the following results hold: @, = 2NRe(A), 0 < k < N. By the
definition of the Ay, we know that they can be computed by using the pseudocode
FFT.1. When they are multiplied by 2V, we have the values of a.

Numerical examples

To test the the efficiency of the FFT algorithm, we compute the coefficients in
(1.5.6) using CODE FFT.1 and the direct method. A subroutine for computing the
coefficients directly from the formulas goes as follows:

CODE FFT.3
% Direct method for computing the coefficients
Input m
N=2m, W=e—27r1',/N
for k=0 to N-1 do
z (k) =w®, D(k)=£ (27k/N)
endfor
for n=0 to N-1 do

) +> N 'D (k) *Z (n)*

C(n)=u/N
endfor
Output <C(0), C(1), ---, C(N-1)

The computer programs based on CODE FFT.1 and CODE FFT. 2 arewritten
in FORTRAN with double precision. We compute the following coefficients:

=% Z cos(5a;)e i, 0<kE<N-1,
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where z; = 275 /N. The CPU time used are listed in the following table.

m N CPU (FFT) CPU (direct)
9 512 0.02 0.5
10 1024 0.04 2.1
11 2048 0.12 9.0
12 4096 0.28 41.0
13 8192 0.60 180.0

Thediscrete Fourier transform

Again let f be a27-periodic function defined in [0, 27]. The Fourier transform
of f(t) isdefined as
12 ,
H(s) = F{f(t)} = 5~ f(t)e "stde, (1.5.13)
T Jo

where s is a real parameter and F is called the Fourier transform operator. The
inverse Fourier transform is denoted by 71 {H (s)},

10 =7 ) = [ s

where F~1 is called the inverse Fourier transform operator. The following result is
important: The Fourier transform operator F isalinear operator satisfying

FLFM @)} = k)" F{f (1)}, (1.5.14)

where f(")(t) denotes the n-th order derivative of f(t). Similar to the continuous
Fourier transform, we will define the discrete Fourier transform below. Let the solu-
tion interval be [0, 27]. We first transform w(z, t) into the discrete Fourier space:

N—

H

u(wj, t)e” i, ——<k< =1, (1.5.15)

Jj=0

1 N N
N 2

where z; = 27j/N. Due to the orthogonality relation (1.5.4),

iNzleipxj [ 1 ifp=Nmm=041,£2 -,
otherwise,
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we have the inversion formula

N/2—-1
u(wg, )= > ak,t)e*,  0<j<N-1. (15.16)
k=—N/2

We close this section by pointing out there are many useful developments on fast
transforms by following similar spirits of the FFT methods; see e.g. [124], [126], [2],
[150], [21], [65], [123], [143].

Exercise 1.5
Problem1 Prove(1.5.4).

Problem 2 One of the most important uses of the FFT algorithm is that it allows
periodic discrete convolutions of vectors of length n to be performed in O(nlogn)
operations.

To keep the notation simple, let us consider n = 4 (the proof below carries
through in just the same way for any size). Use the fact that

1 1 1 1 ﬁo Uugp
1 w w? W ap | | wr
1 w? Wt Wb s | | ug |
1 w Wb W Uus U3

isquivalent to

S|
I S =
|
)
|
N
|
o
>

where w = ¢™/™ prove that the linear system

20 23 %2 21 Zo Yo
21 20 <3 %2 1 | _| N
22 21 20 %3 T2 Y2
23 22 Z1 %0 xs3 Y3

where {2y, 21, 22, 23} iSan arbitrary vector, can be transformed to a simple system of
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the form
) Zo Yo
21 Ty | 1| o
Zo Zo | n| G
) T3 Us

1.6 Several popular time discretization methods

General Runge-Kutta methods
Stability of Runge-Kutta methods
Multistep methods

Backward difference methods (BDF)
Operator splitting methods

We present in this section several popular time discretization methods, which will be
repeatedly used in this book, for a system of ordinary differential equations

du
— =F(U,t 16.1
= F(U,1), (16.2)

whereU € R?, F € R?. Aninitial condition is also given to the above problem:
Ulto) = Up. (1.6.2)

The simplest method is to approximate dU /dt by the finite difference quotient U (¢)
~ [U(t+ At) — U(t)]/At. Since the starting data is known from theinitial condition
U° = Uy, we can obtain an approximation to the solution at t;, = tq + At: U =
UY + At F(U°,tq). The process can be continued. Let t;, = to + kAt, k > 1. Then
the approximation Uy, 1 to the solution U (¢.+1) is given by

Uttt =Un + AtF(U™, t,), (1.6.3)

where U™ ~ U(-, t,). The above algorithm is called the Euler method. It is known
that if the function F' has a bounded partia derivative with respect to its second
variable and if the solution U has a bounded second derivative, then the Euler method
converges to the exact solution with first order of convergence, namely,

max |U" —Ul(t,)| < CAt,
1<n<N
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where C'isindependent of N and At.

The conceptually simplest approach to higher-order methodsisto use more terms
in the Taylor expansion. Compared with the Euler method, one more term istaken so
that

At?

Ultpe1) = Ulty) + AtU'(t,) + TU”(tn), (1.6.4)

where the remainder of O(A#?) has been dropped. It follows from (1.6.1) that U’ (¢,,)
can be replaced by F(U™,t,,). Moreove,

U'(t) = %F(U(t), t) = Fy (U, t)U'(t) + F(U,t),

which yields
U"(ty) = Fy (U™ t,)F(U", t,) + F(U™, t,).

Using thisto replace U”(t,,) in (1.6.4) leads to the method

At?
UM = U™ + AF(U" tn) + = [F(U" ) + Fyr (U ) F(U" )] (L65)

It can be shown the above scheme has second-order order accuracy provided that F
and the underlying solution U are smooth.

General Runge-Kutta methods

Instead of computing the partia derivatives of F', we could also obtain higher-
order methods by making more eval uations of the function values of F' at each step. A
class of such schemes is known as Runge-Kutta methods. The second-order Runge-
Kutta method is of the form:

U=Un, G =F(Ut,),

U=U+altG,  G=(-1+2a—2a")G+F(Ut, +alt), (166

At
Untl = U + =¢G.
2cy

Only two levels of storage (U and G) are required for the above algorithm. The
choice o« = 1/2 produces the modified Euler method, and oo = 1 corresponds to the
Heun method.
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The third-order Runge-Kutta method is given by:

Uu=Uu", G =F(U,t,),

U:U+§AtG, G:—gG—FF(U,tn‘F%At),

(16.7)

15 153 3
— A = F -A
U U+16 tG, G 128G+ <U,tn+4 t>,

8
U U+ 15G.

Only two levels of storage (U and () are required for the above agorithm.
The classical fourth-order Runge-Kutta (RK4) method is

( At 1
K, :F(Unvtn)a Ky =F Un‘i‘?Klatn"i'iAt )

At 1
Ky =F (U™ + = Koty + §At . Ky=F({U"+ AtKs, t,,), (1.6.8)

At
Ul = U+ S (K 4 2Kp + 2K5 + Ka).

The above formula requires four levels of storage, i.e. K, Ko, K3 and K4. An
equivaent formulation is

U=U"  G=U, P=F(U,€t,,
1 1

1 1
U=U+5AUP-G), G=:G, P=F({Ut,+At/2)-P/2,

U:U+Atp, G:G—P, P:F(Uathrl)—’_QP?

Ul =U + At (G + P/6).
(1.6.9)
This version of the RK4 method requires only three levels (U, G and P) of storage.

Aswe saw in the derivation of the Runge-Kutta method of order 2, a number of
parameters must be selected. A similar process occurs in establishing higher-order
Runge-Kutta methods. Consequently, there is not just one Runge-Kutta method for
each order, but a family of methods. As shown in the following table, the number
of required function evaluations increases more rapidly than the order of the Runge-
Kutta methods:
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Number of function evaluations 1 2 3 4 5 6 7 8
Maximum order of RK method 1 2 3 4 4 5 6 6

Unfortunately, this makes the higher-order Runge-Kutta methods less attractive than
the classical fourth-order method, since they are more expensive to use.

The Runge-Kutta procedure for systems of first-order equations is most easily
written down in the case when the system is autonomous; that is, it has the form

au
= F(U). (1.6.10)

The classical RK4 formulas, in vector form, are
n+1 n At
Ut = U+ <K1 + 2Ky + 2K5 + K4), (1.6.11)

where A
t
Ki=F{U"), K, _F<U"+7Kl>,

At
Ky=F (U" + 71(2) . Ky=F(U"+ AtKs).

For problems without source terms such as Examples 5.3.1 and 5.3.2, we will end up
with an autonomous system. The above RK4 method, or its equivalent form similar
to (1.6.9), can be used.

Stability of Runge-Kutta methods

The general s-stage explicit Runge-Kutta method of maximum order s has sta-
bility function

2 s

T(z):1+z+%+...+z_', s=1,2,3,4. (1.6.12)
S

There are afew stability concepts for the Runge-Kutta methods:

a. The region of absolute stability R of an s-order Runge-Kutta method is the
set of points z = AAt € C such that if z € R, (Re(A) < 0). Then the numerica

method applied to

du
— = 1.6.13
7 u ( )

givesu™ — 0 asn — oo. It can be shown that the region of absolute stability of a
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Runge-Kutta method is given by

R={z€C | |r(2)| <1}. (1.6.14)

b. A Runge-Kutta method is said to be A-stable if its stability region contains the
left-half of the complex plane, i.e. the non-positive half-plane, C.

c. A Runge-Kuttamethod is said to be L-stable if it is A-stable, and if its stability

function r(z) satisfies
| l|im Ir(z)| = 0. (1.6.15)

In Figure 1.3, we can see that the stability domains for these explicit Runge-Kutta
methods consist of the interior of closed regionsin the left-half of the complex plane.
The algorithm for plotting the absolute stability regions above can be found in the
book by Butcher [27]. Notice that all Runge-Kutta methods of a given order have the
same stability properties. The stability regions expand as the order increases.

3

2F

—
T

Imaginary
S

Real
Figure 1.3 Absolute stability regions of Runge-Kuttamethods

Multistep methods

Anather approach to higher-order methods utilizes information already computed
and does not require additional evaluations of F'(U,t). One of the simplest such
methods is

At
UMt = Up + - BF(U" 1) = FU" ™ 1)), (1.6.16)

for which the maximum pointwise error is O(A#?), and is known as the second-order
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Adams-Bashforth method, or AB2 for short. Note that the method requires only the
evaluation of F(U™, t,,) a each step, thevalue F(U™ !, ¢,,_1) being known from the
previous step.

We now consider the general construction of Adams-Bashforth methods. Let
Ur, U™t ... U™ be the computed approximations to the solution at t,, t,_1,
L ta_s Let F' = F(U* t;) and let p(t) be the interpolating polynomial of degree
s that satisfies
p(t;) = F*, t=nn—1,---,n—s.

We may then consider p(t) to be an approximation to F'(U(t),t). Since the solution
U (t) satisfies

tnt1 tnt1 lnt1
Ultun) ~Ulta) = [ U0t = [ Fw@.0a~ [ pjar,
tn tn tn
we obtain the so-called Adams-Bashforth (AB) methods as follows:

tn+1
Uttt =un 4 / p(t)dt. (1.6.17)
tn

Below we provide afew specia cases of the Adams-Bashforth methods:
e s=0:p(t) = F,fort € [t,,t,+1), gives Euler method.

es—1:

t—1t
— —_Jmn n F™ anl
p(t) = pr(t) = U + —( )
which leads to the second-order Adams-Bashforth method (1.6.16).
s =2
t—to)t —th1), - -
pa(t) :pl(t)+( 2)(At2 1)(F —2F"l 4 Fr2),

which leads to the third-order Adams-Bashforth method

At

(t=tn)(t —th—1)(t —tn—2) , n e e
pa(t) = pa(t) — N ( (F" = 3F"" 1 4 3F""2 — F"79),
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which leads to the fourth-order Adams-Bashforth method

Uttt =un + %(551?” — B59F™ ! 4 37F" T2 93, (1.6.19)
In principle, we can continue the preceding process to obtain Adams-Bashforth meth-
ods of arbitrarily high-order, but the formulas become increasingly complex as d in-
creases. The Adams-Bashforth methods are multistep methods since two or more
levels of prior data are used. Thisisin contrast to the Runge-Kutta methods which
use no prior data and are called one-step methods. We will compute the numerical
solutions of the KdV equation using a multistep method (see Sect. 5.4).

Multistep methods cannot start by themselves. For example, consider the fourth-
order Adams-Bashforth method. The initial value U° is given, but for k = 0, the
information is needed at t_1,t_o,¢_3, which is not available. The method needs
“help” getting started. We cannot use the fourth-order multistep method until & > 3.
A common policy isto use a one-step method, such as a Runge-Kutta method of the
same order of accuracy at some starting steps.

Since the Adams-Bashforth methods of arbitrary order require only one evalua-
tionof F(U, t) at each step, the“cost” islower than that of Runge-Kutta methods. On
the other hand, in Runge-Kutta methods it is much easier to change step-size; hence
they are more suitable for use in an adaptive algorithm.

Backward difference methods (BDF)

The Adams-Bashforth methods can be unstable due to the fact they are obtained
by integrating the interpolating polynomial outside theinterval of the datathat defines
the polynomial. This can be remedied by using multilevel implicit methods:

e Second-order backward difference method (BD2):

1
E(SSU”“ —4U + UMY = F(U™ ). (1.6.20)

e Third-order backward difference method (BD3):

1

@(HU”“ — 18U + 99Ut — 2™ %) = F(U™ t,y1).  (1.6.20)
In some practical applications, F'(u, t) isoften the sum of linear and nonlinear terms.
In this case, some combination of the backward difference method and extrapolation

method can be used. To fix the idea, let us consider

ur = L(u) + N(u), (1.6.22)
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where £ isalinear operator and V' is a nonlinear operator. By combining a second-
order backward differentiation (BD2) for the time derivative term and a second-order
extrapolation (EP2) for the explicit treatment of the nonlinear term, we arrive at a
second-order scheme (BD2/EP2) for (1.6.22):

1

A7 (BU™Mt —4u™ + U = (UMY 4+ N (U™ - UMY, (1.6.23)

A third-order scheme for solving (1.6.22) can be constructed in a similar manner,
which leads to the so-called BD3/EP3 scheme:

1
—— (11U 18U +9U T —2U™?) = L(UMTH + N (3U - 3U™ T U,

6AL
(1.6.24)

Operator splitting methods

In many practical situations, F'(u,t) is often the sum of several terms with dif-
ferent properties. Then it is often advisable to use an operator splitting method (also
called fractional step method)17%119.57. 1541 T fix the idea, |et us consider

up = f(u) = Au+ Bu, u(ty) = uo, (1.6.25)

where f(u) is anonlinear operator and the splitting f(u) = Au + Bu can be quite
arbitrary; in particular, A and B do not need to commute.

Strang’s operator splitting method For agiven time step At > 0,
lett, =n At,n=0,1,2,--- and u" bethe approximation of u(t,). Let usformally
write the solution u(z, t) of (1.6.25) as

u(t) = e Blug =: S(t)uq. (1.6.26)

Similarly, denote by S (t) := e*4 the solution operator for u; = Au, and by Sy(t) :=
e'B the solution operator for u; = Bu. Then thefirst-order operator splitting is based
on the approximation

u" T x Sy(At)S)(At)u™, (1.6.27)

or on the one with the roles of S; and S; reversed. To maintain second-order accu-
racy, the Strang splitting*>* can be used, in which the solution S(t, )uq is approxi-
mated by

u" T~ So(At/2)S1(AL)So(At/2)u™, (1.6.28)

or by the one with the roles of S; and S; reversed. It should be pointed out that
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first-order accuracy and second-order accuracy are based on the truncation errors for
smooth solutions. For discontinuous solutions, it is not difficult to show that both
approximations (1.6.27) and (1.6.28) are at most first-order accurate, see e.g. [35],
[159].

Fourth-order time-splitting method A fourth-order symplectictime
integrator (cf. [172], [99]) for (1.6.25) is asfollows:

u(l) _ e2w1AAt un’ U(Q) _ 6QwQBAt u(l)’ U(S) _ e2w3AAt u(2)’

’LL(4) _ e2w4BAt U(3), u(5) _ e2w3AAt ’LL(4), u(6) _ 6QwQBAt ’LL(5) (1629)

n+l _ €2w1AAt ’LL(6)

)

)

u
or, equivalently,

un+1 ~ Sl (2’11)1 At)SQ(2'U)2At)Sl (2w3At)Sg(2w4At)
Sl (2w3At)SQ(2’U)2At)Sl (2w1At)u",

where

wy = 0.33780 17979 89914 40851, wq = 0.67560 35959 79828 81702,

ws = —0.08780 17979 89914 40851, wy = —0.85120 71979 59657 63405.
(1.6.30)

Numerical tests

To test the Runge-Kutta algorithms discussed above, we consider Example 5.3.1
in Section 5.3. Let U = (Uy,---,Unx_1)", namely the vector of approximation
values at the interior Chebyshev points. Using the definition of the differentiation
matrix to be provided in the next chapter, the Chebyshev pesudospectral method for
the heat equation (1.1.1) with homogeneous boundary condition leads to the system

au
= A
dt v

where A isaconstant matrix with (A);; = (D?);;. Thematrix D> = D'« D', where
D' isgiven by CODE DM. 3 in Sect 2.1. Thefollowing pseudo-code implements the
RK2 (1.6.6).

CODE RK.1
Input N, wug(x), At, Tmax, «
%$Form the matrix A
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call CODE DM.3 in Sect 2.1 to get D1(i,j), 0<i,j<N
D2=D1*D1;
A(i,j)=D2(i,3j), 1<i,j<N-1
Set starting time: time=0
Set the initial data: UO=ug(x)
While time<Tmax do
$Using RK2 (1.6.6)
U=U0; G=A*U
U=U+a*At*G; G=(-1+2a-20a%)G+A*U
U0=U+At*G/ (2*«)

Set new time level: time=time+At
endWhile
Output U0 (1),U(2), ---, U(N-1)

Codesusing (1.6.11), i.e., RK4 for autonomous system, can bewritteninasimilar
way. Numerical results for Example 5.3.1 using RK2 with o = 1 (i.e.,, the Heun
method) and RK4 are given in the following table. Tmax in the above code is set to
be 0.5. It is seen that these results are more accurate than the forward Euler solutions
obtained in Section 5.3.

N Heun method (At=1073) RK4 (At=1073)
3 1.11e-02 1.11e-02
4 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05
8 1.23e-06 1.77e-06
10 5.92e-07 3.37e-08
11 5.59e-07 1.43e-09
12 5.80e-07 4.32e-10

The numerical errors for At = 1073, Tmax=0.5 and different values of s (the order
of accuracy) can be seen from the following table:

N s=2 s=3 s=4

3 1.11le-02 1.11le-02 1.11le-02
4 3.75e-03 3.75e-03 3.75e-03
6 3.99e-05 4.05e-05 4.05e-05
8 1.23e-06 1.77e-06 1.77e-06
10 5.92e-07 3.23e-08 3.37e-08
11 5.59e-07 2.82e-09 1.43e-09
12 5.80e-07 1.70e-09 4.32e-10

Exercise 1.6

Problem 1 Solve the problem in Example 5.3.1 by using a pseudo-spectral ap-
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proach (i.e. using the differential matrix to solve the problem in the physical space).
Take3 < N < 20, and use RK4.

1.7 lterative methods and preconditioning

BiCG agorithm
CGSagorithm

BiCGSTAB agorithm
GMRES method
Preconditioning techniques
Preconditioned GMRES

Among the iterative methods developed for solving large sparse problems, we will
mainly discuss two methods:. the conjugate gradient (CG) method and the generalized
minimal residual (GMRES) method. The CG method proposed by Hestenes and
Stiefel in 1952 (82 jsthe method of choice for solving large symmetric positive definite
linear systems, while the GMRES method was proposed by Saad and Schultz in 1986
for solving non-symmetric linear systems!13%],

Let the matrix A € R™*™ be a symmetric positive definite matrix and b € R"
a given vector. It can be verified that & is the solution of Az = b if and only if &
minimizes the quadratic functional

J(x) = §xTAx — 2% (1.7.2)

Let us consider the minimization procedure. Suppose 23 has been obtained. Then

Zx1 can be found by
Tl = Tk + QkPks (1.7.2)

where the scalar o4 is called the step size factor and the vector p, is caled the
search direction. The coefficient oy, in (1.7.2) is selected such that J(zx + axpr) =
min,, J(xx + api). A simple calculation shows that

o = (1, 1)/ (APk, Pk) = Py Tk /PR APk
Theresidual at this step is given by

The1=b — Azpy = b — Az + appr)
=b— Axk — OékApk =Tk — OékApk.

Select the next search direction p41 such that (px11, Apr) =0, .,

P41 = Th+1 + BkPks (L.7.3)
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where .
By = APaTre1) T APk
(Apk, pi) pi Api
It can be verified that
riry=0, pAp;=0, i#j. (1.7.4)

Conseguently, it can be shown that if A isareal n x n symmetric positive definite
matrix, then the iteration converges in at most n steps, i.e. x,, = & for somem < n.

The above derivations lead to the following conjugate gradient (CG) a gorithm:

Choose xzg, compute rg=0b— Axrg and set pg=ryg.
For k=0,1,---do
Compute oy = (1%, 7%)/(Apk, Dk)

Set Tpi1 = Tk + Pk

Compute 7p41 =7 — arpApk

If |rk41ll2 =€, continue,

Compute O = (Tkt1,Tk+1)/(Tk, k)

Set pr4+1 = Tk+1 + BrPr
endFor

It isleft as an exercise for the reader to prove that these coefficient formulas in the
CG agorithm are equivalent to the obvious expressions in the above derivations.

The rate of convergence of the conjugate gradient method is given by the follow-
ing theorem:

Theorem 1.7.1 If A is a symmetric positive definite matrix, then the error of the
conjugate gradient method satisfies

12 — zxlla < 295(1E - oL, (1.7.5)

where
|z]ls = (Az,2) = 2" Az, y=(Vr—1)/(VE+]1), (1.7.6)
and r = ||A||2||A||2 isthe condition number of A. O

For a symmetric positive definite matrix, [|All> = A, [[A71 ]2 = A{!, where A,
and \; arethe largest and smallest eigenvalues of A. It follows from Theorem 1.7.1
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that a 2-norm error bound can be obtai ned:
12 — 2xll2 < 2vEYF (|2 — 2o l2- (17.7)

We remark that

e we only have matrix-vector multiplications in the CG algorithm. In case that
the matrix is sparse or has a special structure, these multiplications can be done effi-
ciently.

e unlike the traditional successive over-relaxation (SOR) type method, thereisno
free parameter to choose in the CG algorithm.

BiCG algorithms

When the matrix A is hon-symmetric, an direct extension of the CG algorithm is
the so called biconjugate gradient (BiCG) method.

The BiCG method aims to solve Az = b and ATz* = b* simultaneously. The
iterative solutions are updated by

Tjq1 = Tj + o pj, Ti =T+ a;p; (1.7.8)

and so
riq1 =15 — a;Ap;, Tigl =T) — oszTp;f. (1.7.9)

Werequire that (rj41,77) = 0 and (r;,77,,) = 0 for al j. Thisleadsto
aj = (rj,75)/(Ap;, pj)- (17.10)
The search directions are updated by
pj+1="rj+1+Bipj,  Pip =i+ Bip; (1.7.11)
By requiring that (Ap;+1,p;) = 0 and (Ap;, pj,,) = 0, we obtain
Bi = (rj+1,7541)/(15,75). (17.12)
The above derivations lead to the following BiCG agorithm:

Choose =z, compute rg=0b— Axy and set pg=ryg.
Choose rj such that (rg,75) #0.
For 7=0,1,---do
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(ijr;)
(Ap;.p3) °
Set xjt1 =2 +a;p;.

Compute «; =

. — . oy . * ko AT
Compute 741 =71; —jAp; and rj =71; —a;A pj.
If |[rit+1]l2 =€, continue,

Tj+1v7";+1)

(
Compute f3; = i)

Set pjy1 =rjy1+ B;p; and p}fﬂ = 7"}}1 + ﬁjp;

endFor

We remark that

e The BiCG agorithm is particularly suitable for matrices which are positive
definite, i.e., (Az,z) > 0for al = # 0, but not symmetric.

e the agorithm breaks down if (Ap;, p}f) = 0. Otherwise, the amount of work
and storage is of the same order as n the CG algorithm.

o if Aissymmetric and r; = ro, then the BiCG algorithm reduces to the CG
agorithm.

CGSalgorithm

The BiCG algorithm requires multiplication by both A and A at each step. Ob-
vioudly, this means extra work, and, additionally, it is sometimes cumbersome to
multiply by AT than it is to multiply by A. For example, there may be a special
formula for the product of A with a given vector when A represents, say, a Jacobian,
but a corresponding formula for the product of AT with a given vector may not be
available. In other cases, data may be stored on aparallel machine in such away that
multiplication by A is efficient but multiplication by AT involves extra communica-
tion between processors. For these reasons it is desirable to have an iterative method
that requires multiplication only by A and that generates good approximate solutions.
A method that attempts to do thisis the conjugate gradient squared (CGS) method.

For the recurrence relations of BiCG a gorithms, we see that
rj = ®5(A)ro + 3(A)po,

where ®3(A) and ®3(A) are j-th order polynomials of the matrix A. Choosing ) =
ro gives
rj=®(A)rg (B = Pj + DF),
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with &5 = 1. Similarly,
pj = m;j(A)ro,

where m; is a polynomial of degree j. Asr} and p; are updated, using the same

recurrence relation as for r; and p;, we have

rt=®;(AT)rg,  py =m (AT,
Hence,
(@ (A)ro, @;(AT)rg) (®%(A)ro,5)

o = .
T (Amj(A)ro, mi(AT)rg) (A3 (A)ro, )
From the BiCG agorithm:

Di1(t) = @i(t) — ajtm;(t), mip1(t) = Pjpa(t) + Bym;(t).
Observe that
©jmj = j(®; + fj-1mj-1) = ©F + 1871
It follows from the above results that

(I)?-i-l = (I’? — QOzjt((I’? + ﬂj_l@jﬂj_l) + Oé?t27Tj2,

2 2 2
<I>j+17rj = (I)jﬂj - Oéjtﬂj = ‘I’j + ﬂj_lq’jﬂj_l - Oéjtﬂj,

7T]2-+1 = (I)?-f—l + 2ﬁjq>j+177j + ﬁ?ﬂ'?

Define

rj = @?(A)ro, pj = 7'(']2-(14)7”0,

qj = @j+1(A)m;(A)ro,

dj = 27“j + 25]’—1(]]'—1 — OéjApj.
It can be verified that

7“j = ’I”j_l — OéjAdj,

qj =1+ Bj-1gj-1 — o Ap;

Piv1 = i1 + 2605 + B3pj,

dj = 27“j + 25]’—1(]]'—1 — OéjApj.

(1.7.13)

(1.7.14)

(1.7.15)

(1.7.16)
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Correspondingly,

Tjr1 =25+ Oéjdj. (L.7.17)
This gives the CGS algorithm. It istrue that 2; may not be the same as that produced
by the BiCG.

The above derivations lead to the following the CGS agorithm:

Choose g, compute rg=b— Axry and set pg=rg,ug=r9, qo=0.
Choose r} such that (rg,rg) #0.
For 7=0,1,---do

ri,rs
Compute aj = (1(41];3-,2;); Compute gj+1 = uj — ;Ap;

set wjp1 = xj + a;(u; +¢j1)
Compute 7j41 =71 — a;A(u; + ¢jt1)
If ||rk41]l2 =€, continue,

Tir1,To
Compute (3; = %; Compute wujy1 = rjq1 + Biqj+1

Set pjr1 = uj1 + Bi(gj+1 + Bip;)
endFor

The CGS method requires two matrix-vector multiplications at each step but no
multiplications by the transpose. For problems where the BiCG method converges
well, the CGStypically requires only about half as many steps and, therefore, half the
work of BiCG (assuming that multiplication by A or AT requires the same amount
of work). When the norm of the BiCG residual increases at a step, however, that
of the CGS residual usually increases by approximately the square of the increase
of the BiCG residua norm. The CGS convergence curve may therefore show wild
oscillations that can sometimes lead to numerical instabilities.

BiCGSTAB algorithm

To avoid the large oscillations in the CGS convergence curve, one might try to
produce aresidual of the form

rj = V;(A)2;(A)ro, (1.7.18)

where ®; is again the BiCG polynomial but ¥; is chosen to keep the residual norm
small at each step while retaining the rapid overall convergence of the CGS method.
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For example, ¥ (t) is of theform
\I/j+1(t) = (1 — wjt)\IJj(t). (1719)

In the BiICGSTAB algorithm, the solution is updated in such away that r; is of the
form (1.7.18), where W;(A) is a polynomial of degree j which satisfies (1.7.19). It
can be shown that

Vi1 @i = (1 — wit) (P — ajtmy)

(1.7.20)
= (1 —w;t)(¥;®; — ot ¥;m;),
Wjmy = Wj(®; + Bj-1mj-1) (17.21)
= ‘I’jq)j + ﬁjfl(l - wjflt)‘lljflﬂ'jfl.
Let i = @J(A)‘I’](A)To and p; = ‘I’j(A)T('j(A)’Fo. It can be verified that
ri+1 = (I —w;A)(r; — a;Ap;), (17.22)
Pj+1 = rj+1 + B (I —w;A)p;.
By Ietting ;=1 — ajApj, we obtain
Ti+1 = (I - ij)Sj. (1723)
The parameter w; is chosen to minimize the 2-norm of 4, i.e,
(ASj, Sj)
= e e 1.7.24
’U)] (ASj, ASj) ( )

We al'so need to find an updating formulafor o; and 3;, only using 7, pi, and sy; this
is rather complicated and the calculations for deriving them are omitted here.

The BiCGSTAB algorithm is given by

Choose xzg, compute rg=0b— Arg and set pg=rg.
Choose rj such that (rg,75) #0.
For 7=0,1,---do

(r',r*)
Compute «j = (Azjaj,gg)

R A . (Asjys5)
Set sj =r; —ajAp;; Compute wj; = (Asij;j)
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Set zj+1 =+ aypj +w;sji Tjr1 = 85 — wiAs;
If ||rks1ll2 =€, continue,

(rj+1,m5)  aj

Compute f3; =

(rjrs)  wj
Set pj+1 = Tj+1+ Bi(pj — w;jApy)
endFor
GMRES method

The GMRES method proposed by Saad and Schultz in 1986 is one of the most
important tools for ageneral non-symmetric system

Ax =0, with A non-symmetric. (1.7.25)

In the k-th iteration of the GMRES method, we need to find a solution of the least-
squares problem
min |b— Az||2, (1.7.26)
z€xo+|(A,ro0,k)
where rg = b — Azg and ||(A, o, k) := {ro, Arg,--- ,A¥*"Irg}. Letz € x +
(A, ro, k). We have

k—1
r =m0+ » AT (1.7.27)
j=0
Moreover, it can be shown that
k .
r=b—Axr=rg— Z’yj,lAjro. (1.7.28)
j=1

Like the CG method, the GMRES method will obtain the exact solution of Az = b
within n iterations. Moreover, if bisalinear combination of & eigenvectors of A, say
b= Z';zl Ypli,, then the GMRES method will terminate in at most & iterations.

Suppose that we have a matrix Vi, = [vf,v5, -, v¥] whose columns form an
orthogonal basis of ||(A, r, k). Thenany z € ||(A, ro, k) can be expressed as

k
z = Zupv;f = Vyu, (1.7.29)
p=1
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where u € R¥. Thus, once we have found V4, we can convert the original least-
squares problem (1.7.26) into aleast-squares problem in R¥, as to be described below.
Let x5, be the solution after the k-th iteration. We then have @, = x¢ + Viyr, Where
the vector y;, minimizes

min ||b — A(zo + Viy)||2 = min ||ro — AViy||2- (1.7.30)
y€ERK y€ERK
Thisisastandard linear |east-squares problem that can be solved by a QR decompo-
sition.

One can use the modified Gram-Schmidt orthogonalization to find an orthonor-
mal basis of ||(A,rg, k). Theagorithm is given as follows:

Choose xg, set rg=b— Axg,v1 =10/||r0]2-

For +=1,2,--- J/k—1, do:
Avi—Y 51 ((Avi) o))

[[Av =25 ((Av) Toy)uy ][, !

Compute v;41 =

endFor

This algorithm produces the columns of the matrix V4, which also form an orthonor-
mal basis for ||(A,r, k). Note that the algorithm breaks down when a division by
Zero occurs.

If the modified Gram-Schmidt process does not break down, we can use it to
carry out the GMRES method in the following efficient way. Let h;; = (Av;) ;.
By the modified Gram-Schmidt algorithm, we have a (k + 1) x k& matrix Hy, whichis
upper Hessenberg, i.e., its entries satisfy ;; = 0 if ¢ > j + 1. This process produces
a sequence of matrices {1} } with orthonormal columns such that AV, = Vj11 Hy.
Therefore, we have

rp =0b— Axp =ro — A(zp — x0)

= BVig1e1 — AViyr = Vi1 (Ber — Hryr), (1.7.31)
where e; isthe first unit k-vector (1,0, --- ,0)", and y;, isthe solution of
min ||fe; — Hiyl|2. (1.7.32)
y€ERK

Hence, zr = zo + Viyi. To find a minimizer for (1.7.32), we need to look at the
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linear algebraic system H,,y = [eq, namely,

hir hor -+ hp Y1 3
hia hae -+ hpo Y2 0
L R Y3 _
: 70 I
Pk : 8

Ptk Yk

This problem can be solved by using rotation matrices to do Gauss-elimination for
1, (see e.g. [134]), which yidds H;, "y = g, where

k k k
W hoy -+ hyy T2
Hp " = : S
h,ilz) Tk
hk+1’k Tk+1
Moreover, i
min [|Hyy — e[l = min [,y — g, ). (1.7.33)
y€ERK y€ERK

Define 7" to be the matrix containing the first m rows of Pz

that the minimizer of (1.7.33) is the solution of H,(f)yk = G-

. Itiseasy to see

Below we give the GMRES algorithm for solving Az = b with A non-symmetric:

Choose xzy, set rg=b— Axg, [ =|roll2 and vi =r¢/S.
For j=1,2,--- ,k,---, do
Compute w; = Av;
for +=1,2,---,5 do
Compute h;; = w]-T'Ui.
Set wj; = wj — hy;v;.
endfor
Compute hji1; = [lwj2

Set vj41 = wj/h]qu,j
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endFor

Compute Eém

and gy
Solve H]gk)yk =7

Set =z = x9 + Viyx

Preconditioning techniques

Itisseen from Theorem 1.7.1 that the rate of convergence of the conjugate gradi-
ent method depends on the condition number of A: the larger « is, the closer v will
be to 1 and the slower will be the rate of convergence. A good preconditioner is a
matrix M that is (i) easy toinvert, and (ii) the condition number of M/~ A issmall, or
the preconditioned system M~! Az = M ~'b can be solved efficiently by an iterative
method. Thisidea leadsto the so-called preconditioned conjugate gradient (PCG)
method:

Choose xzgp, compute rg=0b— Axry and solve M7y =rg
Set pg = 7o
For k=0,1,---do
Compute ag = —(Tk, %)/ (Pks APr)
Set Tp41 =Tk +oppr;  Set rpp1 =71 — apApy
If |[rg+1]l2 =€, continue,
Solve M7Tii1 = Tk41
Compute B = (Frt1,Tk+1)/ (T Tk)
Set pr+1 = Tk+1 + Brbk
endFor

In the above algorithm, we need to solve the system M7 = r which may be as
complicated as the original system. The idea for reducing the condition number of
M~1Aisto choose M such that M~!iscloseto A~!, while the system M7 = r is
easy to solve. The following theorem describes away to choose M.

Theorem 1.7.2 Let A beann x n nonsingular matrix and A = P — @ a splitting
of A suchthat Pisnonsingular. If H = P~'Q and p(H) < 1, then

Al = (Z Hk> P 0
k=0
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Based on this theorem, we can consider the matrices

M=PI+H+---+H"H
MY=I+H+---+H"Hp!

to be approximations of A and A~!, respectively. Thus the solution of the system
M7 = r becomes

F=M'r=(I+H+ - +H" P

Equivaently, the solution 7 = r,,, isthe the result of applying m steps of the iterative
method
Prig1=Qr;+r, :=0,1,--- ,m—1, rg=0.

If P=D,Q = L+ U, the above iteration is the standard Jacobi iteration. Then
in the PCG method we replace the system M71 = 7,41 With do m Jacobi
iterations on Ar =rypy; to obtain 7gy1. Theresulting methodiscalled
the m-step Jacobi PCG Method.

In practice, we may just use the one-step Jacobi PCG Method: in thiscase M =
D. Similarly, the symmetric Gauss-Seidel and symmetric successive over-relaxation
(SSOR) methods can also be used as preconditioners:

e Symmetric Gauss-Seidel preconditioner:
M=(D-L)DYD-U), M'=(D-U)"'DD-L)"};
e SSOR preconditioner:
= —(w'D-L)D Y (w D - 1),
M~ =(2-wwD—-wl)'DD —wL)™L.
Preconditioned GMRES

If we use M as aleft preconditioner for the GMRES method, then we are trying
to minimize the residua in the space:

Km(A, To) = Span{ro, M_IAT(), cee (M_IA)m_lro}. (1734)

The resulting algorithm is exactly the same as the original GMRES, except that the
matrix A isreplaced by M1 A.

Below is the preconditioned version of the GMRES method with left-
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preconditioning:

Compute 79 = M~'(b— Azg) and set B=|rola2, vi=r0/8.
For j=1,2,--+,k,--- do:

Compute wj =M 'Av;.

for i=1,2,---,7, do:

Compute hj; = (wj,v;);Set w; = w; — hjjv;

endfor

Compute hji1; = |lw;j]|.

Set vj41 = wj/hj+1,j .
endFor

Compute H,ik)

and gy
Solve H,ik)yk =7
Set =z = xg + Viyx
If M is used as a right preconditioner, we just need to replace A in the origina
GMRESby AM 1. Also, in the last step, we need to update z;, by

T, = 20 + M V. (1.7.35)

In practice, for the GMRES method, however, the Gauss-Seidel and SOR methods
can aso be used as preconditioners:

e Gauss-Seidel preconditioner: M = D — L, M~ = (D — L)7!;

e SOR preconditioner: M =w™'D — L, M~ = w(D —wL)™ %

The preconditioned CGS or BiCGSTAB algorithms can be constructed similarly. In
general, to use preconditioners for the CGS or BiCGSTAB, we just need to replace
the matrix A in the original algorithms by M~'A or AM 1.

Exercise 1.7

Problem1 Prove (1.7.5) and (1.7.7).

Problem 2 Prove Theorem 1.7.2.
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1.8 Error estimates of polynomial approximations

Orthogonal projectionin L2, (1)
Orthogonal projection in H&wa, 5(I)
Interpolation error

The numerical analysis of spectral approximations relies on the polynomial approxi-
mation resultsin various norms. In this section, we present some of the basic approxi-
mation results for the Jacobi polynomials which include the Legendre and Chebyshev
polynomials as special cases. Some basic properties of the Jacobi polynomials are
introduced in Section 1.4.

We first introduce some notations. Let I = (—1,1) and w(z) > 0 be aweight
function (w is not necessarily in L'(I)). We define the “usual” weighted Sobolev
spaces:

Li(I) = {u : /qudx < —I—oo},
I

Hi,(I) = {u € L2(I): Opu, - ,0bu € Lf,(f)} : (1.8.2)
Hy,(I) = {u € HL(I) s u(£1) = dpu(£1) = - = 95 Lu(£1) = 0} .

The normsin L2 (1) and H,(I) will be denoted by || - ||, and || - ||;..., respectively.
Furthermore, we shall use u|;,, = ||d%u]|,, to denote the semi-normin H. (). When
w(z) = 1, the subscript w will often be omitted from the notations. Hereafter, we
denote the Jacobi weight function of index («, 3) by

w¥P(z) = (1 —2)*(1 +z)°.

It turns out that the “uniformly” weighted Sobolev spacesin (1.8.1) are not the most
appropriate ones to describe the approximation error. Hence, we introduce the fol-
lowing non-uniformly weighted Sobolev spaces:

T 1) = {us Obu € Luisn(D), 0<k<m},  (182)

WP %

equipped with the inner product and norm

m

(,0) e = D051, 050)gosinns [l o = (wsw) 2 s, (1.83)
k=0

[un
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Hereafter, we shall use the expression Ay < By to mean that there exists a positive
constant ', independent of NV, such that Ay < CBy.

Orthogonal projectionin L2, (1)

Since {Jﬁﬁ } forms a complete orthogonal system in Lia, 5(I), we can write

o Oé,,@
u(z) =Y agfIel(z), with apf = (W Iy J”% ﬂ)wa"’, (18.4)
n=0 Tn
where y27 = ||Jﬁf’ﬁ||iaﬂ. Itisclear that
PN :Span{‘](()y”@v Jfé”@a T J](it[ﬂ} (185)

We start by establishing some fundamental approximation results on the Lfu 05— Of-
thogonal projection my a5 : L2, 5(I) — Py, defined by

(TN o 8% — Uy V)yap =0, Vv € Py. (1.8.6)

Itisclear that 7y ,a.5u iSthe best Liaﬂ—approximate polynomial of u, and can be
expressed as

N
(T past) (@) = Y a3l JeP (z), (1.8.7)
n=0

First of al, we derive inductively from (1.4.7) that
or I (@) = Al Je R (@), m >k, (1.8.8)

where
'n+k+a+8+1)

2Tn+a+p+1)
As an immediate consequence of this formula and the orthogonality (1.4.5), we have

d2) = (1.8.9)
1
/ 1 Ok J5 P ()0 T () AR () da = B, (1.8.10)

where
s s k,B+k
hot = (dod Pyt (18.11)
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Let usrecal first Stirling's formula,

1 1
_ x—1/2 —x -3
I'(z) = V2rx e {1 ton T 53822 + O(x )}. (1.8.12)
In particular, we have
D(n+1) = n! = 2rn" 126, (1.8.13)

which can be used to obtain the following asymptotic behaviors for n > 1:

R I e AR L R Lt (1.8.14)

9

Here, we have adopted the conventional assumption that «, 5 and &k are small con-
stants when compared with large n.

Below isthe main result on the Jacobi projection error:

Theorem 1.8.1 Leta,8 > —1. Foranyu € H™, 5 (I)andm € N,

|’8i(7rN7wa,[3u - u)“wa+l,ﬁ+l SJ Nlim”(‘a;nu”wa+m,,8+m, 0 < l < m. (1815)

Proof Owing to (1.8.10)~(1.8.11), we have

o0

a8\ 2
105 ulZasrssn = (@0 7) 105 T | 2asnsins (1.8.16)
n=k
— 2
“8i(WN’wa’ﬁu_u)”i”lﬂ“: Z (ag,ﬁ) |’6§:JS’ﬁHia+l,ﬁ+l (1.8.17)
n=N+1
[e) ha,f )
= 3 o @108 T s
TL:NJrl n,m

Using the the asymptotic estimate (1.8.14) gives

n,m ~v

WA S, L LN

which, together with (1.8.17), leads to

o0
_ ~ 2
105 (7 it = W) Pasros S (N 4 120N (a08) )0 TP 2
n=N-+1
< N2=m) || gma |2

watm,B+m:
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This ends the proof. O

We shall now extend the above result to the cases where o and/or 3 are negative
integers, using the properties of the generalized Jacobi polynomials. We point out
that like the classical Jacobi polynomials, the GJPs with negative integer indexes
form a complete orthogonal systemin L2, (I).

Hence, we define the polynomial space
k.l k,l k.l
Qy = span{J,, J, no+17"' Iy ) k<=1 andlor [ < -1, (1.8.18)

where ng is defined in (1.4.8). According to Remark 1.4.1, we have that for k£ < —1
and/or i < —1,

Q¥ ={pe Py : 0p(-1)=8¢p(1) =0, 0<i<—-k—1,0<j< -1}
We now define the orthogonal projection my i : L2, (I) — Q%' by
( — Tyttt 0N )it = 0, Yoy € QR (1.8.19)

Owing to the orthogonality (1.4.10) and the derivative relation (1.4.13), the following
theorem is a direct extension of Theorem 1.8.1.

Theorem 1.8.2 Forany k,l € Z,andu € H"};, (I),

||85(7TN7wk,lU — )| prrutrn SN O U] phrmairm, 0 < p<m. (1.8.20)

Orthogonal projection in H;} . 5(I)

In order to carry out the error analysis of spectral methods for second-order ellip-
tic equations with Dirichlet boundary conditions, we need to study the orthogonal
projection error in the space Hé Las(1). We define

PY ={uc€ Py: u(£l) =0} (1.8.21)

Definition 1.8.1 The orthogonal projector =", + H}

0w () — P is defined
by

((u — W}VO ws) 0 ) e =0, Ywe PY. (1.8.22)
Theorem 1.8.3 Let—1 < o, 8 < 1. Thenforanyu € Hy . ,(I)NH"_, ;. (I),

,k

102w = 75 0 s e S N[0 ullyarmrpem,  m > 1.
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Proof Forany u € H . (1), we set

T 1 1
Uy = / {WNl,wa,ﬁ’LL/ — 5/ WNl’wa,gu’dn} d¢. (1.8.23)
-1

-1

Therefore,

1
uy € Py anduly = TN 100U — 3 TN 1 ont/d).
-1

Hence,

1 1
o =l , < I = gtz o+ |5 [ el (L824
w™ w™ 71

On the other hand, since u(+1) = 0, we derive by using the Cauchy-Schwarz in-
equality that

‘/ TN 1 pont A —‘/ TN_1 wonB U —u)dx‘

wa ﬁ
(1.8.25)

<([ o) gt =l S iy agonont =l

for o, B < 1. We then conclude from (1.8.24), (1.8.25) and Theorem 1.8.1 that

[0ut = T i)l = E (o — il < 1 — s
dNEPY

Sl =y 1 gast lyes S N0 Ul ot me1,54m-1.

This completes the proof of Theorem 1.8.3. O

I nter polation error
We present below an optimal error estimate for the interpolation polynomials
based on the Gauss-L obatto points.

Theorem 1.8.4 Let {xj}j-vzo be the roots of (1 —x2)8xJ]°\“,”3(x) with—1 < o, 5 < 1.
Let Iy o : C[=1,1] — Py betheinterpolation operator with respect to {xj}ﬁyzo.
Then, we have

1L (I8P u = w) || yarrsrr S N0 u| pasmpem, 0<I<m.  (1.8.26)
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The proof of the above lemmais rather technical. We refer to [3] for a complete
proof (see also [11] for asimilar result for the specia case o = ).

Theorem 1.8.4 indicates that error estimates for the interpolation polynomial
based on the Gauss-L obatto points are optimal in suitable weighted Sobolev spaces.
One should note that an interpolation polynomial based on uniformly spaced points
isusually avery poor approximation unless the function is periodic in the concerned
interval.

As we can see from the estimates presented in this section, the convergence rates
of spectral projection/interpolation increase with the smoothness of the function, as
opposed to afixed convergence rate for the finite difference or finite element approx-
imations. Moreover, it can be shown that the convergence rates of spectral projec-
tion/interpolation are exponentia for analytical functions. We now provide a direct
proof of this statement in the Chebyshev case.

Let {x;} be the set of Chebyshev-Gauss-Lobatto points, i.e. 2p = 1, zy = —1
and T} (zj) = 0,1 < j < N — 1. This suggests that

N-1
Ty (z) = ay H (x — ).
j=1

Since Ty () = 2N~ T (x), where Ty () is monic, we have
Ty (x) = 2V 12N + lower order terms.

Combining the above two equations gives oy = N2V~!. Notice also that 2y = 1
and zy = —1, weobtain

N 1-N
2 (x2 — )Ty ().

The above result, together with (1.3.6a), yields

N
( [ - xk)\ < N2t (1.8.27)
k=0

Let u be asmooth function in CV*+1(—1,1). Using Lemma 1.2.3, (1.8.27) and Stir-
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ling's formula (1.8.13), we obtain

N
_ N < (N+1) © 8.
ma [u(2) ~ Iy esu(@)] < O™Vl (55) (1.8.28)
for large N, where C' is a constant independent of N. Thisresult implies that if u is
smooth, then the interpolations using the Chebyshev-Gauss-L obatto points may lead
to exponential order of convergence.

Exercise 1.8

Problem 1 Prove Theorem 1.8.2.

1,0

Problem 2 Show that 7y ,—1,-1 = TN 0.0
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The collocation method® is the most popular form of the spectral methods among
practitioners. It is very easy to implement, in particular for one-dimensiona prob-
lems, even for very complicated nonlinear equations, and generally leads to satisfac-
tory results as long as the problems possess sufficient smoothness.

We present in this chapter some basic ingredients for the spectral collocation
methods. In the first two sections, we describe how to compute the differentiation
matrices associated with the Chebyshev and Fourier collocation. In Section 2.4, we
present in detail a Chebyshev collocation method for two-point boundary value prob-
lems with general boundary conditions. We study in Section 2.3 the spectral radius
and condition number of the Chebyshev collocation approximation to the advection

@ In the literature on spectral methods, the terms collocation and pseudospectral (PS) are often
used in a interchangeable fashion. Strictly speaking, a collocation method seeks an approximate solu-
tion to satisfy the underlying equation at a set of collocation points, while amethod is pseudospectral if
not all parts of the algorithm are performed in a pure spectral fashion. Therefore, acollocation method is
always a pseudospectral method while a psudospectral method is not necessarily a collocation method.
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and diffusion operators. In Section 2.5, we present a weak formulation of the col-
location method and discuss how to construct effective preconditioners for spectral-
collocation methods.

2.1 Differentiation matricesfor polynomial basisfunctions

Polynomial basis functions

Finite-difference weights on arbitrary grids
Differentiation matrices using recursive formulas
Differentiation matrices using direct formulas

Differentiation matrices play an important role in the implementation of spectral col-
|ocation method. In order to introduce the differentiation matrix idea, let us consider,
as an example, the differentiation matrix associated with the finite difference method
for the model problem

Uge = f, x € (—1,1); u(£1) = 0. (211

Letusdenote z; = —1+ jh,0 < j < N,with h = 2/N. A finite difference method
for (2.1.1) isto approximate w,,. by the central difference formula

Uge(T) = %[u(m + h) = 2u(z) + u(x — h)).

Since the solutions of the continuous problem (2.1.1) and the discrete problem are
different, we use U to denote the solution of the discrete problem. One can easily
verify that the discrete solution satisfies

—2/h%  1/h? o - 0 U(x1) flz1)

/% —2/h?> 1/R* ... 0 Ul(zz) f(x2)

0 1/R? —2/h* - 0 Uws) |=| flas)

0 0 0 —2/h2 U(wN_l) f(xN_l)
(212

The matrix above is the so-called differentiation matrix (DM) of the finite-difference
method for the second-order derivative. In general, for a problem involving the m-th
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derivative u("), the differentiation matrix is defined by

N
D= (dl(;n)>i,j:0’
it satisfies
ul™ (o) u(zo)
W™ () | o | )
u™ (zy) u(zy)

In this section, we will discuss how to find the DM for the spectral collocation
methods when the basis functions are polynomia (e.g. the Chebyshev polynomi-
als, Legendre polynomials, Hermite polynomials etc). The DM is dependent on the
collocation points and the chosen basis functions.

Polynomial basis functions

If the basis functions @ (z) are polynomials, the spectral approximation is of the
form v (z) = fo:o ar Py (z), where the coefficients a;, can be determined from a
given set of collocation points {z;}_, and thefunction values u" (x;). Sinceu™ ()
isapolynomial, it can also be written in the form

N

uN () = uN(ap) Fi(2), (2.1.3)
k=0

where the Fy(z) are called Lagrange polynomials which satisfy

0 if k#j
F’“(xj)_{1 if kij

We will use (2.1.3), the equivalent form of +¥(z), to obtain the differentiation ma-
trices for polynomial basis functions. If the basis functions are not polynomials (e.g.
trigonometric functions), the equivalent form does not exist and the codes given in
this section will not work.

Finite-difference weightson arbitrary grids

We now describe a simple recursive relation which gives the weights for any
order of derivative, approximated to any order of accuracy on an arbitrary grid in one
dimension. This simple recursive relation was introduced in [46].
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Given M > 0, the order of the highest derivative we wish to approximate, and
aset of N + 1 grid points (at x-coordinates «g, - - - ,an; N = 0), the problem isto
find all the weights such that the approximations

anf
dz™

T

n
Cp\jzcm’/(c)f(ay)’ m:()?]‘v”'7M;n:m7m+17'”7N7
- v=0

possess a (formal) optimal order of accuracy (in genera of order n —m + 1, although
it can be higher in special cases).

For simplicity, assume we seek to approximate the derivatives at the point { = 0
(for a nonzero point ¢ a simple shift will work). Let {ap, a1, -, an} be distinct
real numbers and define

The polynomial

o V()
Fou(x) = @) (@ =) (2.1.49)

isthe one of minimal degree which takesthevaluelatx = o, andOQat x = oy, k #
v. For an arbitrary function f(z) and nodes x = «,,, Lagrange’s interpolation poly-
nomial becomes

p(x) = ZFH,V(w)f(au)'
v=0

The desired weights express how the values of [d"p(z)/dz™].—o vary with changes
in f(a,). Since only one term in p(z) is influenced by changes in each f(a,), we
find

dm
o, = [ Fn7,,(x)} . (2.15)

n,v dflﬁ‘—m 0
Therefore, the n-th degree polynomia F, ., («) can also be expressed as

Fu ()= 5" Zvgm, (2.1.6)

m)!

m=0

Noting thet 7, () = (2 — ) ya—1 () implies, (z) = (@ =) ¥y (@) +70-1 ().
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It follows from (2.1.4) that

Fo,(z) = T Gn Fooi,(x), for v<m;

Q, —
_ Yn-1(2) _ Yn—2(n-1)

T ni(an)  Amoi(am) (x —ap_1)Fp1n-1(x) (n>1).

(2.1.7)

By substituting the expression (2.1.6) into the above two equations, and by equating
powers of x, the desired recursive relations for the weights are obtained:

1
Croy = o —a (Oéncnm_l,y - mcnmjl{y) for v<n (2.1.89)
n 14
Yn—2(0tn_ _
Crn = % (mcztll,nfl - O‘nflczl—l,n—1> . (2.1.80)
n— n
Therelation .
Cny =0 for m>0; 027,} =1, (2.1.9)
v=0 v=0

can be used instead of (2.1.8b) to obtain ¢;',,. However, this would increase the oper-
ation count and might also cause a growth of errors in the case of floating arithmetic.

It is obvious that cg,o = 1. Using this fact, together with (2.1.8a), we obtain

0 1 M
€1,00 €100 """ C10-

Then, using ¢ , = 1 and (2.1.8b) leads to

6(1)71, Cil, Ty C% .
The above information, together with (2.1.89), give

c(2)707 6%707 Tty C% ;

6871, 6571, DY C% .
Using (2.1.8b) or (2.1.9), we can find

0 1 M
Co9; Cgos """y Cgo.

Repeating the above process will generate all the coefficients ¢, for m < n <
N,0<v<n.

In practice, we wish to use all of theinformation f(«,),0 < v < N. Therefore,
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it is of interest to compute c%y, 0 < v < N, for given values of M and N. The
following pseudocode is designed for this purpose. Welet o = (o, a1, -+ ,an)?.

CODE DM.1
Function d=FDMx (M, N, (, )
c&o=l, c1=1
for n=1 to N do
co=1
for v=0 to n-1 do
C3=0p -0y, Co=C2*C3
for m=0 to M do
= (tan=C)wepy -meiol, ) fes
endfor
endfor
for m=0 to M do

—1
dﬁn=cl("uﬂllm—1'_(an—l_'C)*CﬁéLn—l)/CQ
endfor

C1=C2

endfor

for j=0 to N do
a(9)=cl,

endfor

Differentiation matrices using recursive formulas

For non-periodic problems, the algorithm in the last section can be used to gen-
erate DMs very conveniently. Assume that the collocation points z;,0 < j < N are
provided. It is noted that

D™ = (e, (x))

v,j=0"
Let £ = (zo,71,---,2n)". A pseudocode to generate the matrix D™ is given
below:
CODE DM. 2

Input m, N, &
for j=0 to N do
(=x;
d=FDMx (m, N, (, %)
for v=0 to N do
Dm(j, v)=d(v)
endfor
endfor

As an example, we compute D' and D? with N = 4 and x; = cos(wj/N) (i.e.
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the Chebyshev-Gauss-L obatto points) by using CODE DM. 2. The results are given
below:

5.5000 —6.8284 2.0000 —1.1716 0.5000
17071 —-0.7071 —-1.4142 0.7071 —0.2929
—0.5000 1.4142  0.0000 —1.4142 0.5000 ,
0.2929 —-0.7071 1.4142  0.7071 —1.7071
—0.5000 1.1716 —2.0000 6.8284 —5.5000

17.0000 —28.4853 18.0000 —11.5147 5.0000
9.2426  —14.0000 6.0000  —2.0000  0.7574
D? = —1.0000 4.0000 —6.0000 4.0000 —1.0000
0.7574  —2.0000  6.0000 —14.0000 9.2426
5.0000 —11.5147 18.0000 —28.4853 17.0000

Dl

(2.1.10)

It is observed from the above results that the following symmetry results hold:

1 1 2 2 :
Dy_p,n—j = —Dij DN _k,n—j = Dijs 0<k,j<N.

In fact, thisistrue for any N if the collocation points are the Chebyshev-Gauss-
Lobatto points (1.3.11).
Differentiation matrices using direct formulas

For some choices of collocation points, D' and D? can be found explicitly. To
see this, we consider the Chebyshev points x; = cos(mj/N),0 < j < N.

First we need the following results:

Ty(z;) =0, 1<j<N-1, (2.1.11a)
- 1

Ti(e)) = ()N o——, 1<G<N -1, (2.1.11b)

J
T ;) = (—1)J’+13N2(1337j2)2, 1<j<N-1, (2.1.110)

2

J

1

Th(£1) = (£D)VN2, TH(£]) = g(jﬂ)NN?(N2 —1). (2.1.11d)

We briefly prove the above results. Let § = cos™! . From the definition Tiy(z) =
cos(IN6), we can show that

1
Th(z) = Nsin Ng—; (2.1.129)

sin @
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T (x) = —N? cos N0—5— + Nsmm)ﬂ; (2.1.12b)
sin“ 6 sin® 6
in N6 cos 6 d ([ cosf sin N6
T(z) = N30 gn2eos N2 v L : .
n (@) sin® 6 o8 sin* 9 df \ sin> 6 sin @
(2.1.12c)

Using these expressions and the fact that sin(N¢;) = 0 (§; = 7mj/N), we obtain
(2.1.11a), (2.1.11b) and (2.1.11c). Letting § — 0 and 6 — = in (2.1.124), respec-
tively, givesthefirst result in (2.1.11d). To obtain the second one, we use L’ Hospital’s
rule for (2.1.12b):

T (1) =lim

— (—N2COSNHSin0+NsinN6?COSH)
6—0 sin® 0

s 1 3 . . _ N2 2
—g%m<(]\[ —N)SIHNHSHlH) = 3 (N ].)
A similar procedure gives 7% (—1). Let vy (z) = [[oy(z — z1). By (2.1.118) we
derive

(@) = Bn (2 = )T (x),
where [y is a positive constant such that the coefficient of the 2V +! term on the
right-hand side of the above equality is 1. It follows from (2.1.11a) and (2.1.11d) that

V() = (-1)7¢;N?By,  0<j <N,

wherecy = ¢y =2and¢; = 1for1 < j < N — 1. Similar to (2.1.4), the Lagrange
polynomials associated with {x; }5’\’:0 are of the form

v (z)

File) = Y (@) (x — ;)

0<Jj<N.

Using the expressions for vy (x) and vy (z;) given above yields

(=1 (@* - )Ty ()
&G N?(x — ;)

Fj(z) = ., 0<j<N. (2.1.13)

Now direct calculation gives

Fila) = e (20T )+ - DT () =) (= D Ti(a).
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For k £ j, the above result, together with (2.1.11a) and (2.1.11d), leads to

& (=) .
F — 0<k < N.
Forl1 <k=j<N—1,itfollowsfrom (2.1.13) that
F -1
Fl (o) =limg g, 250 1 (P =1)
T — T
i owa(e? ~ DT (@) — ()

T— T (x — xk)2 )
where

any = (—1)"/N2. (2.1.14)

Again using L’ Hospital’s rule to the above result twice gives
1
Fﬂxm:—aMkhm_@T&@)+4ﬂ%@»+(#-—ﬂfﬁ@ﬂ
T—T

2
4z 3x > o Tk
1—af 1-—a? 2(1 —x3)’

1<k<N-1,

1
— EaN,k(_l)k+1N2 (

where in the last step we have used (2.1.114), (2.1.11b) and (2.1.11c). Further, using
(2.1.11d) shows that
F(x0) = —Fi(zn) = (2N? +1)/6.

Since the Lagrange’s interpolation polynomial is of the form p(z) = Zf: o Fj(z)
f(e;), we obtain by the definition of the differentiation matrix that

(Dl)kj = Fj(x).

The above discussion gives

& (—1 k+j
l%j==55£——l——, JFk (2.1.153)
Cj T — X5
Dl = Tk k40N 2.1.15b
Mo —ag) 7 0., ( )
Dgy = =Dy = (2N? +1)/6, (2.1.15¢)

where ¢, = 1, except for &y = éy = 2. Direct verification from (2.1.15a) also yields

Dy _jn—j = —Dij. (2.1.16)
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It has been observed that for large N the direct implementation of the above formulas
suffers from cancellation, causing errors in the elements of the matrix D'. Thus, it
is advisable to replace the first two formulas using trigonometric identities by the
formulas

~ _1 k+] . . —1
Dl.:é_k( 2) (sin(J;]\’f)”sin(j2;)”> . k#4 (21179

Tk

 2sin?(kr/N)’

Dy = k#0,N. (2.1.17b)

Finally, to avoid computing the sine of arguments larger than 7 /2 in absolute value
we take advantage of the symmetry property (2.1.16). Thusthe most accurate method
of computing D! isusing formulas (2.1.17) to find the upper left triangle of D' (i.e.,

compute Dy; with k£ 4 j < N), and then uses the relation (2.1.16) and (2.1.15c) for
the other elements.

Higher-order DM s can be computed easily by the following observation:

If the collocation points are the Chebyshev-Gauss-Lobatto points z; =
cos (mj/N), then higher derivative matrices can be obtained as matrix pow-
ers, i.e,

D™ = (DY)™, (2.1.18)

The numerical results (2.1.10) obtained in the last subsection, i.e., D' and D?
with N = 4, can be verified using the above explicit formulas.

A pseudocode for first order DM using the formula (2.1.15a)—2.1.16) is given
below:

CODE DM.3
Input N
Compute collocation points x(j)=cos(wj/N) and ¢(j)
$first order differentiation matrix
for k=0 to N do
for j=0 to N-k do
if k=0 and j=0 then D1(k,j)=(2N2+1)/6
elseif k=N and j=N then D1 (k,j)=-D1(0,0)
elseif k=3 then Dl(k,j):—x(k)/(Z*(1—x(k)2))

else then D1 (k,j)=¢(k)* (—1)j+k’/(é(j)* (x(k)-x(3) ))
endif
endfor
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endfor
for k=1 to N do
for j=N-k+1 to N do
D1(k,j)=-D1(N-k,N-7)
endfor
endfor

Since we will use the first-order differentiation matrix frequently, it is also necessary
to provide aMATLAB code for the above algorithm.

CODE DM.4
function d=DM1 (N)
$collocation points, and ¢
j=[0:1:N]; x=[cos(pi*j/N)];
c=[2 ones(1,N-1) 2];
$Differentiation matrix
for k=1:N+1
for j=1:N+2-k
if j==1 & k==
d(j,k)=(2*N"2+1)/6;
elseif j==N+1 & k==N+1
da(j,k)=-d(1,1);

elseif j==
d(j,k)=-x(k)/(2*(1-x(k)"2));
else
d(j, k)=c(3)*(-1)" (F+k) /(c(k) *(x(F)-x(k)));
end
end

end
for k=2:N+1
for j=N+3-k:N+1
d(k,j)=-d(N-k+2,N-j+2) ;
end
end

Remark 2.1.1 It is noted that d(i,j) = D} ;; , for 1 < i,j < N 4 1 (since
MATLARB requires that the indexes i and j above are positive).
Exercise 2.1

Problem 1 Consider the Legendre polynomia described in Section 1.3, with the
Legendre-Gauss-L obatto points (1.3.11). It can be verified that the Lagrange polyno-
mials are of the form

1 (1 —2?) Ly (z)

Fy(w) = N(N +1)Ln(z) T —x;
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Use this result to verify that
Ly(wg) 1 .
D = ’ k # 4,
Y Lv(ay) o — 5 7
D}, =0, k+#0,N,

Dl = —Dhy = N(N + 1)/4.

Problem 2 UseCODE DM.1 and CODE DM. 2 to compute D! with the Legendre-
Gauss-L obatto points, with N = 5. Compare your results with the direct formulas
given in Problem 1.

2.2 Differentiation matricesfor Fourier collocation methods

Fourier series and differentiation
Differentiation matrices using direct formulas

The discussions in Section 2.1 are concentrated on the algebraic polynomia basis
functions. Another class of basis functions is the trigonometric functions which are
more suitable for representing periodic phenomena. For convenience, let us assume
that the function being interpolated is periodic with period 27.

It is known from Section 1.5 that the functions E, defined by Ej,(x) = e?** form
an orthogonal system of functions in the complex space I, (0, 27). An exponential
polynomial of degree at most n is any function of the form

p(z)= Z dpet* = Z dpEx(x)
k=0 k=0
AL (2.2.)
k=0

Thelast expression in this equation explains the source of the terminology because it
shows p to be a polynomial of degree < n inthe variable ¢*.

Lemma?2.2.1 The exponential polynomial that interpolates a prescribed function f
atz; =2mj/N,0<j <N —1,isgiven by

N—
P(.T) = CkEk(.T), with CL, = <f, Ek:>N7 (222)
k=0

[y
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where the inner product is defined by (1.5.2). In other words, P(zj) = f(z;), 0 <

j<N—1.
Proof The above result can be obtained by the direct calculations. for 0 < m <
N -1,

N-1 N-1 N-1

)= crEr(xm) ~N 2 @) Er(z)) Ey(m)

k=0 k=0 = j=0

N-1

=) [(@)(Em, Ej)n = f(zm),

j=0

wherein the last step we have used (1.5.4) and thefact 0 < |m — j| < N. O

Fourier series and differentiation

Itiswell known that if f is27-periodic and has a continuous first derivative then
its Fourier series converges uniformly to f. In applications, we truncate the infinite
Fourier series

Z fk)ek=, (2.2.3)
k=—00

to the following finite series:
N/2—1
> e’ (2.2.4)
k=—N/2

Assumethat F'(z;) = f(x;), where z; = 27j/N,0 < j < N — 1. It can be shown
that

0= ap np(-1PeR T, 0< i< N L

This, together with (2.2.2), gives

N-1
1 , -
X'—N/2 = 37 Z(—I)JF(:):j)e_Zk i 0<K <N-1. (2.2.5)
§=0

We now differentiate the truncated Fourier series F'(x) termwise to get the approxi-
mate derivatives. It follows from (2.2.4) that

N/2

FM(z)= " og(ik)me®™,

k=—N/2
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where m is a positive integer. We can write F(™)(z) in the following equivalent
form:

N-1
FM () =3 ap_wpo (i(k’ - N/2)) ik =N/2)z (2.2.6)
k'=0

Using (2.2.5) and (2.2.6), we obtain

Pt"?(xo) a_n/2
Y (x o - o
( 2 = ((—1)J61kx1(i(k - N/Q))mx‘\;lo A
FOm(zy ) AN/2-1
IT(xo)
o - g - F(x
_ % ((_1)]€zk:acj(i(k, o N/2))m)j7k20 ((_1)k€—zjxk)j;:10 ( 1)
F({L‘N_l)

This indicates that the m-th order differentiation matrix associated with Fourier
spectral-collocation methods is given by

D = ((-1e i - Nj2y) | ((pRein) @2

A pseudocode for computing D™ is given below:

CODE FPS.1
function Dm=FDMx (m, N)
$collocation points: x(j)=2*n*j/N, 1<j<N-1
for j=0 to N-1
for k=0 to N-1

A(3,k)=(-1)*exp (i*k*x(§)) * (i* (k-N/2))™
B(j,k)=(-1)krexp (-i*j*x(k))
endfor

endfor
Dm= (1/N) *A*B

To test the above code, we consider asimple example. Let f(z) = 1/(2 + sinz).
Let F = (f(wo), f(21), -, f(wy—1))T with z; = 27j/N. The matrices D1 =
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FDMx(1,N) and D2 = FDMx(2, N) are given by CODE FPS. 1. Weplot the L! errors

N-1 N-1

errt = YD1 F); — f/(a)], erra = 3 [(D2+F);— f(x))

j=0 Jj=0

10° 10'
107 10°
10° 107
107 107
glo” 107
_331()*5 107
.J -
10° f 107
107 F 107
10°* 107
107 10°*
10710 L L L L L L o 1079 L . . . . . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
N N
(@) (b)
Figure2.1

@ flz)=1/(2+sinz);(b) f(z)=e 2™ Thesolidlineisfor err1, and the dashed lineis
forerr2

It should be pointed out that the convergence holds only for periodic functions. If
we change the above f(x) to anon-periodic function, say f(z) = 22, then the errors
errl and err2 defined above will diverge to infinity as N becomes large.

Apart from the periodic functions, the Fourier spectral methods can also handle
functions which decay to zero away from a finite interval. We can aways use a
linear transform to change the finite interval to [0,2x]. To see this, we consider
f(z) = e 2==™ |nFig. 2.1(b), we plot err1 and err2 for this function. It is
noted that the errors will not decrease after a critical value of NV, but the errors for
large N will be of the same magnitudes of f'(x) and f”(z) away from [0, 27].

Differentiation matrices using direct formulas

Again choose z; = 27j/N,0 < j < N — 1. The corresponding interpolant is
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given by (Gottlieb et al [3¢1; Henrici (81, Section 13.6)
N
tn(z) = Z ¢ () [
j=1
where the Lagrange polynomials F;(z) are of the form
1 . N
Fj(z) = ~ Sin E(:): — xj)cot E(x —xj), N even, (2.2.89)
1 . N 1
Fj(z) = ~ Sin E(:): — xj)csc 5(:): —xj), N odd. (2.2.8b)

It can be shown that an equivalent form of ¢y (x) (barycentric form of interpolant) is
(see Henricil®! | Section 13.6):

N ‘ 1 N 1
ty(z) = Z(—l)]fj cot 5(:5 - :):j)/Z(—l)J cot 5(:): —xj), N even,

7=

[y

j=1
(2.2.939)
N ' 1 N ' 1
tn(z) = ;(—wfj csc (@ - xj)/;(—w cscs(@—w;),  Nodd.
(2.2.9b)
The differentiation matrix D™ = (F\™ (z,)) is obtained by Gottlieb et al.. For N
even,1 < k,j7 < N:
1 0 it k = 7,
Dl.={ 1 , y _ 2.2.10
ki —(—1)k_3 cot L b if k # 7, ( 9
2 2
2 1
I if k= j,
Dy ={ 3K 6, (k— )h (2.2.10b)
—(—1)’“735 csc? 2‘7 if k # 5.

Similarly, for N odd, 1 < k,j < N:

) 0 if k =7,
DL = , —3 2.2.11
ki %(—1)]“_3 csc L 2‘7)h if k #5, ( 3
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2 1 . .
p2.={ 3n 12 k=7, (2.2.11b)
ki — .1 (k—j)h (k—j)h . . -
(1) 2
(-1) 5 C5¢ cot 5 if k # 7.
It can be shown that if IV isodd then
D™ = (DYH™, (2.2.12)

If NV iseven, the above formula only holds for odd m.

Exercise 2.2
Problem1 UseCODE FPS.1 tocompute D? and D3.

a Let N = 6 andm = 3. Verify (2.2.12) by using (2.2.10a). Show also that
(2.2.12) does not hold for m = 2.

b.Let N =5and m = 2, 3. Verify (2.2.12) by using (2.2.11a).

Problem 2 Design an agorithm to compute the differentiation matrix D' for the
Chebyshev collocation method that uses FFT.

Problem 3 Consider the eigenvalue problem
—u" + 2%u = I, z € R.

This problem isrelated to a quantum harmonic oscillator, whose eigenvalues are
A =1,3,5,--- and the eigenfunctions « are the Hermite functions e*’fQ/QHn(q;).
Since these solutions decay rapidly, for practical computations we can truncate the
infinite spatial domain to the periodic domain [—L, L], provided L is sufficiently
large. Using a Fourier collocation method to find the first 4 eigenvalues, with N =
6,12,18,24 and 36. ©

2.3 Eigenvalues of Chebyshev collocation operators

Advection operator

Diffusion operator with Dirichlet boundary conditions
Diffusion operator with Neumann boundary conditions
Comparison with finite difference methods

The eigenvalues of amatrix A are the complex numbers A for which the matrix A—\I

@ Hint: MATLAB has a code for finding the eigenvalues of Av = \v.
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isnot invertible. The spectral radius of A is defined by the equation
p(A) = max{|\| : det(A — \I) = 0}.

Thus, p(A) isthe smallest number such that acircle with that radius centered at 0 in
the complex plane will contain al the eigenvalues of A.

Using spectral methods to deal with time-dependent differential equations will
often result in a system of ODEs. For example, consider the linear heat equation
u = ug, With appropriate initial and boundary conditions. If we use collocation
methods, we will obtain a system of ODE like U’(t) = AU + b, where the matrix
A is related to the second order differentiation matrix investigated in Section 2.1,
the vector b is related to the boundary conditions. Now the spectral radius of A is
important: it determines the maximum time step allowed by using an explicit scheme
for this ODE system through the relation Atp(A) < 1.

The condition number of amatrix A is defined by
k(A) = max{|A| : det(A — AI) = 0}/ min{|A| : det(A — X\I) = 0}.

A matrix with alarge condition humber is said to be ill conditioned while the matrix
issaid to be well conditioned if the condition number of A isof moderate size. There
are two main numerical difficulties in dealing with Ill-conditioned matrices, first of
all, the solution of Ax = b isvery sensitive to small changes in the vector b if A isill
conditioned; secondly, the number of iterations needed for solving Ax = b using an
iterative method usually increases with the condition number of A.

Using spectral methods to solve differential equations will often require solving
a system of algebraic equations. In this case, information about the underlying ma-
trix such as spectral radius and condition number will be very useful. As we shall
see in Section 2.4, the underlying matrix is often formed by the differentiation ma-
trices. Therefore, it is helpful to study the eigenvalues of the differentiation matrices
associated with different spectral methods. In this section, we will investigate the
eigenvalues of the Chebyshev collocation operators. Some references related to this
section can be found in [164], [169].

Advection operator
We consider here the advection operator

_du

Tu= "
YT

z € (—1,1), (2.3.1)
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subject to the boundary condition u(1) = 0. We use the Chebyshev collocation
method with the collocation points 2; = cos(wj/N). The eigenvalues of the collo-
cation operator are defined by the set of equations

dU ()
dx

=AU(zj), 1<j<N; U(xg) =0, (2.3.2)

provided U is a non-trivial polynomial of degree N. It can be shown theoretically
that the real parts of A are strictly negative, while the modulus satisfies abound of the
form |A| < N2. We will verify this by numerical experiments.

Since U(xg) = 0, it is easy to see that (2.3.2) leads to a standard eigenvalue
problem AU = AU, where A is formed by removing the first column and the first
row from D1, where D1 isgiven by CODE DM. 3 in Section 2.1.

CODE Eigen.1l

Input N

$first order differentiation matrix

call CODE DM.3 in Sect 2.1 to get D1(i,j), 0<i,j<N
$form the coefficient matrix: A(i,j)=D1(i,j), 1<i,j<N
compute the eigenvalues of A

find the largest and smallest |)|

p(A)=the largest |A|; k(A)=p(A)/the smallest |}

In MATLAB, eig(a) is the vector containing the eigenvalues of matrix A;
max (abs (eig(A)) ) givesthe spectra radiusof A; min (abs (eig(A))) gives
the smallest |\| of A. Numerical results show that the real parts of eig (a) are
strictly negative, and that

p(A) <0.5N?,  k(A) < N2, (2.3.3)
as can be seen from Fig. 2.2.
Diffusion operator with Dirichlet boundary conditions
We now consider the diffusion operator

d?u

Lu=—
YT a2

x e (—1,1), (2.3.9)

with homogeneous Dirichlet boundary conditions, i.e., u(+1) = 0. The eigenvalues
of the Chebyshev-collocation approximation to this operator are defined by the set of
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equations
d?U(z;)
= 1<j<N-1,
wz - AU@), J (2.3.5)
U(zo) =0, U(zn) =0,

107" F

107 F

spectral radius/N"2

~o condition number/N"2

B T L ~sm s e~ m s ;=

10 20 30 40 50 60 70 80 90 100

N

Figure2.2 The spectral radius and condition number associated with the advection
operator.

where {x;} arethe Chebyshev-Gauss-L obatto pointsand U isapolynomial of degree
N. It was shown in [58] that there exist two positive constants ¢, ¢ independent of

N such that
0<c < =)< N

We will verify this by numerical experiments with the following code:

CODE Eigen.2

$Zero Dirichlet boundary conditions

Input N

$first order differentiation matrix

call CODE DM.3 in Section 2.1 to get D1(i,j), 0<i,j<N
D2=D1*D1

$form the coefficient matrix:
compute the eigenvalues of A
find the largest and smallest |}

p(A)=the largest |A|; k(A)=p(A)/the smallest |}

(2.3.6)

A(i,j)=D2(i,j), 1s<i,j<N-1

In Fig. 2.3, we plot the spectral radius and condition number for the Dirichlet prob-
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lem. It can be seen from Fig. 2.3 that

oU——— T
012}
01}
0.08}

0.06 -
spectral radius/N"4

0.04

N condition number/N"4
0.02F T~ s e e i = e

00 10 20 30 40 50 60 70 80 90 100
N
Figure2.3 The spectral radius and condition number associated with the Chebyshev
spectral methods.

p(A) =~ 0.047TN*,  for N > 30,
A (2.3.7)
k(A) ~ 0.019N*,  for N >15.
It is also observed from the numerical results that
min |\| ~ 2.467,  for N >5. (2.3.8)

Diffusion operator with Neumann boundary conditions

We now consider the diffusion operator (2.3.4) with the homogeneous Neumann
boundary conditions «/(+1) = 0. The eigenvalues of the Chebyshev-collocation
approximation to this operator are defined by the set of equations

d2U($]’)
dx?
U,(xO) = 07 U/(xN) = 07

where, once again, {z; } are the Chebyshev-Gauss-L obatto points and U is a polyno-
mial of degree N. We follow the procedure in Section 2.4 to form the corresponding
matrix. Our boundary conditions are of the type (2.4.2) witha, = b_ = 0,b4 =
a_ =1,c_ = cq4 = 0.Using (2.4.13), the coefficient matrix A = (a;;) isgiven by

aij = (D?)ij — (D?)indo; — (D?)indny, 1<i,j <N -1,
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where
oj = ((DY)ow(DY)y; = (DY) ww(DY)yy)
((DI)NO(DI)ON - (Dl)oo(Dl)NN)
g = ((D")no(D1)o; = (DM)oo(D!

((Dl)NO(Dl)ON - (Dl)OO(Dl)NN)

1

NG ) -
-1
A pseudocode for computing the spectral radius and condition number of the Neu-
mann problem is given below.

CODE Eigen.3
%$Zeor Neumann boundary conditions
Input N
$first order differentiation matrix
call CODE DM.3 in Sect 2.1 to get D1(i,j), 0<i,j<N
D2=D1*D1
$form the coefficient matrix
ss=D1(N,0)*D1(0,N)-D1(0,0)*D1(N,N)
for j=1 to N-1 do
dm=(D1(O,N)*D1(N,j)—Dl(N,N)*Dl(O,j))/SS
anj=(D1(N,0)*D1(0,3)-D1(0,0)*D1(N,j))/ss
for i=1 to N-1 do
A(i,j)=D2(i,j)-D2(i,0)*ag;-D2(1i,N) *any;
endfor
endfor
Compute the eigenvalues of A
Calculate the spectral radius of A and the condition number

Numerical results show that, except for the zero eigenval ue, the following inequalities
hold:
2.18 < —\ < 0.03N*. (2.3.10)

Also, it is observed that

p(A) ~ 0.014N*, for N > 20. (2.3.11)

Comparison with finite difference methods

Let usfirst consider the eigenvalues of the following tridiagonal matrix:
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D= with b-c 0. (2.3.12)

C
b a
The size of the matrix D is (N — 1) x (N — 1). We will show that the eigenvalues
of D are given by

Ak = a+ 2Vbccos (tk/N), 1<k<N-1. (2.3.13)
By definition, the eigenvalues of D satisfy
DV = \V, (2.3.14)

where V' is the eigenvector associated with \. Equivalently, (2.3.14) can be written
as

BVi14aV;+cVi =AV;,  1<j<N-—1, (2.3.153)
Vo=0, Vy=0. (2.3.15b)

In analogy to solving a second-order ODE with constant coefficients, we assume a
specia form of V;, namely V; = 37, where 3 # 0 is a constant to be determined.

Substituting thisinto (2.3.15a) gives
b+ af 4 cf? = \3. (2.3.16)

Since b - ¢ # 0, the above quadratic equation has two roots 5, and GBs. If 31 # Ba,
then the general solution of (2.3.15a) is given by

Vi=c18] + caf3), 1<j<N-1, (2.3.17)

where ¢; and ¢, are two constants. It follows from (2.3.15b) that ¢, + ¢; = 0 and
c1B8Y + e28Y = 0, whichyields (31 /62)"Y = 1. Therefore, we obtain

ﬁ _ ei27rk/N

= , 1<k<N-1 (2.3.18)
B2
Since 5, and (3, are roots of (2.3.16), we have
B1+Be=—(a—N)/c, pif2=0]c (2.3.19)

Combining (2.3.18) and the second equation of (2.3.19) gives
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8 = \/Eeiﬂk/N’ By = \/Ee—zﬁrk:/N'
C C

This, together with the first equation of (2.3.19), leads to (2.3.13).

We now consider the central-difference method for the diffusion operator (2.3.4)
with homogeneous (Dirichlet) boundary conditions. In this case, the correspond-
ing eigenvalue problem is AV = AV, where A is atridiagona matrix of the form
(2.3.12), witha = —2N?,b = ¢ = N2. By (2.3.13), we see that the eigenvalues of
A satisfy

max |\ ~ 4N?, min [\ ~ 2. (2.3.20)
The above resultsindicate that the spectral radius and condition number of the Cheby-
shev collocation method for first- and second-order operators grow like N? and N4
respectively, while those of the finite difference method (at equally spaced points)
grow like N and IN? respectively. Thisrapid growth in spectral radius and condition
number of the Chebyshev collocation method is due to the fact that the smallest dis-
tance between neighboring collocation points behave like N~2 near the boundaries.
While this clustering of the collocation points near the boundaries provide extra res-
olution for problems with thin boundary layers which are present in many physical
situations, it does lead to severe time step restrictions if an explicit scheme is used.
Therefore, it is advised that second or higher derivative operators should be treated
implicitly to alow reasonable time steps.

Exercise 2.3

Problem1 By computing \y.x for N = 30,40, 50, 60 and 70, show that in Cheby-
shev collocation method (using Gauss-L obatto points) the growth of second-derivative
eigenvalues behaves like

Amax ~ —0.047N*  Dirichlet,

N > 30,
Amax ~ —0.014N*  Neumann, N >

30.

Problem 2 What will be the corresponding growth of third-derivative eigenvalues?
Verify your results numerically.

2.4 Chebyshev collocation method for two-point BVPs

BV Pswith Dirichlet boundary conditions
BV Pswith general boundary conditions
Numerical experiments
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In this section, we introduce the Chebyshev collocation method for the linear second-
order two-point boundary-value problem (BVP),

eu’(z) + p(z)u (z) + q(z)u(z) = f(z), z€l:=(-1,1), (24.2)

where ¢ is a (fixed) parameter that controls the singular behavior of the problem,
and p,q and f are given functions. If ¢ is of order 1, the problem is non-singular,
while for sufficiently small ¢, the problem may exhibit singular behavior such as
sharp boundary and interior layers. In the latter case, the problem (2.4.1) iscalled a
singularly perturbed BVP. The boundary condition for (2.4.1) is given by

a_u(—1) +b_u'(-1) = c_, aru(l) + by (1) = ey, (24.2)
Without loss of generality, we assume a > 0. We also assume
a2 +b% #£0, anda_b_ < 0; ai—i—bi #0, andayby > 0;
o(z) %p/(x) >0, Ve (I); (243)
p(1) > 0if by #0, p(—1) <0ifb_ #0.

It is easy to check that the above conditions ensure the well-posedness of (2.4.1)and
(2.4.2).

We now discuss how to solve the problem with e = O(1) by using the Chebyshev
collocation method. The case with 0 < € < 1 will be considered in Section 5.1.

BVPswith Dirichlet boundary conditions
Wefirst consider the simplest boundary conditions:
u(—1) =c_, u(l) = ey (2.4.4)

The Chebyshev interpolation polynomial can be written as
N
uN () =) U;Fj(x), (2.4.5)
=0

where z; = cos(jn/N), 0 < j < N are the Chebyshev-Gauss-Lobétto collocation
points, {Uj}éy: ! are the unknown coefficients to be determined, and Fj(z) is the
Lagrange interpolation polynomial associated with {z; }. The Chebyshev collocation
method is to seek ' in the form of (2.4.5) such that vV (1) = c_, u™V (1) = ¢,



2.4  Chebyshev collocation method for two-point BV Ps 93

and that the equation holds at the interior collocation points:

eully(z;) + p(z;)ul (z;) + q(z;)u (z;) = f(=;), 1<j<N-1 (246)

Now using the definition of the differentiation matrix introduced in the Section 2.1,
we obtain a system of linear equations,

Zl ’Lj +p xz)(Dl)ij + q(xl)élj] Uj (2.4.7)

N-1
iz
= f(xi) — [e(D?)io + p(z:)(DV)io] et — [e(D?)in + p(wi) (D )in] e

for the {U; }1Y e ', where §;; is the Kronecker delta. In the above equations, we have
used the boundary conditions Uy = ¢4, Uy = c_ (noticethat zp = 1 and xny = —1).

To summarize: the spectral-collocation solution for the BVP (2.4.1) with the
Dirichlet boundary conditions (2.4.4) satisfies the linear system

AU = b, (2.4.8)
whereU = [Uy,- -+ ,Un—1]"; the matrix A = (a;;) and the vector b are given by
aij = e(D?)ij + p(x:)(DV)ij + q@i)dyy, 1<, j <N -1,
b = f(z;) — [e(D?*)io + p(z:) (Do) et — [e(D?)in (2.4.9)
+ p(2:) (DN, 1<i<N-1

The solution to the above system gives the approximate solution to (2.4.1) and (2.4.4)
at the collocation points. The approximation solution in the whole interval is deter-
mined by (2.4.5). A pseudo-code is given below:

CODE PSBVP.1
Input N, €, p(x), g(x), £(x), c-, ct
$collocation points: x(j)=cos(nj/N), 0<j<N
$first order differentiation matrix
call CODE DM.3 in Sect 2.1 to get D1
$compute second order differentiation matrix: D2=D1*D1
% compute the stiffness matrix A
for i=1 to N-1 do
for j=1 to N-1 do
if i=j A(i,j)=e*D2(1i,3j)+p(x(1))*D1(i,7)+g(x(i))
else A(i,j)=€*D2(1i,7)+p(x(i))*D1(4,73)
endif
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endfor
% compute the right side vector b
ssl=€*D2(1i,0)+p(x(i))*D1(i,0); ss2=e*D2(i,N)+p(x(i))

*D1 (1i,N)
b(i)=£f(i)-ssl*ci-ss2*Cc_
endfor
% solve the linear system to get the unknown vector
u=A"'b
Output u(l), u(2), ---, u(N-1)

A MATLAB codeisaso provided below:

CODE PSBVP.2
Input N, eps, p(x), g(x), f(x), cminus, cplus
j=[1:1:N-1]; x=[cos(pi*j/N)]1"';
D1=DM1 (N) ; D2=D1"2;
for i=1:N-1
s=x(1); pl=p(s); gl=qgq(s); fl=£f(s);
for j=1:N-1

if i==j
A(i,j)=eps*D2(i+1,j+1)+pl*D1(i+1,j+1)+qgl;
else
A(i,j)=eps*D2(i+1,j+1)+pl*D1 (i+1,j+1);
end
end

ssl=eps*D2 (i+1,1)+pl*D1(i+1,1);
ss2=eps*D2 (i+1,N+1) +pl*D1 (i+1,N+1) ;
b(i)=fl-ssl*cplus-ss2*cminus;

end

u=A\b’ ;

For test problems having exact solutions, afew more lines may be added to compute
the maximum errors:
%$1f the exact solution uexact(x) is given

for i=1:N-1
error (i) =abs (u(i) -uexact (1)) ;

end
xx=N; err=max(error) ;
fprintf (1, '%$16.0f $13.3e \n’, [xx; err]);

The above MATLAB code will be used to compute the numerical solutions for Ex-
ample 2.4.1 in this section and Example 5.1.1 in Section 5.1.
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BVPswith general boundary conditions

We now consider the general boundary conditions (2.4.2). Without loss of gen-
erality, we assume b_ # 0 and by # 0 (otherwise we will have simpler cases). It
follows from (2.4.2) that

N
a Uy +b-> (D')w;Uj = c-, a+U0+b+Z U =cy,
- =
which leads to
N-1

b_(Dl)NoUo + (a_ + b_(Dl)NN> Uy =c_ —b_ (Dl)NjUj,

(]

= (2.4.10)
N—-1
<a+ -+ b+(D1)OO>UO + bJr( ) NUN =cp — by Z (Dl)ojUj.
7=1
Solving the above eguations we find
N-—
=y Z aoU;,  Uy=é_ — Z an;iUj, (2.4.11)

where the parameters ¢, &g, ¢, ay; are defined by
&y = (Jc, - Bc+)/(aci— &), &= (ac+ - ac,)/(ad— &),

Goy = (db-(D*)wj = B+ (DV)o; ) /(ad — ab),

a:=b_(D") o, b:=a_+b_ (DY,

Zi=ay+by (DYoo,  d:=by(D")on.

To summarize: let the constants b_ and b, in (2.4.2) be nonzero. The spectral-
collocation solution for the BVP (2.4.1) with the general boundary condition (2.4.2)
satisfies the linear system

AU = b, (2.4.12)
where A = (a;;)isa(N —1) x (N —1) matrix andb = (b;) isa (N —1)-dimensional
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vector:
ai; = e(D?)i; + p(x:)(DY)ij + ¢idi; — [e(D?)io + p(a:)(D')io] éw,
— [e(D*)in + p(z:)(DY)in] énj,

bi = f(x;) — [e(D?)io + p(x:)(D)io] & — [e(D?)in + p(a;)(DV)in] é-.
(2.4.13)

A pseudo-code is given below:

CODE PSBVP.3
Input N, ¢, p(x), a(x), £(x), c-, ¢y, a—, b_, ay, by
$collocation points: x(j)=cos(mj/N), O0<J<N
$first order differentiation matrix
call CODE DM.3 in Sect 2.1 to get D1
$compute second order ifferentiation matrix
D2=D1*D1
% calculate some constants
ta=a4+*D1(N,0); tb=a_+ay*D1(N,N)
tc=b,+b+*Dl(0,0); td=b+*D1(O,N); te=ta*td-tc*tb
C1=(td*c_-tb*cy) /te; ¢_=(ta*ci-tc*c_)/te
$ compute the stiffness matrix A
for i=1 to N-1 do
ssl=e*D2(1i,0)+p(x(i))*D1(i,0); ss2=€*D2 (i,N)+p(x(i))
*D1 (1i,N)
for j=1 to N-1 do
ss3=(td*ay*D1(N,J)-tb*b *D1(0,73))/te
ss4=(ta*b *D1(0,])-tc*a *D1 (N, J))/te
ssb=ssl1*ss3+s82*s54
if i=J A(i,]j)=e*D2(i,]j)+p(x(1))*D1(i,])
+gq(x (1)) -ss5
else A(i,j)=e*D2(i,])+p(x(i))*D1(1i,7j)-ss5

endif
endfor
$compute the right side vector b: Db(i)=f(i)-ssl¥ci-ss2*¥c_
endfor
% solve the linear system to get the unknown vector
u=A"'b
Output u(l), u(2), ---, u(N-1)

Numerical experiments

In this subsection we will consider two numerical examples. The numerica re-
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sultswill be obtained by using CODE PSBVP. 2 and CODE PSBVP. 3, respectively.
Example2.4.1 Consider the following problem

u +au’ (x) —u(x) = (24+52)e%® + (2 + 222) cos(2?) — (422 +1) sin(z?), (2.4.14)
u(—1) = e +sin(1), u(l) =€ +sin(1).

The exact solution for Example 2.4.1 is u(z) = ¢** + sin(z?). We solve this
problem by using different values of N and compute the maximum error which is
defined by max;<j<n—1|U; — u(z;)|. Itisthe maximum error at the interior collo-
cation points. Here is the output.

N Maximum error N Maximum error
5 2.828e+00 13 6.236e-06
6 8.628e-01 14 9.160e-07
7 1.974e-01 15 1.280e-07
8 3.464e-02 16 1.689e-08
9 7.119e-03 17 2.135e-09
10 1.356e-03 18 2.549e-10
11 2.415e-04 19 2.893e-11
12 3.990e-05 20 3.496e-12

An exponential convergence rate can be observed from the above table. For com-
parison, we also solve Example 2.4.1 using the finite-difference method. We use the
central differences for the derivatives:

Ujr1 —2U; +U,_ Uiy1—Uj_ 2
n . Yit+l J Jj—1 P S =
v h? ’ “ 2h =y
Asusual the mesh points are given by z; = —1 + jh. The maximum errors given by

the finite-difference method are listed below:

N Maximum error N Maximum error
16 3.100e+00 128 4.968e-02
32 7.898e-01 256 1.242e-02
64 1.984e-01 512 3.106e-03

As expected, the convergence rate for the central difference method is 2. The
error obtained by the finite differences with N = 512 is almost the same as that
obtained by the spectral method with N = 10.

The following example deals with BV Ps with the general boundary conditions.
Wefollow CODE PSBVP. 3 and use MATLAB to get the following results.
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Example2.4.2 Consider the same problem as above, except with different boundary
conditions:

u(—1)—u/(=1) = —de P +sin(1)+2cos(1), u(1)+u'(1) = 6e5+sin(1)+2cos(1).

The exact solution isalso u(z) = €® + sin(z?).

The numerical results are given below:

N Maximum error N Maximum error
5 3.269e+01 13 3.254e-04
6 9.696e+00 14 4.903e-05
7 2.959e+00 15 8.823e-06
8 7.292e-01 16 1.164e-06
9 1.941e-01 17 1.884e-07
10 3.996e-02 18 2.204e-08
11 9.219e-03 19 3.225e-09
12 1.609e-03 20 3.432e-10

It is observed that the convergence rate for problems with general boundary con-
ditionsis slower than that for problems with Dirichlet boundary conditions.

Exercise 2.4
Problem 1 Consider the following problem with one boundary layer,
1
eU"+§U'(x) =0, x € (—1,1),

withU(—1) = 0and U(1) = 1. This problem has the exact solution

Ux) = (1 — e_(xﬂ)/%) (1 - e_l/e) - .

(1) Solve this problem for ¢ = 1072 with N = 64,128 and ¢ = 10~* with
N = 128, 256.

(2) Calculate the Lt-error, Y- ju (2;) — U (x;)]/(N — 1), and aso plot the
point-wise errors.

Problem 2 Use the Chebyshev spectral method to solve the nonlinear Poisson-
Boltzmann equation(165!:

Ugy = €Y, —-l<z<1, u(—=1) =wu(l) =0. (2.4.15)
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(Hint: Thisisanonlinear problem. A simple iterative method can be used to
solve the resulting nonlinear system. Namely, solve D24,y = exp(,14, Where D?
isan (N — 1) x (N — 1) matrix obtained by stripping D? of its first and last rows
and columns. In MATLAB notation: D? = D*(1: N —1,1: N —1).)

2.5 Collocation method in the weak form and preconditioning

Collocation methods in the weak form
Finite difference preconditioning
Finite element preconditioning

The collocation method presented in Section 2.4 is derived by asking that the ap-
proximation solution satisfy exactly the boundary conditions and the equation at the
interior collocation points. Alternatively, we can also define an approximate solution
through a variational formulation which is more suitable for error analysis and for
designing effective preconditioners.

Collocation methodsin the weak form

A variational method usually preserves essentia properties of the continuous
problem such as coercivity, continuity and symmetry of the bilinear form, and leads
to optimal error estimates.

Consider (2.4.1) and (2.4.2). Without loss of generality, we shall assume ¢. = 0.
We introduce

HXI)={ve H' () :u(-1)=0ifb_ =0; u(1) =0if by =0}, (25.1)

and

0 ifa_b_ =0 0 ifa by =0
. "a SR b =0 059
a,/b, |f afbf ?é O, (I+/b+ |f a+b+ ;é O

Then, the Galerkin method with numerical integration for (2.4.1) and (2.4.2) with
cy =0is Finduy € Xy = Py N H}(I) such that

bn(un,vy) = (f,v)n,  Voy € Xy, (25.3)
where

by (un,vn) = e{uly, V)N + ehyuy(Doy (1) — eh_uy(—=1)vy(-1)
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+ (p(z)uly, vn) N + (g(@)un, vn) N,

with (-, -) ;- denoting the discrete inner product associated with the L egendre-Gauss-
Lobatto quadrature. We note that an essential difficulty appears at the boundaries
with mixed boundary conditions if we want to use the Chebyshev-Gauss-L obatto
quadrature. This difficulty can be overcome by replacing Xy by Xy = {u € Py :

azu(£1) + bru(£1) = 0}, see Section 3.1.

We now attempt to re-interpret (2.5.3) into a collocation form. To fix theidea, we
assume b # 0 and denote

N
UN('T) = ZUN(xk)hk:(x)v w = (UN(xO)qu(xl)v T 7uN('TN))T7
k=0

ak; = b (hj, hy), A = (ag;)p j—o;

f_: (f(xo)vf(xl)ﬂ e 7f(xN))T7 W= diag(W07w17 T 7WN)7

where {wk}ﬁzo are the weights in the Legendre-Gauss-L obatto quadrature. Then,
(2.5.3) isequivalent to the linear system

Aw = WT. (2.5.4)

Theentries a;,; can be determined asfollows. Using (1.2.22) and integration by parts,
we have

(W W) N = (R, hy,) = — (R, hi) + Bhy] 1

(2.5.5)
= —(D?)yjwi + dojdor — AN;ONE-

Consequently,

apj =[—e(D?)kj + plar)drj + q(r)Ok;]w + €(doj + hydoj)don

) (2.5.6)
_€(de+h—5Nj)5Nk, 0<k,j<N.

Note that here the matrix A isof order (N + 1) x (N + 1), instead of order (N —
1) x (IV — 1) asin the pure collocation case. We observe that

<u§\7, h;€>N = —uy\;(xk)wk + UlN(l)(sOk: — u?v(—l)(st.

Thus, taking vy = hj(x) in (2.5.3) for j = 0,1,--- , N, and observing that wy =
wn =2/N(N + 1), wefind

—eun () + plaj)un (x;) + a(zj)un(z;) = fz), 1<j<N -1,
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b 2
= T (2.5.7)

+1) + byuy(£l) = ——"F—
ey (D) +beun(E1) = "2y

where
T = f(E1) = {—eu (£1) + p(£1)uly(£1) + g(£)un(£1)}.

We see that the solution of (2.5.3) satisfies (2.4.1) exactly at the interior collocation
points {x;}}";", but the boundary condition (2.4.2) (with . = 0) is only satisfied
approximately with an error proportional to the residue of the equation (2.4.1), with
u replaced by the approximate solution uy;, a the boundary. Thus, (2.5.3) does not
correspond exactly to a collocation method and is referred to as collocation method
in the weak form. We note however that in the Dirichlet case (i.e. by = 0), the
collocation method in the weak form (2.5.7) is equivalent to the usual collocation
method.

The collocation methods, either in the strong form or weak form, lead to a full
and ill-conditioned linear system. Hence, a direct solution method such as Gaussian
elimination is only feasible for one-dimensional problems with a small to moderate
number of unknowns. For multi-dimensional problems and/or problems with large
number of unknowns, an iterative method with an appropriate preconditioner should
be used. To thisend, it is preferable to first transform the problem (2.4.1) and (2.4.2)
into a self-adjoint form. We observe first that without loss of generality we may
assume c. = 0 by modifying the right-hand side function f. Then, multiplying the
function

a(z) = exp <—% / p(m)dx) (25.8)

to (2.4.1) and noting that —ed (z) = a(z)p(x), we find that (2.4.1) and (2.4.2) with
c+ = 0 can be written as

= (a(x)u'(2)) + b(x)u = g(x), w€(-11),

, , (25.9
a_u(—1)+b_u'(-1) =0, agu(l)+biu'(1)=0,

where b(z) = a(x)q(z)/e and g(z) = a(x) f(z)/e.

Finite difference preconditioning

The collocation method in the strong form for (2.5.9) is. Find uyy € Py such
that

— (auy) (zj) + b(zj)un(z;) = g(z;), 1<j<N-1,

/ / (2.5.10)
a_un(—1)+b_un(=1) =0, ayun(l)+brun(l)=0.
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As demonstrated earlier, (2.5.10) can be rewritten asan (N — 1) x (N — 1) linear
system

Aw = f, (25.11)
where the unknowns are {w; = uy(z;)})5" w = (wy,--- ,wy_1)" and f =
(f(z1), -, flxzn_1))". Theentriesof A aregivenin Section 2.1.

As suggested by Orszag 121, we can build a preconditioner for A by using a
finite difference approximation to (2.5.9). Let us define

~ 1
hi, = xp—1 — xp, hy, = 5(9%—1 — Tht1), ( )
25.12

1
Tyl = §($kz+1 tag), a1 = alzgg ).

Then, the second-order finite difference scheme for (2.5.9) with first-order one-sided
difference at the boundaries reads:

a. 1 a, 1 a. 1
1—5 1—5 i+5
—=—2wi—1+ ( e ) wj

Bihz iLth hihit1
a;, 1

s wit1 + b(x)w; = g(z;), 1<i< N -1, (2.5.13)
hihit1

a—wy +b_(wy-1 —wn)/hn =0, arwo + by (wy — wy)/hy = 0.

We can rewrite (2.5.13) in the matrix form
Apgw = f, (25.14)

where Ay, is a non-symmetric tridiagonal matrix. It has been shown (cf. [125],
[80], [91] ) that in the Dirichlet case, Ajidl is an optimal preconditioner for A, but
cond(A]leA) deteriorates with other boundary conditions. The main reason for this
deterioration is that the collocation method in the strong form with non-Dirichlet
boundary conditions cannot be cast into a variational formulation.

Remark 2.5.1 The above discussion isvalid for both the Legendre and Chebyshev
collocation methods.

Finite element preconditioning

A more robust preconditioner can be constructed by using a finite element ap-
proximation, which is always based on a variational formulation. Thus, it can only
be used for the preconditioning of collocation methods which can be cast into avaria-
tional formulation. Namely, the collocation method for the Dirichlet boundary condi-
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tions or the collocation method in the weak form for the general boundary conditions.

We consider first the treatment of the general boundary conditions. Let us denote
Xp={ueH(I) uly,, . € Pr,i=0,1,--- N —1}. (2.5.15)

Then,the piecewise linear finite element approximation to (2.5.9) is. Find w, € X,
such that for all v, € X,
br(un, vn) = (f, vn)h, (2.5.16)

where
br(up,vp) :=(auy,, v}y + a(1)hiup(1)v,(1)
— a(=1)h—up(=1)vp(=1) + (bun, vn)n,

and (-, -}, isan appropriate discrete inner product associated with the piecewise linear
finite element approximation.

To demonstrate the idea, weassume by # 0. Let usdenotefork =1,--- , N —1,

T — Th+1
) Tp — fL“_k+1’ MRS [karla xk]a
Th—1 — Tk
0, otherwisg;
~ | 5 RS [xlax()]v
ho(z) = ¢ To — 21 (2.5.18)
0, otherwisg;
IN—-1— T
. —, X E|TN,TN-1],
hy(x) =<¢ TN-1 — TN lon, o] (25.19)
0, otherwise.

It can be verified that X}, = span{hq, h1, - - - , hy}. Wefurther set

N
un(@) =Y un(zr)hi(x), w = (up(xo), -, up(xn))",
k=0

~ ~

bkj = bh(iljvi"k)ﬂ Bfe = (bkj);f\szo’ Mkj = <hj’hk>h’

Mfe = (mkj);c\{j:m [= (f(x0)7 e 7f(xN))T'
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Then, (2.5.16) is equivalent to the linear system
Byew = My.f or M;'Byew = f. (2.5.20)

On the other hand, as demonstrated earlier, we can formulate the linear system asso-
ciated with the Legendre-collocation method for (2.4.5)—(2.5.9) in the weak form

Ao =Wf or W lAw = f. (25.21)

Since both (2.5.21) and (2.5.20) provide approximate solutions to (2.5.9), it isknown
(cf. [127]) that M ;1 By, isagood preconditioner for W-LA.
Exercise 2.5

Problem 1 Consider the problem
—Ugy + U = f, u(—1) =0, u'(1) = 0.
Compute the condition number of the preconditioner matrix ijM feW—lA de-

scribed above for N = 8, 16, 32, 64.

Problem 2 Solve the Poisson-Boltzmann equation described in Problem 2 of Sec-
tion 2.4 by using a preconditioned iterative method using a finite element precondi-
tioner.
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An aternative approach to spectral-collocation is the so called spectral-Galerkin
method which is based on a variational formulation and uses, instead of Lagrange
polynomials, compact combinations of orthogonal polynomials as basis functions. It
will be shown that by choosing proper basis functions, the spectral-Galerkin method
may lead to well conditioned linear systems with sparse matrices for problems with
constant or polynomia coefficients. In this chapter, we present the Legendre- and
Chebyshev-Galerkin algorithms and their error analysisfor aclass of one-dimensional

problems.

3.1 General setup

Reformulation of the problem
(Weighted) Galerkin formulation
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Wewill demonstrate the ideas of spectral-Galerkin methods for the two-point boundary-
value problem:

—eU" +p@)U +q(z)U =F, zel=(-1,1), (3.1.1)
with the general boundary condition
a_U(-1)+b_U(-1)=c_, arUQ)+b U (1)=cy. (3.1.2

Thisincludes in particular the Dirichlet (a. = 1 and b = 0), the Neumann (a = 0
and b1 = 1), and the mixed (a— = by = 0 or a;. = b_ = 0) boundary conditions.
Whenever possible, we will give a uniform treatment for all these boundary condi-
tions. We assume that a4, b+ and c satisfy (2.4.3) so that the problem (3.1.1) and
(3.1.2) iswell-posed.

Unlike the pseudospectral or collocation methods which require the approximate
solution to satisfy (3.1.1), the Galerkin method is based on variational formulation.
Hence, it is desirable, whenever possible, to reformulate the problem (3.1.1) and
(3.1.2) into aself-adjoint form.

Reformulation of the problem

L et usfirst reduce the problem (3.1.1) and (3.1.2) to a problem with homogeneous
boundary conditions:

eCase 1 atr =0 and by #0. Weset i = 322 + yx, where 3 and y are
uniquely determined by asking @ to satisfy (3.1.2), namely,

—2b_B+b_vy=c_, 2b,0+byy=cy. (3.1.3)

eCase 2 a% +a? #0. Weset @ = Bz + v, where 3 and ~ can again be
uniquely determined by asking that « to satisfy (3.1.2). Indeed, we have

(—a—+b-)B+a-y=c_, (at+by)B+ary=cy, (3.1.4)
whose determinant is
DET = —a_ay +b_ar —a_ay —bia_.

Thus, (2.4.3) impliesthat b— < 0 and b, > 0 which imply that DET < 0.
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Wenowsetu =U —aand f = F — (—et” + p(x)@’ + ¢(x)a). Then u satisfies the
eguation
—eu +plx)u +q(x)u=f, inl=(-1,1), (3.1.5)

with the homogeneous boundary conditions
a_u(=1)+b_u'(=1) =0, aru(l)+biu' (1) =0. (3.1.6)

Next, we transform the above equation into a self-adjoint form which is more suitable
for error analysis and for developing efficient numerical schemes. To this end, mul-
tiplying the function (2.5.8)«3.1.5) and noting —ed (x) = a(x)p(zx), we find that
(3.1.5) isequivaent to

—(a(z)u'(x))" + b(x)u = g(x), (3.1.7)
where b(z) = a(x)q(z)/e and g(z) = a(x) f(z)/e.

(Weighted) Galerkin formulation
We shall ook for approximate solutions of (3.17) and (3.16) in the space

XNy = {U € Py : aiv(:lzl) + bivl(il) = 0} (3.1.8)

Note that we require the approximate solution satisfies the exact boundary condi-
tions. Thisisdifferent from ausual finite element approach where only the Dirichlet
boundary conditions are enforced while the general boundary conditions (3.1.6) are
treated as natural boundary conditions. The main advantage of our approach is that
it leads to sparse matrices for problems with constant or polynomia coefficients (see
the next two sections), while the disadvantage is that a stronger regularity on the
solution isrequired for convergence.

Let w(x) be apositive weight function and Iy : C(—1,1) — Px be the interpo-
lating operator associated with Gauss-Lobatto points. Then, the (weighted) spectral-
Galerkin method for (3.17) and (3.16) isto look for uy € X such that

—(Un(a(x)uy)];vn)w + (In(b(@)un), v8)w = (INf, 0N )w Vun € Xn,
(3.1.9

Remark 3.1.1 We note that (3.1.9) is actualy a hybrid of a Galerkin and a pseu-
dospectral method since a pure Galerkin method would not use any interpolation
operator in (3.1.9). However, since, for example, the integral | ; fvn dz cannot be
computed exactly so f, and other products of two functions, are always replaced by
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their interpolants in practical computations. We shall take this approach throughout
this book and still call it a Galerkin method.

Given a set of basis functions { ¢y }x—0.1.... n—2 for X, we define

Pt] )

fk:(INf7¢k?)w7 f:(f(]?flu"'afoQ)T;
N—-2

uy(r) = Z Undn(z), @= (fig, 1, ,ln—2)", (3.1.10)
n=0

sk = —([In(a(@)0))], d)ws Mg = (In(0(2) D)), Pr)w-

Hence, the stiffness and mass matrices are
S = (skj)ogk,j<N72 s M = (mkj)0<k,j<N72 . (3111)

By setting uy (z) = Y02 G (z) and vy () = ¢;(2),0 < j < N—2,in(3.1.9),
we find that the equation (3.1.9) is equivalent to the linear system

(S+ M)u = f. (3.1.12)

Unfortunately, for problems with variable coefficients a(z) and b(z), S and M are
usualy full matrices, and it is very costly to compute them and to solve (3.1.12).
However, as we shall demonstrate in the next two sections, S and M will be sparse
(or have very specia structures) for problems with constant coefficients. Then, in
Section 3.5, we shall show how to use preconditioned iterative approach to solve
(3.1.12) with variable coefficients.

Exercise 3.1
Problem 1 Let H!(I) and h. be defined asin (2.5.1) and (2.5.2). Then, the usual
variational formulation for (3.1.7) with (3.1.6) is: Find u € H!(I) such that

(au',v") + a(V)hypu(1)v(1) — a(=1)h_u(—1)v(=1) + (bu,v)
=(g,v),  Yve HII). (3.1.13)

1. Show that a sufficiently smooth solution of (3.1.13) is a classical solution of
(3.1.7) with (3.2.2).

2. Let Xy = Py N HL(I). Write down the (non-weighted) Galerkin approxima-
tion in Xy for (3.1.13) and determine the corresponding linear system asin (3.1.12)
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with (3.1.10) and (3.1.11).

3. Attempt to construct a weighted Galerkin approximation in Xy to (3.1.13)
and explain the difficulties.

3.2 Legendre-Galerkin method

Basis functions, stiffness and mass matrices
Algorithm

Toillustrate the essential features of the spectral-Galerkin methods, we shall consider,
here and in the next two sections, the model problem

—u" + au = f, inl = (—1,1), (3.2.0)
atu(£1) + b/ (£1) = 0. (3.2.2)
We assume that « is a non-negative constant. Extension to more general problems
(2.4.1) and (2.4.2) will be addressed in Section 3.5.
In this case, the spectral Galerkin method becomes: Find uy € X such that

/u?vv’Ndx—l—a/quNdx:/IvaNdx, Voy € Xn, (3.2.3)
I I I

which we refer to as the Legendre-Galerkin method for (3.2.1) and (3.2.2).

Basis functions, stiffness and mass matrices

Theactual linear system for (3.2.3) will depend on the basis functions of Xy. Just
asin the finite-element methods, neighboring points are used to form basis functions
SO as to minimize their interactions in the physical space, neighboring orthogonal
polynomials should be used to form basis functions in a spectral-Galerkin method so
asto minimize their interactions in the frequency space. Therefore, we look for basis
functions of the form

ér(x) = Li(x) + agLy41(x) + by Lo (). (3:24)

Lemma3.2.1 For all k£ > 0, there exist unique {a, by, } such that ¢ (x) of the form
(3.2.4) satisfies the boundary condition (3.2.2).

Proof Since Ly(+1) = (£1)F and L} (+1) = 1(£1)*~1k(k + 1), the boundary
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condition (3.2.2) leads to the following system for {«, by }:

(as + by (kb + 1)(k +2)/2}ap + {as + bo(k +2)(k +3)/2}by
=—ay —byk(k+1)/2,

—am = b (k4 1)k +2)/2}ag + {a— — b_(k + 2)(k +3)/2}bx
=—a_+b_k(k+1)/2.

(3.2.5)

The determinant of the above system is
DET, =2aya_+a_by(k+2)*—arb_(k+2)*—b_ by (k+1)(k+2)*(k+3)/2.

We then derive from (2.4.3) that the four terms (including the signs before them) of
DET,, are al positive for any k. Hence, {a,bx} can be uniquely determined from
(3.2.5), namely:

ay = {<a++b—(kz+2)(k:+3)><—a +—k:(l<:+1)>
—(a, b=k +2) k:+3)<—a+——k:(k:+1>}/DETk,
bk:{<a++b—(k}+1 k:+2>< —k:k:+1)>
+(a, b k1) k:+2)<—a+——+k:(k:+1>}/DETk
This completes the proof of this lemma. O

Remark 3.2.1 We notein particular that
eif ap = 1 and by = 0 (Dirichlet boundary conditions), we have ¢, = 0 and
b, = —1. Hence, we find from (1.4.12) that

or(2) = Lip(z) — Lpgo(z) = ————

e if ax = 0 and by = 1 (Neumann boundary conditions), we have ¢, = 0 and
b = —k(k+1)/((k+2)(k+3)).

Itisobvious that {¢y(x)} arelinearly independent. Therefore, by a dimension argu-
ment we have

Xy =span{¢(z) : k=0,1,--- ,N —2}.

Remark 3.2.2 Inthe very specia case —u,, = f, u,(+1) = 0, with the condition
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f_ll fdz = 0, since the solution is only determined up to a constant, we should use
Xy =span{¢p(z): k=1,--- N —2}.

This remark applies also to the Chebyshev-Galerkin method presented below.

Lemma 3.2.2 The stiffness matrix S isa diagonal matrix with
Skk = —(4]€—|—6)bk, k=0,1,2,---. (3.2.6)

The mass matrix M is a symmetric penta-diagonal matrix whose nonzero elements
are

(2 L2t p 2 =k
a —_— =
%+ 1 opy3 ko1 JT
b2 k1 (3.2.7)
gk kj ak2k’—|—3 Ak+1 k2k’+5, J )
2
b ——— | =kt 2.
| "2k 15 J

Proof By integration by parts and taking into account the boundary condition (3.2.2),
we find that

s = = [ oh(a) oy(a)do
= [ @ dh(ona+ Fou),0) — Fo-Nes 1) @29
—— [ onla) 8y a)de = s,
wherea. /b, (resp. a_ /b_) should be replaced by zero when b, = 0 (resp. b_ = 0).

It is then obvious from (3.2.8) and the definition of {¢(x)} that S is a diagonal
matrix. Thanksto (1.3.22e) and (1.3.19), wefind

Skk = _bk/L;c/JrQ(x)Lk(x)dx
I

1
= —by, (kﬁ + 5) (4k +6) /L%dx = —bi(4k + 6).
I

The nonzero entries for M can be easily obtained using (1.3.19). O
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Remark 3.2.3 Animmediate consequence isthat {¢ } . form an orthogonal basis
in X with respect to the inner product —(u, vy ). Furthermore, an orthonormal

basis of X isgiven by {¢, := _mm}g
Algorithm
Hence, by setting uy = S n_ @k, @ = (o, 1, ,in—2)", and
fk:(INfu¢k)7 f:(f(]?flu"' 7fN72)T7 (329)

the linear system (3.2.3) becomes
(aM + S)u = f, (3.2.10)

where M and S are (N —2) x (N —2) matrices with entries m;; and s;;, respectively.

In summary: given the values of f at LGL points {z; }o<i<n, We determine the
values of uy, solution of (3.2.3), at these LGL points as follows:

1. (Pre-computation) Compute LGL points, {a, br} and nonzero elements of .S
and M;

2. Evaluatethe Legendrecoefficientsof 1y f () from { f (z;)} ., (backward Leg-

endre transform) and evaluate f in (3.2.9);

Solve @ from (3.2.10);

Determine {1}V, suchthat > 2 it () = 321 15 L (2);

5. BEvaluate u y(x;) = Zf\iouzL,( i), j = 0,1,--- | N (forward Legendre
transform).

> w

A pseudo-code outlines the above solution procedure is provided below:

CODE LG-PSN-1D
Input N, collocation points zp and f(zx) for k=0,1,---,N
Compute ap, bg, Skx, Mk
$Backward Legendre transform
for k=0 to N-1 do
Ih=NINTT Za o f(@ )LL&;J))Z
endfor
gy S0 o) s
$Evaluate f from jg:(Z: —09iLi(x), dr(x))
for k=0 to N-2 do
fr=gx/ (k+3)+argri1/(k+3)+brgrr2/(k+3)
endfor
Solve (S+aM)u=f
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o N—2 . N
$Evaluate gy from ., d;¢;(x)=3_;_,9;L;(z)
go=Uuo, g1=u1+aoUo
for k=2 to N-2 do

Gr=Tp+ag_1Up—1+bp_2Ug_2
endfor
gN—1=aN_—2UN_2+by_3lN_3, gnN=bDn_2ln_2
$forward Legendre transform
for k=0 to N do

~ N

Uk:ijo g5 Lj(zk)
endfor
Output g, u1,...,UN

Although the solution of the linear system (3.1.12) can be found in O(N) flops,
the two discrete Legendre transforms in the above procedure cost about 2\? flops.
To reduce the cost of the discrete transforms between physical and spectral spaces,
a natural choice is to use Chebyshev polynomials so that the discrete Chebyshev
transforms can be accelerated by using FFT.

Exercise 3.2

Problem 1 Continue with the Problem 1 in Section 3.1. Let a. = 0 and take
a(x) = b(x) = 1. Construct a set of basis functions for X,y and derive the corre-
sponding matrix system. Compare with the Legendre-Galerkin method in this sec-
tion.

Problem 2 Consider the problem
U — Ugy = f; u(_l) =0, ’U,(l) =1,
with the exact solution:
0, x€[-1,0],
u(z) =
7,z € (0,1],
where~ = 4, 5, 6, and define
lu = un e = (0 —un,u—un)nw = > (u—un)*(z;)wi,
i=0

where {z; } are the (Legendre or Chebyshev) Gauss-Lobatto points and {w; } are the
associated weights.

Solve the above problem using the Legendre-Galerkin method. Take N = 2
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withi = 4,5,6,7,8,9. Plot log ||lu — un||n/log;y N for each ~. Explain your
results.

3.3 Chebyshev-Galerkin method

Basis function, stiffness and mass matrices
Algorithm

Weset w(z) = (1 — x2)‘% and fy = Inf which is the Chebyshev interpolation
polynomial of f relative to the Chebyshev-Gauss-Lobatto points. Then (3.1.9) be-
comes

—/u’](,vad:):—l—a/quNw(:):)dx—/IvaNw(x)d:):, Vony € Xn,
I I I

(3.3.1)
which we refer to as the Chebyshev-Galerkin method for (3.2.1) and (3.2.2).
Basis functions, stiffness and mass matrices
As before, we would like to seek the basis functions of Xy of the form
¢k(x) = Tk({l?) + akaJrl(x) + kakJrQ(x). (332)
Lemma3.3.1 Let usdefine
ar = — {(as + by (k +2)*)(—a_ + b_k?)
—(a_ —b_(k+2)?)(—ay — b k) /DETy,
(0- = b=+ 2)(-a, ~ by")} /DET, 333
b = {(ay + by(k+1)*)(—a— +b_k*)
+(a— —b_(k+1)*)(—ay — b k?)} /DETy,
with
DETy = 2aya_ + (k+ 1)%(k +2)*(a_by —ayb_ —2b_b,). (3.3.4)
Then
or(x) = Ti(z) + apThy1 () + by Thyo(2) (3:3.5)

satisfies the boundary condition (3.2.2).
Proof Since Tj,(+1) = (£1)F and T} (£1) = (£1)*~'%?, we find from (3.2.2) that
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{ag, b, } must satisfy the system

(at + by (k+ 1)) ap+(ag + by (k+2)*)by = —ay — byk?,

k:
3.36
—(a— —b_(k+1)Hap+(a_ —b_(k+2)*)bp = —a_ +b_k?, (336)

whose determinant DET}, is given by (3.3.4). Asin the Legendre case, the condition
(2.4.3) impliesthat DET # 0. Hence, {ay, by} are uniquely determined by (3.3.3).
]

Therefore, we have by a dimension argument that Xy = span{¢(z) : k = 0,
1,--+,N—2}. Oneeasly derivesfrom (1.3.2) that the mass matrix M isasymmetric
positive definite penta-diagonal matrix whose nonzero elements are

ey (L+af +83), j=Fh,
s .
Ml = Myj = 5(% +agy1be), J=kA+1, (3.3.7)
s
—b i =k -+ 2
5 Ok J + 2,

where ¢y = 2 and ¢;, = 1 for k > 1. However, the computation of s;; is much more
involved. Below, we derive explicit expressions of s, for two special cases.

Lemma3.3.2 Forthecaseay = 1and by = 0 (Dirichlet boundary conditions), we
have a;, = 0, b, = —1 and

2n(k+1)(k+2), j=k
skj = < Am(k + 1), j=k+2,k+4,k+6,-- . (33.8)
0, j<korj+kodd

For the case a1 = 0 and b, = 1 (Neumann boundary conditions), we have ¢, = 0,
by = —k*/(k +2)?, and

2n(k +D)k?/(k+2), j=k,
skj =< 4mi2(k+1)/(k+2)? j=k+2,k+4,k+6,---, (33.9)
0, j<korj+kodd.

Proof One observes immediately that s,; = — [; ¢jrwdz = 0 for j < k. Hence,
S is an upper triangular matrix. By the odd-even parity of the Chebyshev polynomi-
als, we have also s;; = 0 for j + & odd.
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Owingto (1.3.5), we have

T () = (k + 2)((k + 2)° ~ K)Ti(2)
k (3.3.10)
+

ok D(k+ 202 — (k — 2))Tyo(z) + - -

We consider first the case ap. = 1 and by = 0. From (3.3.3), we find ¢x(x) =
Ti(z) — Ti42(x). It follows immediately from (3.3.10) and (1.3.2) that

(3.3.11)
=(k+2)((k 4+ 2)? — k*)(Ty(x), T () = 27(k + 1)(k +2).

Setting ¢ (z) = Zi:o d,T,,(x), we derive, by asimple computation using (3.3.10),
L JaG DG+, n=j,
" {(j+2)3 =53 —2n%}/cp,, n <.
Hencefor j = k+ 2,k +4,---,wefind

— (8] (), o (%)) = di(Ti (), T () — diy2(Thr2(2), Ty (2))w
=4n(k +1).
Thecase a4+ = 0 and b4 = 1 can betreated in asimilar way. O

Algorithm

The Chebyshev-Galerkin method for (3.2.1) and (3.2.2) involves the following
steps:

1. (Pre-computation) Compute {ay, by, } and nonzero elements of .S and M

2. Evaluate the Chebyshev coefficients of Iy f(x) from { f(z;)} Y, (back-
ward Chebyshev transform) and evaluate f;

3. Solvew from (3.1.12);

4. Evduate uy(z;) = SN 2 tigi(x;), j = 0,1,--- , N (forward Cheby-
shev transform).

Note that the forward and backward Chebyshev transforms can be performed by us-
ing the Fast Fourier Transform (FFT) in O(N log, N') operations. However, the cost
of Step 3 depends on the boundary conditions (3.2.2). For the special but important
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cases described in the above Lemma, the specia structure of .S would alow us to
solve the system (3.1.12) in O (V) operations. More precisely, in (3.3.8) and (3.3.9),
the nonzero elements of S take the form s;,; = a(j) * b(k), hence, aspecial Gaussian
elimination procedure for (3.1.12) (cf. [139]) would only require O(N) flopsinstead
of O(N?3) flops for agenera full matrix.

Therefore, thanks to the FFT which can be used for the discrete Chebyshev
transforms, the computational complexity of the Chebyshev-Galerkin method for the
above casesis O(N log N), which is quasi-optimal (i.e., optimal up to alogarithmic
term).

The following pseudo-code outlines the solution procedure for (3.1.5) by the
Chebyshev-Galerkin method:

CODE CG-PSN-1D
Input N
Set up collocation points z: x(j)=cos(nj/N), 0<j<N
Set up the coefficients ¢x: ¢(0)=2, ¢(N)=2, ¢c(j)=1, 1<j
<N-1
Input f(zx)
Compute ag, brp, skj, mi;
$Backward Chebyshev transform
for k=0 to N do
2 N .
9=z~ ijo %f(xj) cos (kjm/N)
endfor
) r N
$Evaluate [ from fi=(3_;_,9;7}(2), ¢r(z))
Jo=%(2g0+aog1+bog2)
for k=1 to N-2 do
fe=5 (gr+argr+1+brgri2)
endfor
Solve (S+aM)u=f
° N—-2 . N
$Evaluate gy from } . d;¢;(2)=>";_,9;T;(x)
go=1o, g1=U1+aglo
for k=2 to N-2 do
Gr=Tp+ag_1Up_1+bp_2Ug_2
endfor
gN-1=an 20N _2+by_3lUN_3, gnN=bN_2UN_2
$forward Chebyshev transform
for k=0 to N do
N N .
uk=§:jzogjcos(kjw/AU
end

Output g, u1,...,UN
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Exercise 3.3

Problem 1 Repeat the Problem 2 in Section 3.2 with the Chebyshev-Galerkin
method.

3.4 Chebyshev-L egendre Galerkin method

The main advantage of using Chebyshev polynomials is that the discrete Chebyshev
transforms can be performed in O(N log, V) operations by using FFT. However, the
Chebyshev-Galerkin method leads to non-symmetric and full stiffness matrices. On
the other hand, the Legendre-Galerkin method leads to symmetric sparse matrices,
but the discrete Legendre transforms are expensive (O(N?) operations). In order to
take advantages and overcome disadvantages of both the Legendre and Chebyshev
polynomials, one may use the so called Chebyshev-Legendre Galerkin method:

a/quNdx—l—/u’Nv’Ndx:/I]CVfUNdx, (34.1)
1 I I

where I5; denotes the interpol ation operator relative to the Chebyshev-Gauss-L obatto
points. So the only difference with (3.2.3) is that the Chebyshev interpolation oper-
ator I5; is used here instead of the Legendre interpolation operator in (3.2.3). Thus,
as in the Legendre-Galerkin case, (3.4.1) leads to the linear system (3.1.12) with «,
S and M defined in (3.1.10) and (3.2.6) and (3.2.7), but with f defined by

S = /I 5 f dnde, F=(foufro fno)". (34.2)

The solution procedure of (3.4.1) is essentially the same as that of (3.2.3) except
that Chebyshev-Legendre transforms (between the value of a function at the CGL
points and the coefficients of its Legendre expansion) are needed instead of the Leg-
endre transforms. More precisely, given the values of f at the CGL points {z; =
cos(im /N ) o<i<n, we determine the values of uy (solution of (3.1.9)) at the CGL
points as follows:

1. (Pre-computation) Compute {ay, by, } and nonzero elements of .S and M;

2. Evaluate the Legendre coefficients of IS, f(x) from {f(x;)}Y, (back-
ward Chebyshev-Legendre transform);

3. Evaluate f from (3.4.2) and solve @ from (3.1.12);

4. BEvauate uy (;) = YN o2 tidi(z;), j = 0,1,--- , N (“modified” for-
ward Chebyshev-Legendre transform).
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The backward and forward Chebyshev-L egendre transforms can be efficiently imple-
mented. Indeed, each Chebyshev-Legendre transform can be split into two steps:

1. Thetransform between its values at Chebyshev-Gauss-Lobatto points and the
coefficients of its Chebyshev expansion. Thiscan bedonein O(N log, N) operations
by using FFT.

2. Thetransform between the coefficients of the Chebyshev expansion and that of
the Legendre expansion. Alpert and Rohklirt? have developed an O(V)-algorithm
for this transform, given a prescribed precision.

Therefore, the total computational cost for (3.4.1) is of order O(N log, N). The
algorithm in [2] is based on the fast multipole method (cf. [65]). Hence, it is most
attractive for very large N. For moderate IV, the algorithm described below appears
to be more competitive.

Let uswrite
N N
px) =Y fiTi(x) =Y giLi(x),
i=0 i=0

f:(vafla"'afN)Tv g:(907glv"'vgN)T'
What we need is to transform between f and g. The relation between f and g can
be easily obtained by computing (p, 7;)., and (p, L;). In fact, let us denote

2 1
Q5 = _(E7Lj)W7 b’L] = (Z+ _> (LZ,J}),

C; T 2

wherecy =2and¢; =1for¢ > 1, and

A= (ai)hi—0, B = (bij)iizo-
Then we have
f—Ag, g=DBf. AB=BA=I. (3.4.3)

By the orthogonality and parity of the Chebyshev and Legendre polynomials, we
observe immediately that

a;j =bi; =0, fori> jori+jodd.

Hence, both A and B only have about %N 2 nonzero elements, and the cost of each
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transform between f and g is about %N 2 operations. Consequently, the cost of each
Chebyshev-L egendre transform is about (3N log, N + 4N) + N2 operations as
opposed to 2N operations for the Legendre transform. In pure operational counts,
the cost of the two transforms is about the same at N = 8, and the Chebyshev-
Legendre transform costs about one third of the Legendre transform at V = 128 (see
[141] for computational comparisons of the three methods).

The one-dimensional Chebyshev-Legendre transform can be done in about
5 (1.,
§N10g2 N + 4N ) 4+ min §N ,CN | ~O(Nlogy N)

operations, where C' is alarge constant in Alpert and Rohklin’s algorithm?. Since
multi-dimensional transforms in the tensor product form are performed through a
sequence of one-dimensional transforms, the d-dimensional Chebyshev-Legendre
transform can be done in O(N?log, N) operations and it has the same speedup asin
the 1-D case, when compared with the d-dimensional Legendre transform.

The nonzero elements of A and B can be easily determined by the recurrence
relations

Tini(z) = 22Ti(x) — Tioa (), i > 1,

2141 /) (3.4.4)
- xL;

1+1

Livi(z) =
Indeed, forj > i > 1,
a;ij+1= (T, Ljt1)w

27 +1 ]
:<Tz‘7—.j+ UCLj——.j Lj—l)
J+1 Jj+1

2j +1 J
e L 77} N
T (T3, Lj)w T
2j +1 J
= m(Tz‘H +Ti1,Lj)w — j—i——lai’j_l
2j +1 j
BT A A

Similarly, we havefor j > i > 1,



3.5 Preconditioned iterative method 121

21+ 2 27

biivq = Lo
i+ = g Uit g

bi—1,5 —bij1.

Thus, each nonzero element of A and B can be obtained by just a few operations.
Furthermore, the Chebyshev-Legendre transform (3.4.3) is extremely easy to imple-
ment, while the algorithm in [2] requires considerable programming effort.

Remark 3.4.1 Notethat only for equations with constant or polynomial (and rational
polynomialsin some special cases) coefficients, one can expect the matrices resulting
from a Galerkin method to be sparse or have specia structure. In the more general
cases such as (3.1.5), the Galerkin matrices are usualy full, so a direct application
of the Galerkin methods is not advisable. However, for many practical situations,
the Galerkin system for a suitable constant coefficient problems provides an optimal
preconditioner for solving problems with variable coefficients; see Section 3.5 for
further details.

Exercise 3.4

Problem 1 Implement the Chebyshev-Legendre transform and find the Legendre
expansion coefficients of 73(z).

Problem 2 Repeat the Problem 2 in Section 3.2 with the Chebyshev-Legendre-
Galerkin method.

3.5 Preconditioned iterative method

Preconditioning in frequency space
Condition number estimate —— a specia case
Chebyshev case

We now consider the problem with variable coefficients:
Au = —(a(z)u'(x))" + b(x)u = g(x), (35.1)
subject to the homogeneous boundary conditions:
a_u(—1)+b_u'(=1) =0, azu(l)+biu'(1) =0, (35.2)

where a4 and b4 satisfy (2.4.3). We assume that there are three constants ¢, ¢, and
c3 such that

0<c <alx) < e, 0<b(z) <cs. (35.3)
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The (weighted) spectral-Galerkin method (3.1.9), including the Legendre- and
Chebyshev-Galerkin methods, leads to full stiffness and mass matrices. Hence, it
is preferable to solve (3.1.12) using a (preconditioned) iterative method.

Preconditioning in frequency space

Let ustake, for example,

1 . _ .
“ = glpgpal@ tpipele), b= g lnaEble) + g b))

and define Bu := —au” + bu. Let S and M be the stiffness and mass matrices
associated with A4 defined in (3.1.10) and (3.1.11), and .S and M be the stiffness and
mass matrices associated with B, i.e., with a(z) = @ and b(x) = b in (3.1.10) and
(3.1.11). Then, it can be argued that S + M and S + M are spectrally equivalent,
in the sense that the condition number of (S + M)~1(S + M) isuniformly bounded
with respect to the discretization parameter NV (see below for a proof of this fact
in the Legendre case). Hence, instead of applying a suitable iterative method, e.g,
conjugate gradient (CG) in the Legendre case and BICGSTAB or CGS(cf. [134]; see
also Section 1.7) in the Chebyshev case, directly to (3.1.12), we can apply it to the
preconditioned system

(S +M)71f. (3.5.4)

(S 4 M)~1(S + M)u

Thus, to apply a (preconditioned) iterative method for solving (3.5.4), we need to
perform the following two processes:

1. Given avector @, compute (S + M)a.
2. Given avector f, find @ by solving (S + M) = f.

It has been shown in the previous two sections that for both Legendre or Cheby-
shev Galerkin approximations, the second task can be performed in O(N) flops.

We now describe how to perform thefirst task efficiently. Givena = (ug, u1, - - -,
un_9)T, weset uy = S0 7 gy Hence,

(Sﬂ’)] = _([IN(GUEV)],7¢])W7 0< ] <N - 2,

and they can be computed as follows (recall that ¢, = pi + agpr+1 + brpr+2 Where
{pi} areeither the Legendre or Chebyshev polynomials):
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1. Use(1.3.5) or (1.3.22d) to determi neag) from

N-—-2 N
un(e) = Y andh(z) = S @l pr(e);
k=0 k=0

2. (Forward discrete transform.) Compute

N
Z m] ]205177]\[7
k=0

3. (Backward discrete transform.) Determine {wy} from

I auN Zwkpk (E] ]:Oalvaa

4. Use (1.3.5) or (1.3.22d) to determine {w "} from

N

Iy (auly)) (x) Zwkpk => "o pi();

k=0

5 Forj=0,1,--- , N — 2, compute

_([IN(GUN ¢J Zwk Pka%

Note that the main cost in the above procedure is the two discrete transforms in Steps
2 and 3. Thecost for Steps 1, 4 and 5 are all O(N) flops.

Similarly, (Mu); = (In(buy), ¢;). can be computed as follows:

1. Compute

3. Compute
(Un(buyn), ¢j)w, Jj=0,1,--- N —2.
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Hence, if b(z) isnot a constant, two additional discrete transforms are needed.

In summary, the total cost for evaluating (S + M )u is dominated by four (only
two if b(z) is a constant) discrete transforms, and is O(N?) (resp. O(Nlog N))
flops in the Legendre (resp. the Chebyshev) case. Since the condition humber of
(S+ M)~1(S + M) isuniformly bounded, so is the number of iterations for solving
(3.5.4). Hence, the total cost of solving (3.1.12) will be O(N?) (and O(N log N))
flops in the Legendre (and the Chebyshev) case, respectively.

Remark 3.5.1 In the case of Dirichlet boundary conditions, we have ¢.(x) =
Li(x) — Ly42(z) which, together with (1.3.22a), implies that ¢ () = —(2k +
3)Ly11(x). Therefore, from u = S0 2 tipéy (), we can easily obtain the deriva-

tive
N-2

u' == " (2k + 3)iig Ls1(x)
k=0
in the frequency space.
Condition number estimate —— a special case

We now show that the condition number of (S + M)~1(S + M) is uniformly
bounded in the Legendre case with the Dirichlet boundary condition. The proof for
the general caseis similar and left as an exercise.

To simplify the proof, we shall replace (Iy(buy), ¢;). in the Legendre case
by the symmetric form (buy, ¢;)n. Due to the exactness of the Legendre-Gauss-
L obatto quadrature, only the term with j = N isslightly changed.

We first remark that —([In (au'y)),vy) = (au'y, vy ). Hence, the matrices S
and M (with the above modification) are symmetric. With the notations in (3.1.10),
wefind

<(S + M)?TL,?TL>12 = (a’U,IN,UIN)N + (buN,uN)N

- o (3.5.5)
< 267”(UIN7 UIN)N + 2b(un, un)N = 2((S + M)u, u);
By the Poincaré inequality, there exists ¢; > 0 such that
((S+ M)u,u)2 > cq (d(uEV,UEV)N + QB(UN,UN)N)
(3.5.6)

= c4((S + M), @)p.

Smce(S‘ 1)~ (S+ M) issymmetric with respect to the inner product (@, o)g., 5 :
= {(S + M), v);2, we derive immediately that
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_ _ 2
cond((S + M)~ 1S + M)) < — (35.7)
4
In other words, (S + M)~ isan optimal preconditioner for B3, and the convergence
rate of the conjugate gradient method applied to (3.5.4) will be independent of N.

Remark 3.5.2 We make three relevant remarks:

e Werecall from Section 3.2 that (S + M) can be efficiently inverted so the main
cost is the evaluation of (S + M)u;

e Due to the Poincaré inequality, (3.5.7) holdsif wereplaceS + M by S. In this
case, inversion of S is negligible since S is diagonal;

e Suppose we use the normalized basis function

Gk = /—br(dk +6) o with (¢, 8}) = 5.

In this case, no preconditioner is needed since cond(S + M) is uniformly bounded
under this basis. However, if b isrelatively large with respect to a, it is more efficient
touse S + M as apreconditioner.

Chebyshev case

In the Chebyshev case, an appropriate preconditioner for the inner product
bvw(un,vy) in Xy x Xy is (uly,w ™ (vyw)’), for which the associated linear
system can be solved in O(NV) flops as shown in Section 3.2. Unfortunately, we do
not have an estimate similar to (3.5.7) since no coercivity result for by ., (uy, vy ) IS
available to the authors' knowledge. However, ample numerical results indicate that
the convergence rate of a conjugate gradient type method for non-symmetric systems
such as Conjugate Gradient Square (CGS) or BICGSTAB is similar to that in the
Legendre case.

The advantage of using the Chebyshev polynomials is of course that the evalua-
tion of Bu can be accelerated by FFT.

The preconditioning in the frequency space will beless effective if the coefficients
a(x) and b(x) have large variations, since the variation of the coefficients is not taken
into account in the construction of the preconditioner.

Exercise 3.5

Problem 1 Consider the problem:

22 — (e"ug). = f



126 Chapter 3 Spectral-Galerkin Methods

(where f is determined by the exact solution in Problem 2 of Section 3.2) with the
following two sets of boundary conditions

and

For each set of the boundary conditions, solve the above equation using the
Chebyshev-collocation method (in the strong form). Take N = 2 withi = 4,5,6,7,
8,9. Plotlog;, ||lu — un||n/ log;o IV for each ~. Explain your results.

Problem 2 Consider the problem:
—(a(@)ug)e = f, u(—1) —uy(=1) =0, u(l)+uy(l) =0,

with a(z) = 2% + 10*.

e (@) Construct the matrix By of the Legendre-collocation method in the weak
form and the matrix A of the piecewise linear finite element method.

e (b) Foreach k = 0, 1, 2, list theratio of the maximum eigenvalue and minimum
eigenvalue for A]‘VIBN aswell asits condition number with N = 16, 32, 64, 128.

e (c) Consider the exact solution u(x) = sin 37z + 3mx/2. Use the conjugate
gradient iterative method with and without preconditioning to solve the linear sys-
tem associated with the Legendre-collocation method in the weak form. For each
k=0,1,2and N = 16, 32,64, 128, list the iteration numbers needed (for 10-digit
accuracy) and the maximum errors at the Gauss-Lobatto points, with and without
preconditioning.

3.6 Spectral-Galerkin methods for higher-order equations

Fourth-order equation
Third-order equation

In this section we shall consider spectral-Galerkin methods for two typica higher-
order equations with constant coefficients. Problems with variable coefficients can
be treated by a preconditioned iterative method, similarly to second-order equations.
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Fourth-order equation
Let us consider

u(4)—au"+ﬂu:f, a,B>0,zel,

(3.6.2)
w(E£1) =/ (£1) =0,

where o, ¢ are two non-negative constants. This equation can serve as a model
for the clamped rod problem. A semi-implicit time discretization of the important
Kuramoto-Sivashinsky equation modeling a flame propagation is also of this form.

The variational formulation for (3.6.1) is: Find u € H3(I) such that
a(u,v) := (0" + a(u',v') + Bu,v) = (f,v), Vve HI). (3.6.2)
Let us define
Vn = Py NHZ(I) = {v € Py : v(£1) = vy(£1) = 0}. (36.3)
Then, the spectral-Galerkin approximation to (3.6.2) isto find wy € Vi such that
(U, o) + aluly, vy) + Blun,vn) = (Inf,vn), Yon € Vi, (3.6.4)
where Iy isthe interpolation operator based on the Legendre-Gauss-L obatto points.

We next give a brief description of the numerical implementation of the above
scheme. Aswe did before, we choose a compact combination of Legendre polyno-
mias{¢y}r " asbasis function for Vy, i.e.,

2(2k + 5) 2k +3
Rt ) L 3.6.5
T k2(x) + T k+4>7 ( )

with the normalization factor dy, = 1/1/2(2k + 3)2(2k + 5). One can verify from
(1.3.22¢) that ¢ (£1) = ¢} (£1) = 0. Therefore,

Or(z) == dy, (Lk:(x)

VN :Span{¢07 ¢17 Tt ¢N—4}'

By using the recurrence relation and the orthogonality of the Legendre polynomials,
we can prove the following results.

Lemma3.6.1 Wehave

and the only non-zero elements of b,; = (¢5, ¢x), cij = ( ;.,gb;C) are

bk, = di(eg + hierto + grekra),
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bi k+2 = bryok = dipdpro(hreryo + grhiyoeita),
bk k4 = bkyar = dpdiiagreria,

N (3.6.7)
crk = —2(2k + 3)dj h,
Ck7k+2 = Cp42,k = —2(2k + 3)dkdk+2,
where 2 2k +3
Hence, setting
B = (bkj)oskj<n—14,  C = (Chj)osk,j<n—1,
fk:(Iva¢k)7 f:(f07f17"'7fN—4)T7
N4 (3.6.8)
un =Y lindn(z), @ = (i, tn, - ,in_s)",
n=0
the system (3.6.4) is equivalent to the matrix equation
(aB+ BC + Iu = f, (3.6.9)

where the non-zero entries of B and C are given in (3.6.7).

Itisobviousthat B and C' are symmetric positive definite matrices. Furthermore,
B can be split into two penta-diagonal sub-matrices, and C' can be split into two
tridiagonal sub-matrices. Hence, the system can be efficiently solved. In particular,
there is no equation to solve when oo = 3 = 0.

In summary: given the values of f at LGL points {z; }o<i<n, We determine the
values of u,, solution of (3.6.4), at these LGL points as follows:

1. (Pre-computation) Compute LGL points, and nonzero elements of B
and C,

2. Evaluate the Legendre coefficients of Iy f(z) from {f(z;)}¥, (back-
ward Legendre transform)and evaluate f in (3.6.8);

3. Solve u from (3.6.9);

4. Determine {a;}, such that 2" it () = >0 ;L ();

5. Evduate uy(z;) = SN @ii(x;), j = 0,1,--- , N (forward Legen-
dre transform).
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Since this processis very similar to that of the Legendre-Galerkin scheme (3.2.3),
a pseudo-code can be easily assembled by modifying the pseudo-code LG-PSN-1D.

Third-order equation
Consider the third-order equation

au—ﬁum_Vux$+ummx:fa er:(_lvl)v

(3.6.10)
u(£1) = uz(1) =0,

where o, (3, v are given constants. Without loss of generality, we only consider ho-
mogeneous boundary conditions, for non-homogeneous boundary conditionsu(—1) =
c1, u(l) = cp andu, (1) = c3 can be easily handled by considering v = u— 4, where
4 isthe unique quadratic polynomia satisfying the non-homogeneous boundary con-
ditions.

Since the leading third-order differential operator is not symmetric, it is natural
to use a Petrov-Galerkin method, in which the trial and test functions are chosen
differently. In this context, we define the spaces

Vn ={u € Py : u(£l) = uy(1) = 0},
(3.6.11)
Vi ={u € Pn: u(£l) = uy(—1) = 0},
and consider the following Legendre dual-Petrov-Galerkin (LDPG) approximation
for (3.6.10): Find ux € Vi such that
aluy,vy) — B(0pun,vN) + ¥(Opun, dpvn) + (Dpun, 02vN)

= (INf, UN), Yoy € Vf\}

(3.6.12)

The particular choice of V3 alows us to integrate by parts freely, without introduc-
ing non-zero boundary terms. This is the key for the efficiency of the numerical
agorithm.

Let usfirst take alook at the matrix form of the system (3.6.12). We choose the
basis functions:

2n + 3 2n + 3
_ I _ I v
o g 5 et (#) = Lnga (@) + 5

2n+3 2n+3

on(z) = Ln(z)

n+3(x)§
(36.13)
Un(x) = Lp(x) +

n+3(x)7
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which satisfy ¢, (1) = ¢, (£1) = ¢/, (1) =}, (—=1) = 0. For N > 3, we have

VN = Span{(bOv ¢17 T 7¢N—3};

(3.6.14)
V]#\} = Span{w(b wlv T 7¢N—3}-
Hence, by setting
N-3
uyN = Z ak¢k7 u = (ﬂ'Oaﬂ'lv T 7’&N—3)T7
k=0
fk:(INf7wk)7 f:(f()a.)flu'” 7fN73)T7/ / / ., (3615)
mi; = (5, %), pij = —(8,%i), @5 = (¢, ¢1), sij = (65,97,
the linear system (3.6.12) becomes
(aM + BP +~Q + S)u = f, (3.6.16)

where M, P, Q and S are (N — 3) x (N — 3) matrices with entries m;;, p;;, ¢;; and
si;, respectively.

Owing to the orthogonality of the Legendre polynomials, we have ny;; = 0 for
li —j| > 3. Therefore, M isaseven-diagonal matrix. We note that the homogeneous
“dual” boundary conditions satisfied by ¢; and v; allow usto integrate by parts freely,
without introducing additional boundary terms. In other words, we have

Sij = (Qb;ﬂ/);/) = (¢9//7¢i) = _(ij,’l,[);//)

Because of the compact form of ¢; and +;, we have s;; = 0 fori # j. S0 S'is
a diagona matrix. Similarly, we see that P is a penta-diagonal matrix and @ is a
tridiagonal matrix. It isan easy matter to show that

85 = 2(2i + 3)2. (3.6.17)

The non-zero elements of M, P, () can be easily determined from the properties of
Legendre polynomials. Hence, the linear system (3.6.16) can be readily formed and
inverted.

In summary: given the values of f at LGL points {z; }o<i<n, We determine the
values of uyy, solution of (3.6.12) at these LGL points as follows:



3.7 Error estimates 131

1. (Pre-computation) Compute the LGL points, and the nonzero elements
of M, P,Qand S;

2. Evaluate the Legendre coefficients of Iy f(z) from {f(z;)}X, (back-
ward Legendre transform) and evaluate f in (3.6.15);

3. Solve @ from (3.6.16);

4. Determine {a;}_, such that S "% it () = S0 ;L ();

5. Evauate uy (z;) = S digi(xj), j = 0,1,--- , N (forward Legen-
dre transform).

Once again, this process is very similar to that of the Legendre-Galerkin scheme
(3.2.3), so a pseudo-code can be easily assembled by modifying the pseudo-code
LG-PSN-1D.

One can verify that the basis functions (3.6.13) are in fact generalized Jacobi
polynomials:

Pn(z) = %jﬁgl(m); (3.6.183)
n(x) = 512y (3.6.18h)

2(n + 1)7n+3

Exercise 3.6

Problem 1 Solvethe equation (3.6.1) using the Legendre-Galerkin method (3.6.4).
Take a = 3 = 1 and the exact solution u(z) = sin?(47x).

Problem 2 Design a Chebyshev-Galerkin method for (3.6.1).
Problem 3 Determine the non-zero entries of M, P and @ in (3.6.15).

Problem4 Designadual-Petrov Legendre Galerkin method for thefirst-order equa-
tion
au+tu, = f, v € (=1,1); wu(-1)=0. (3.6.19)

3.7 Error estimates

Legendre-Galerkin method with Dirichlet boundary conditions
Chebyshev-collocation method with Dirichlet boundary conditions
L egendre-Galerkin method for a fourth-order equation
Dual-Petrov Legendre-Galerkin method for athird-order equation
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In this section, we present error analysis for four typical cases of the spectral-Galerkin
methods presented in previous sections. The error analysis for other cases may be
derived in asimilar manner. We refer to the bookd™® 2% 1481 for more details.

The error analysis below relies essentially on the optimal error estimates for var-
ious projection/interpolation operators presented in Section 1.8.
L egendre-Galerkin method with Dirichlet boundary conditions

We consider the Legendre-Galerkin approximation of (3.2.1) with homogeneous

Dirichlet boundary conditions.

Theorem 3.7.1 Let u and uy be respectively the solutions of (3.2.1) and (3.2.3)
with homogeneous Dirichlet boundary conditions. Then, for v € H*, _, (I) with

m >1and f € H, (I)withk > 1, we have

100 (= un )| S N Ol st + NHOE fll s (BTD)
lu = unll S N[ ullum 1+ N7 ]| e (372)

Proof In this case, we have
Xy = {U € Py : u(:l:l) = O}

We observe from the definition of my ,-1.-1 in (1.8.19) that for u € Hj(I) N
L2, _,(I) wehave
(Oz(u — TN p-1.-1u), 0pUN) = —(u — Ty 1.1, d2uy)

e u—n 1152 B (3.7.3)
= Nw-1-1U, W IUN)W—l,fl =0, Yoy € Xn.

In other words, 7y ,,-1.-1 is aso the orthogonal projector from H}(I) to Xy asso-
ciated with the bilinear form (9,-, d,.-). Hence, we derive from (3.2.1) and (3.2.3)
that

a(Ty 110 —un,VN) + (O (TN 110 — un), OpUN)

(3.7.9)
=(f = INf,vN) + (TN -1 1u—u,vy), Yoy € Xn.
Teking vy = Ty ,—1.-1u — uy inthe above, we find
2 2
w— Lo + {|0x w—bh- U
ol 111 = |+ [0s (11— )| 375

=(f = INf, TN 11U —UN) + QTN 11U — U, T -1, 1U — UN ).
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Using the Cauchy-Schwarz inequality and Poincaré inequality, we get

1
| 11U — un|® + §Haac(ﬂN,w*1»*1u —uy)|?

(3.7.6)
SIF = INFIP + v 1w —uf).

Then (3.7.1) and (3.7.2) in the case of & > 0, can be derived from the triangle
inequality and Theorems 1.8.2 and 1.8.4. If a = 0, we need to use a standard duality
argument which we now describe.

First of al, we derive from (3.2.1) and (3.2.3) with o = 0 that

(v —un)e, (VN)z) = (f = INfivn), Von € Xn. (3.7.7)

Now, consider the dual problem
—Wey = U — UN, w(£l) =0. (3.7.8)

Taking the inner product of the above with v — uy;, thanks to (3.7.7), (3.7.3) and
Theorem 1.8.2, we obtain

l|u — 'UJN”2 = (wz, (u —upn)e) = ((w — WN,wfl!*lw):m (U —un)e)
+ (f - INf? 7T]\7,<.L)_17_1u})

< J(w = T -1-1w0)a [ (w = un)oll + [1f = INFIll 7 110

SN Hwaallll(w — un)all + 11f = InflI(lw = pin o-1-1w]| + [Jw]])

= [lu —un (N [(w—un)ell + [1f = IN ),
which impliesthat [|u — un|| < N7 (u — un)z|| + || f — Inf||- Then (3.7.2) isa
direct consequence of the above and (3.7.1). O
Chebyshev-collocation method with Dirichlet boundary conditions

To simplify the notation, we shall use w to denote the Chebyshev weight
(1 - xQ)‘% in this part of the presentation. An essential element in the analysis
of the Chebyshev method for the second-order equations with Dirichlet boundary
conditions is to show that the bilinear form

1

auv::ux,uflvwxw: Ugp (VW) dx M.
l:0) = (7 (00)) = [ ofon)od (3.7.9

is continuous and coercivein Hy (1) x H;,(I). Tothis end, we first need to estab-
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lish the following inequality of Hardy type:

Lemma3.7.1 Foranyu € Hj (1) withw = (1 — 22)~2, we have
1 1
/ w?(1 4 2%)w’dz < / ulwdz.
—1 —1

Proof Forany u € Hj,(I), wefind by integration by parts that

1 1
2/ uxuxw?’dx:/ (u?)prwide

-1 -1

1 1
=— / u? (zwd)de = —/ u?(1 + 22%)widz.
-1 -1

Hence,

1
0 </ (ug + uzw?)*wda
-1

1 1 1
:/ ulwdx —|—/ wlzwPdr + 2/ ugurwide
-1 -1 -1

1 1
:/ uiwdx—/ u?(1 4 2%)w’dz.

1 -1

This completes the proof of thislemma.

Lemma3.7.2 Wehave
aw(u,v) < 2|ugllol|vzllw, Vu, v e H(%,w(l)v

1
ag(u,u) = Z”ux”i’ Yu € H&W(I).

(3.7.10)

(3.7.11)

Proof Using the Cauchy-Schwarz inequality, the identity w, = xw? and (3.7.10), we

have, for all u,v € H&W(I),

1
g, (u, v) —/ Uy (v + vow?)wde
-1

1
1 2
gl l|vellw + [tz llo (/ v2x2w5dx> < 2| ugl|w|vel|w-
~1
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On the other hand, due to (3.7.11) and (3.7.10), wefind

1 1
ay(u,u) :/ uiwdx—i—/ utgrw da

-1 1

1
s — —/1u2(1 + 222)wPda

3! 1
>l - 5 [ @+ atotde > s Vue B
-1
(3.7.12)
The proof of thislemmais complete. O

Thanks to the above lemma, we can define anew orthogonal projector from EG?W
to PY, based on the bilinear form a,,(-, ) (note the difference with my° : H{, —
Xn ={v € Py :v(£l) = 0} defined in Section 1.8).

Definition 3.7.1 7y, : HJ, — Xy isdefined by

1
ay(u— ﬁ]l\}owu,vN) = / (u — ﬁ]l\}owu)'(va)'dx =0, for vy € Xn. (3.7.13)
) _1 )

Similar to Theorem 1.8.3, we have the following results:

202

Lemma3.7.3 Foranyu e Hy (I)NH™, , ,wehave
w *

)

lu = 7N ullvw S N MO gz, v =01 (3.7.14)
) w

gm=

Proof Using the definition (3.7.13) and Lemma 3.7.2, wefind

~1,0 ~1,0 ~1,0 ~1,0
lu— Ty ulli o S lu—7yulf o S aw(u — 7y u,u— 7y u)

~1,0 1,0
= au(u— Ty u,u—my u)

~1,0 1,0
< 2fu— Tr]\},wu|17w|u - ﬂ-]\},wuhvfﬂ'

We then derive (3.7.14) with v = 1 from above and Theorem 1.8.3. To prove the
result with v = 0, we use again the standard duality argument by considering the

dual problem
—pe =u— Ty, H(E1) = 0. (3.7.15)
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Its variational formulation is: find ¢ € Hj (1) such that

(@, (bw)) = (u - 7Ty udw), Vo€ Hy (). (3.7.16)

According to Lemma 3.7.2, there exists a unique solution ¢ € Hj (1) for the above
problem, and furthermore, we derive from (3.7.15) that ¢ € H2(I) and

18]1200 S llu— 7' ulle- (3.7.17)
Now wetake v = u — 7" u in (3.7.16). Hence, by Lemma3.7.2, (3.7.17), (3.7.13)
and (3.7.14) with v = 1,

~1,0
(o= w3 = 70 = [ pul(o - AL lada

1
- / (6 — Fng)a((u = AN ww)edz < 26 — 7, Phwlu — 73 ule
-1
SN Mllowle = 7N ulie S N — 5 ullolu — 730l o
The above and (3.7.14) with v = 1 conclude the proof. O

We are now in the position to establish an error estimate of the Chebyshev-
collocation method for (3.2.1) which reads:

3.7.18
un(zo) =un(rN) =0, ( )

where x; = cos(jm/N). To this end, we need to rewrite (3.7.18) in a suitable vari-
ational formulation by using the discrete inner product (1.2.23) associated with the
Chebyshev-Gauss-Lobatto quadrature (1.2.22). One verifies easily that for vy €

Xy, wehave w ! (vyw)' € Py_1. Therefore, thanks to (1.2.22), we find that

(uly, ™ (0xw) v = (W, w ™ (oyw) o = —(ul, 0n)e = (Ul vx) V-
(3.7.19
Let {h(z)})_, bethe Lagrange interpolation polynomials associated with {a, }2_,
and take the discrete inner product of (3.7.18) with A (z) for k = 1,--- | N — 1.
Thanksto (3.7.19) and the fact that

Xy = Span{hl(x)v hg(ﬂi‘), T 7hN—1(x)}a

we find that the solution uy of (3.7.18) verifies:

a(un, VN)Nw + aw(un, V) = (UNnwf, VN)Nws Yoy € Xy.  (3.7.20)
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Theorem 3.7.2 Let u and uy be respectively the solutions of (3.2.1) and (3.7.20).
Then, for u € H™ , 5 (I)withm > 1 and f € H* (I) with k > 1, we
w 2

5 _1 1
2 % w 27 2 %
have
lu = unllw € N0 ullgnosymse + NTHIOSF s ye  mk>1,
(3.7.21)
lu—unllo S N0 ullgnsjmso + NHOSFI i ye  mok>1.
(3.7.22)
Proof Using (3.2.1) and (3.7.13) we obtain
a(u, vN)w + aw(ﬁ]l\}?wu, UN) = (f7 ’UN)wv va € XN
Hence, for dl vy € Xy,
a(ﬁ]l\}?wu —UN,UN)Nw + aw(ﬁ]l\}?wu —UN,VN)
:(fv 'UN)w - (IN,wfv U)N,w + a(ﬁ]l\}?wu7 UN)N,W - a(“? UN)W
(3.7.23)

:(f - 7TN,wfu UN)w - (IN,wf - 7"-N,u.)fy U)N,w

~1,0
+ (TR = Tty U N — Ot — TNty U o

where the operator my,, = Ty bl is defined in (1.8.6). Hence, taking vy =

x> u — uy in the above formula, we find, by the Cauchy-Schwarz inequality and

Lemma3.7.2,
~1,0 ~1,0
aHﬂ-N,wu - uNHEJ + ‘ﬂ-N,wu - uN’%,w

~1,0
SN =N 12+ 1 = InwFI2 + allu — 7y Lull2 + allu — 7 0ull2.
(3.7.24)

It follows from Theorems 1.8.1, 1.8.4 and (3.7.14) that

e = unlliw < e = Tyl + |17 3u = unllie

S Nl ajnimaye + NTHNOEF gy

For a > 0, we can aso derive (3.7.22) directly from (3.7.24), while for o = 0, a
duality argument is needed. The details are |eft as an exercise. O
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L egendre-Galerkin method for a fourth-order equation

We now consider the error estimate for (3.6.4). Let Vy be defined in (3.6.3).
Before we proceed with the error estimates, it is important to make the following
observation:

92 22U — ), 02vN) = 22U — U, O
( ac(T(N, 2,-2 2)2 Z N) (T(N, 2,-2 T N) (3725)
:(ﬂ'N’w—Q,—QU —Uu,w”’ 8$7)N)w—2,—2 =0, Yoy € Vy.

Hence, 7y 22 isalso the orthogonal projector from HZ(I) to Vy.

It is also important to note that the basis functions given in (3.6.5) are in fact the
generalized Jacobi polynomials with index (—2, —2). More precisely, we find from
(1.4.12) that ¢, defined in (3.6.5) isproportiona to the generalized Jacobi polynomial
Iy f;[Q(x). This relation allows us to perform the error analysis for the proposed
scheme (3.6.4) by using Theorem 1.8.2.

Theorem 3.7.3 Let u and u be respectively the solution of (3.6.1) and (3.6.4). If
we H}(I)NH™, , (I)withm >2and f € H, (I)withk > 1, then

0L (u — un) || < N™)|07ul| ym—2m—2 + N R0 f[ ek, 0 <1< 2. (3.7.26)

Proof Using (3.6.2) and (3.6.4) leads to the error equation

a(u —un,vn)=a(Ty ,-2.-2u — uN,VN) — a(Ty 22U — U, UN)

:(f_INf,UN), Yoy € V.

Let usdenote ey = TN w-2-2U — UN, EN = U — TN w=-2-2U andey =u—uy =
EN + €EN.

Taking vy = én in the above equality, we obtain from (3.7.25) that
e 1? +alley | + Bllen|? = a(ey, éy) + B(en, én) + (f = In f,en).

Since (éy,ély) = —(én, €)), it follows from the Cauchy-Schwarz inequality and
the Poincaré inequality that

lex I? + allén I + Bllen* S llewl® + I1f — In f1.

We obtain immediately the result for [ = 2 from the triangular inequality and Theo-
rems1.8.2and 1.8.4. Theresultsfor ! = 0, 1 can also bedirectly derivedif a, 5 > 0.
For « = 0 or 8 = 0, aduality argument is needed for the cases with[ = 0, 1. The
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details are | eft as an exercise. O

Dual-Petrov L egendre-Galerkin method for athird-order equation

The last problem we consider in this section is the error between the solutions
of (3.6.10) and (3.6.12). However, athough the dual-Petrov-Galerkin formulation
(3.6.12) is most suitable for implementation, it is more convenient in terms of error
analysis to reformulate (3.6.12) into a suitable equivaent form.

Let Vi and V3 be defined in (3.6.11). Notice that for any uy € Vi we have
w™ by € V3. Thus, the dual-Petrov-Galerkin formulation (3.6.12) is equivalent to
the following weighted spectral-Galerkin approximation: Find wy € Vi such that

a(UN,UN)w—l,l — ﬂ(axuN,UN)w—Ll + fy(c%uN,wl’_lax(va_l’l))w_m
+ (&EUN,wl”lag(va’l’l))w_l,l = (INf, UN)W—1,1, Yoy € V.
(3.7.27)

We shall show first that the problem (3.7.27) is well-posed. To this end, let us first
prove the following generalized Poincaré inequalities:

Lemma3.7.4 For any u € Vy, we have

4
/u2(1 —z) Mz < = /ui(l — z)"2dz,
I 9 Jr
/u2(1 —z)3dz < /ui(l —z) tda.
1 1

Proof Letu € Vy and h < 2. Then, for any constant ¢, we have
U 2 1
< x d
0 /1(1—q;+q“ ) 1—a)r ™
u2 (UQ)I 5 u2
= z d
z(u—xyw+qa—@uh+qu_xw)x
2
—(-(+n |

u u
——d 2 r _dax.
Aot hd /I<1—x>h v

We obtain the first inequality in (3.7.28) by taking h = 2 and ¢ = % and the second
inequality withh = 1and ¢ = 1. O

(3.7.29)

Remark 3.7.1 Note that with the change of variable x — —x in the above lemma,
we can establish corresponding inequalities for u € V5.

The leading third-order differential operator is coercive in the following sense:
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Lemma3.7.5 For any u € Vi, we have
1
gHuxHi_g,o < (ug, (uw_l’l)m) < 3”“9:”3,—2,0- (3.7.29)

Proof For any u € Vi, we have uw=b1 € V. Since the homogeneous bound-
ary conditions are built into the spaces Vy and VY, al the boundary terms from
the integration by parts of the third-order term vanish. Therefore, using the identity
w1 (z) = 2k!(1 — 2)~*+Y and Lemma 3.7.4, wefind

)

1 B - B 5 . . )
:5 /I ((ui)xw 1,1—1—(u2)xwm}71 + 4“?:%3 1,1) dx_/l (5“3‘% 1’1—§U2wml;gl>dx

u? u? 1 u?
=3[ _dr—6)——de>- [ —= _da
s [t | e g

The desired results follow immediately from the above. O

(g (uwiLl)ms) = (g, Umwfl’l + 2uxw;1’1 + uw

Before we proceed with the error estimates, we make the following simple but
important observation:

(O (u — Ty y—2.-11), 8%21]\7) (3730
=—(u— 7TN7w72,—1’U,,wzla;UN)w—zfl =0, YueV, oyeVy, N

where 7y ,—2,-1 isdefined in (1.8.19).

Theorem 3.7.4 Let u and uy be respectively the solution of (3.6.10) and (3.6.12).
Leta > 0,8 >0and —1 < v < &. Then, for u € H™, _, (I) withm > 2 and
f e HF, (I)withk > 1, we have

allenllo-11 +N7H(en)ollo-ro

. (3.7.31)
S+ Y N)NT0F ullm-2m-1 + N7 (|05 f ] por-

Proof Letusdefineéy = my -—2-1u—uy andey = u—uy = (u—"7y ,-2-1u)+
én. We derive from (3.6.10), (3.7.27) and (3.7.30) that
alen,vn)y-11 — B(Ozen, UN)y-1.1 + Y(Oren, wh 10 (vyw™ b)), -1
+(0zen, wh 12 (vyw™b)) 10

= (f - INf7 UN)w_lalu \V/UN S VN (3732)
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Taking vy = éy inthe above, using Lemma 3.7.5 and the identities

1
(a0 = /(v2)xw_1’1dx o2 e, Vo€ Vi,
I

(Vz, (Vw1 = (vg, VW™ + 20w 20) = ||y |12 s — 2|2 a0, Yv € Vp,
(3.7.33)

we obtain

. . . . L.
allen|Z-1a +Blenli-zo0 +Al@En)alZ-10 = 2v[en|5-s0 + §||(€N)x||i—2’0
< — a(u — TN w—2-1U, éN)w—l,l + B(@x(u — 7TN’w—2,—1u), éN)w—l,l

— (0 (u = Ty -2-1u), Oz (enw ™)) + (f = Inf én)u11.

The right-hand side can be bounded by using Lemma 3.7.4, the Cauchy-Schwarz
inequality and the fact that w12 < 2w™ ! < 2w20%in I:

(u— TN w-2-1U, EN)w-11 < Hé]\/’”wfl,l Hu — WN,W*Q!*lun*U

S 10zenllw-20llu = Ty -2 -1ully-2-1,

((u— 7TN7W—2,—1U)QC, EN)p-11 = —(u — TN w-2-1U, Opeyw B 4 2éNw_2’0)

S HU - 7"-N,w—Q’_lu”u.)—Q’_l HaxéNHw_Q’O?

(u = TN 21Uz, (Enw™)2) = (U — Ty 21, (En)zw ™ B! + 26w ™20)
< l(u = Ty p-21t)e]l-10[|02éN |20,
(f = INf.én)o-1a < |If = INflllen|lo-22
< = InfIll|Ozénllo-20-
Foro < v < % we choose ¢ sufficiently small such that% — 27— 46 > 0. Combining
the above inequalities, using the inequality

1
ab < ea® + 4—b2, Ve > 0, (3.7.34)
€
Theorem 1.8.4, and dropping some unnecessary terms, we get
3

Sllu = 7y 2 1ulld a1+ 7w = Ty g-2mrw)o |20 + 1 = INFIP
S+ NN 2|0 ul| gm-2am=1 + N7F[ 0 f || g

R 1 ~
CE||6N||3J_1,1 + <_ -2y — 6> H(GN)IHE;—Q’O
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The last inequality follows from Theorem 1.8.2. For —+ < v < 0, we choose ¢

sufficiently small such that% + v — 4 > 0, and we derive similarly

A 1 .
allelos + (347 8) el oo

S+ WIN? )N 720 ullym-2im1 + N F)0 f[l -

On the other hand, we derive from the triangle inequality, Theorem 1.8.2, and ||u|[,-1.0
< 2”UHw72,0 that

l(en)zllo-10 < l(€n)ello-ro + I(u = Ty -2 -19)e 10
SlEn)allo-zo + N0 ullym-2m-1.

~

Then, the desired results follow from the above and triangular inequalities. O

Exercise 3.7

Problem 1 Prove (3.7.22) in the case of & = 0, using a duality argument as in the
proof of Lemma3.7.3.

Problem 2 Prove (3.7.26) with = 0, 1 inthe cases of a« = 8 = 0, using a duality
argument.

Problem 3 Continue with Problem 4 in Section 3.6. Perform the corresponding
error analysis.

Problem 4 Continue with Problem 5 in Section 3.6. Perform the corresponding
error analysis.
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In the previous chapters, we discussed various spectral methods for problems in
bounded intervals or with periodic boundary conditions. In this chapter, we shall
present spectral methods for unbounded domains.

As before, spectral methods in unbounded domains will also be based on orthog-
onal polynomials or orthogonal functions in the underlying domain. Hence, instead
of Jacobi polynomials or Fourier series, we will use Hermite polynomials/functions,
Laguerre polynomials/functions and some rational orthogonal functions. In Section
4.1, we begin with some properties of the Hermite polynomials/functions. Then
we discussed the Hermite-collocation and Hermite-Galerkin methods. In Section
4.2, Laguerre spectral methods in a semi-infinite interval will be investigated. The
Laguerre-collocation and Galerkin methods will be applied to solve differential equa-
tions with general boundary conditions. In Section 4.3, rational spectral methodsin a
semi-infinite interval will be considered, which are particularly suitable for problems
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whose solutions do not decay exponentially to zero as |x| — oo. Finaly, in Section
4.4, we will discuss some basic techngiues for obtaining error bounds for spectral
methods in unbounded domains.

For unbounded domains, proper scaling factors are necessary. Here the scaling
parameter « is defined by the change of variable x = . We will discuss how to
make optimal choices of such a scaling factor.

Some of the references on spectral methods in unbounded domains include [11],
[90], [74], [144] for Laguerre methods, [54], [137], [72], [45] for Hermite methods,
and [19], [?], [105], [76] for rational functions.

4.1 Hermite spectral methods

Hermite polynomials

Hermite functions

Interpolation, discrete transform and derivatives
Hermite-collocation and Hermite-Galerkin methods
Scaling factors

Numerical experiments

For problems posed on R := (—o0, +o0), one immediately thinks of the classical
Hermite polynomials/functions. We begin with some properties of the Hermite poly-
nomials/functions.
Hermite polynomials

The Hermite polynomials, denoted by H,(z),n > 0,z € R, are defined by the
following three-term recurrence relation:

Hy1(z) =2zH,(x) — 2nHy—1(z), n>1,

(4.1.1)
Ho(x) =1, Hi(z)=2x.
They are orthogonal with respect to the weight function w(z) = ¢ *” :
/ Hm(x)Hn(x)efodx = YoOmn,  Tn = VT2"nl. (4.12.2)
R

Welist below some basic properties of the Hermite polynomials, which can be found,
for instance, in [155].
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¢ Hermite polynomials are eigenfunctions of the Sturm-Liouville problem:

e’ (e " H'\(2)) + 2nH,(z) = 0. (4.1.3)

e Derivative relations:
H) (z) =2nH,_1(x), n>1, (4.149)
H/(z) = 2xH,(z) — Hpy1(x), n = 0. (4.1.4b)

It follows from (4.1.2) and (4.1.48) that

/ H! (2)H! (2)w(z)dz = 407, 16mn. (4.15)
R

The leading coefficient of H,,(z) isk, = 2".
Odd-even symmetries:

Hoyp(—x) = Hop(x), Hopq1(—2) = —Hapi1(x), (4.1.69)
o (0) = (—1)”%, Hons1(0) = 0. (4.1.6b)

We now introduce the Hermite-Gauss quadrature.

Theorem 4.1.1 (Hermite-Gauss)  Let {x;}_ bethe zeros of Hy 1 (x), and set

2V N
w; = VT 5 , 0<j<N. (4.1.7)
(N + DT, ()
Then,
oo 9 N
/ p(x)e * dz = Zp(xj)wj, Vp € Pong1. (4.1.8)
oo =

According to Theorem 1.2.1, {x; };VZO aretheeigenvaluesof an (N+1) x (N+1)
symmetric tridiagonal matrix (1.2.5) with

a;=0, 0<j<N; Bj=3 1<j<N. (4.1.9)
We note from (4.1.6) and (4.1.7) that the nodes and weights are symmetric,

and zy/, = 0, if NV even. Moreover, it can be shown that (cf. [102])
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1 _.2 | .
wj~ e (1 - —=—=L—), 0<j<N. 4.1.11
7N ( 2(N+1)> ’ .

Hence, the w; are exponentially small for large ;. Thus, the Hermite Gauss quadra-
ture (4.1.8) is not suitable in most practical computations since (i) it isfor aweighted
inner product with an exponentialy decaying weight, and (ii) it is difficult to com-
pute p(z;) and w; accurately when j and NV are large. Therefore, one should use the
so-called Hermite functions.

Her mite functions

The normalized Hermite function of degree n is defined by
e 2H,(z), n>0, z€R. (4.1.12)
Clearly, {H,,} isan orthogonal system in I2(R), i.e.,

/ ! 2)dz = /7. (4.1.13)

The three-term recurrence relation (4.1.1) implies

’fl - Hn
i) = o n+1 \/n+1 i), n (4.1.14)

Ho(z) = e 72, Hi(z) = V2ze /2.
Property (4.1.4a) and the above formulalead to
OpHy () = V2nH,_1(x) — xH,(z)

1
\f H,1( \/"2 Hyir(2), (4.1.15)

WV
“I—‘

and thisimplies

B n(n—l)w) m=n_2.
2
(v+3)
~ ~ T {n+=<]), m=n,
/ 0, H,, 0, H,,dx = 2 (4.1.16)
. 1 2
Vit ;(n—i- )w’ .
0, otherwise.
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In contrast to the Hermite polynomials, the normalized Hermite functions are well-
behaved, since

max |Hy(z)| ~ n~ 12, Ve > 0. (4.1.17)

|z|>e

This behavior is demonstrated in Figure 4.1.

' . . ‘ . 1k n=3 n=1 . ]
-2 -1 0 1 2 -5 -2.5 0 2.5 3
X X

(a) Hermite polynomials (b) Hermite functions

Figure4.1
(a) Hermite polynomials H,, (z) withn = 0, - - - , 4; (b) Hermite functions ﬁn(x) withn =0,--- 4.

It is straightforward to derive from Theorem 4.1.1 the Gauss quadrature associ-
ated with the Hermite functions.

Let {z; };VZO be the Hermite-Gauss nodes and define the weights

;= VT . 0<j<N. (4.1.18)
(N + 1) HE (x;)
Then we have
N 2
/p(m)dx = Zp(xj)djj, Vpe{u: u=e " v, ve Ponyi}. (4119
R >
7=0

Interpolation, discrete transform and derivatives

We define the function space
Py:={u:u= e "2y, Ve Py}, (4.1.20)

and denote by I theinterpolation operator in Py based on the Hermite-Gauss points
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{xj}jyzo, i.e, foral u e C(R),
fNu(xj) =u(z;), 0<j<N. (4.1.21)

For any u € Py, we write

N o~
H,(x;
iy = Nﬁl 3 AQ(‘”J) u(w;), 0<n<N. (4.1.23)
T §=0 HE (x;
The recurrence relation (4.1.15) is used to find {A(1 o from the coefficients
{t, }2_,, asfollows:
N k+1 k
iy = [ Tav ) =\ o -y Sa, 0<ESN-L
(4.1.24)
with the understanding that u(o) 0.
We now turn to the differentiation matrix. For u € Py, we can write
N A
= u(z;)hj(z) € Py, (4.1.25)
7=0
where {h } ", are Lagrange interpolation functions, defined by
R —x2/2 H
hi ¢ N+1(2) (4.1.26)

xTr) = .
0= o n )iy, ()

Hence, the entries of the first-order differentiation matrix D can be computed by the
formula

. . ~ if k#j,
0 it k=
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Her mite-collocation and Her mite-Galerkin method

Toillustrate how to solve differential equationsin R using Hermite functions, we
consider the following eigenvalue problem (cf. [13]):

—u"(z) + z'u(x) = Iu(z), z€R, wu(zr)—0as|z| — oo. (4.1.28)

Hermite-collocation method Let {l‘j}é\fzo be the set of Hermite-Gauss
points. The Hermite-collocation method for (4.1.28) isto find uy € Py and ) st.

—uly(zj) + x?uN(xj) = \un(zj), j=0,1,--- N. (4.1.29)
Set i = (un(zo),un(z1), -+ ,un(xxn))T. Then (4.1.29) can be written in the form
(D? + diag(zd, 2t ,23)u = Aq, (4.1.30)

where D isthe (N41) x (N +1) matrix defined in (4.1.27) and diag (a2, 22, - - - , 24,

isthe diagonal matrix with diagonal entriesbeing 2, =1, - - - , 2%,

Hermite-Galerkin method TheHermite-Galerkin method for (4.1.28) isto
find uy € Py and \ such that

~ ~

Hence, by setting
N o~
un =Y pHe(x), = (i, t, - ,an)",
k=0
s = (Hf, H)), S = (Sik)o<i k<N

miy = (x*Hy, H;), M= (Mik)o<i k<N >
the system (4.1.31) can be reduced to the matrix form
(S + M)ﬂ — /TG (4.1.32)

We note that S is a symmetric positive matrix with three non-zero diagonals given
in (4.1.16). We derive from (4.1.14) that m;, = my; = 0if |i — k| > 4. The
non-zero entries can be determined from (4.1.14) and (4.1.13). They can aso be
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“approximated” by the Gauss quadrature, namely,

N
mi, = (x*Hy, H;) ~ Z$4Hz‘(xj)Hk(wj)@j-
5=0

Hence, (4.1.32) can be efficiently solved.

Scaling factors

Suppose that the function u has a finite support [—M, M], i.e. u(z) ~ 0 for
|| > M. In order to compute {1, })_, by (4.1.23) we need to use information from
the interval [— M, M| only, since outside this region the function is aimost zero and
will not give much contribution to ,. This simple motivation suggests us to scale
the grid through the transform y = %x so that we have the collocation pointsin y
satisfying
Lj

= <M, for all 0<j<N, (4.1.33)

an

where {z;} aretheroots of Hy1(x). It isclear that the above condition is satisfied
by choosing the scaling factor

ay = OIgnjaéV{xj}/M =xzy/M. (4.1.34)

Let us now examine the effect of scaling through a specific example. Many prac-
tical problems require the approximation of the distribution function of the form
exp(—pv?) with moderate and large values of p. Due to the parity of the Hermite
polynomials, we can write

o0

exp(—pz?) = ) _ conHon (), (4.1.35)

n=0
where the coefficients ¢,,, can be computed explicitly,
_1)» - n !
Con = (=1) (p 1/ 2) @)t (4.1.36)
V220 (2n)!(p + 1/2) \p+1/2 n!

Wewould like to determine how many terms are needed in (4.1.35) for the truncation
error to be sufficiently small. It can be shown that, asymptotically, we have

1 [(p—1/2\"
Con ™~ D <p T 1/2> . (4.1.37)
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1\* 1\* 1
(1——) < lim (1——) =—, for all z>1,
x€X a— 00 a e

then, only when n > N = Cp with a positive constant C', we have

Since

1
Con ~ e . (4.1.38)
/NP
Hence, given an accuracy threshold e, we should choose C' = —loge, i.e., we need

N = O(—ploge) terms.

Now let us consider the expansion in scaled Hermite functions,

exp(—pa?) =Y dan Han(anz), (4.1.39)

n=0

with ay = /M asgiven in (4.1.34) and the asymptotic behavior

2 —1/2\"
oy, ~ —2N (p/o‘g / ) . (4.1.40)
VTP \p/az, +1/2

Sincexny ~ v2N (seeeg. [1]) we obtain

ay ~ V2N /M, (4.1.41)

| 2N [ M?p/(2N) —1/2\"
dan ~ nwpM? <M2p/(2N)+1/2> ’ (4.1.42)

For p large we can set M? = 2 for the sake of simplicity. Hence, forn > C(p/N+1),

we have
N 2 "
dop~y | — 1 — ——— 4143
2 \/ nmp ( p/N + 1) ( )

C(p/N+1)
< N 1— _ 2 < Ee—c.
~p p/N +1

p
Thus, for an accuracy threshold ¢, we should choose C' = — log ¢, S0 the requirement
N = C(p/N + 1) issdtisfied when N = O(v/—plog ¢). Hence, much fewer terms
are needed when a proper scaling is used.

Time-dependent scaling In [45], Hermite spectral methods were inves-



152 Chapter 4  Spectral Methods in Unbounded Domains

tigated for linear second-order partial differential equations and the viscous Burg-
ers equation in unbounded domains. When the solution domain is unbounded, the
diffusion operator no longer has a compact resolvent, which makes the Hermite
spectral methods unstable. To overcome this difficulty, a time-dependent scaling
factor was employed in the Hermite expansions, which yields a positive bilinear
form. As a consequence, stability and spectral convergence were established for this
approach [, The method in [45] plays asimilar stability role to the similarity trans-
formation technique proposed by Funaro and Kaviart®!. However, since coordinate
transformations are not required, this approach is more efficient and is easier to im-
plement. In fact, with the time-dependent scaling the resulting discretization system
isof the same form as that associated with the classical (straightforward but unstable)
Hermite spectral method.

Below we present a Petrov-Galerkin Hermite spectral method with a time-
dependent weight function for the following simple parabolic problem:

O —vd?u = f(z,t), z€R, t>0,

(4.1.44)
lim w(z,t) =0, t>0; wu(x,0)=up(z), xR,

|z|—o0

where the constant v > 0. Let Py (R) be the space of polynomials of degree at most
N, wy = exp (—(ax)?), a = a(t) > 0isafunction of ¢, and

Vy = {UN(x) = wa¢N(w) ‘ ¢N(x) € PN(R)}' (4'1'45)

The semi-discrete Hermite function method for (4.1.44) isto find uy (t) € Vy such
that for any ¢ € Py(R),

(Orun (), on) + v(Oaun(t), Onon) = (f(t), on), >0,

(un(0), pn) = (uo, o),

(4.1.46)

where (-, -) isthe inner product in the space I?(R). It was proposed in [45] that
1
a(t) = ———m=,
2\/ 1/(50(615 + 1)

where ¢y and § are some positive parameters. To simplify the computation, let

(4.1.47)

N
un(x,t) = Zﬁl(t)Hl(ozx), on(z,t) = (2™m)  ta(t) H,y, (o)
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(0 <m < N). (4.1.48)

In other words, we expand the unknown solution in terms of scaled Hermite func-
tions, and the scaling is now dependent on time.

Theorem 4.1 (cf. [45]) Let v and u, be the solutions of (4.1.44) and (4.1.46),
respectively. Assumethat U € C(0,T; Hz,l(}R)) (o0 = 1), and the weight function
o defined by (4.1.47) with 26,6 > 1. Then

lux(t) = u(t)]l -1 SCNTI2 W0<t<T, (4.1.49)
where C is a constant independent of N.

Numerical experiments

Example4.1.1 Thefirst example isthe problem (4.1.28):

—u(x) 4+ ztu(z) = Mu(z), x € R.

By the WKB method!®3], the solution of the above equation has the asymptotic be-
havior
u(z) ~ exp(—|z[?/3). (4.1.50)

It is obvious from (4.1.50) that u ~ 0 if |x| > M = 5. In order to obtain accurate
solutions of (4.1.28) efficiently, we need to choose the scaling factor o = a/M,
where zy = maxggj<n{z;}, with z; the roots of Hyi(x). Since the solutions
of (4.1.28) are even functions, only N/2 expansion terms are required in the actual
calculations. With N = 60 we predict the scaling factor o ~ 10.16/5.0 ~ 2.0.
Birkhoff and Fix!*3 used Galerkin method with 30 Hermite functions (i.e. N =
60) to solve (4.1.28). They found that the standard Hermite functions (i.e. without
scaling) gave the first 18 eigenvalues to only three decimal places, whereas using a
scaling factor o = 2.154 gave the same eigenvalues to 10 decimal places. That is, an
increase of 10~7 in accuracy is obtained. They obtained the optimum scaling factor
through trial and error (the procedure requires a considerable amount of computer
time), but the theory in the last subsection provides an accurate scaling factor in a
very ssimple way.

Example4.1.2 Consider the heat equation

ou 0

= %( 6“’), zeR, (4.151)

Yo
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where v is the viscosity coefficient, with the initial distribution

u(z,0) =

1
N exp (—.TQ/V) . (4.1.52)
If the viscosity coefficient is a constant, then the exact solution of (4.1.51) and
(4.1.52)is

1 z2
u(x,t) = @D exp < T 1)> . (4.1.53)
Problem (4.1.51) and (4.1.52) has been chosen since it has an analytic solution and
thisallows us to compare our numerical results with the exact solution (4.1.53). It can
be seen from the previous subsections that the Hermite spectral methods will work
well for moderate values of v, but about O(1/v) expansion terms are needed when v
issmall. However, if we apply a proper scaling then much fewer terms are required.
To illustrate this we shall consider the case when v = 0.01. It is pointed out that the
numerical procedure can be applied to more complicated initial distributions and to
variable viscosity coefficients.

Let w(t) = (u(zo/an,t), -+ ,u(zy/an,t))T. Then a semi-discretization of
(4.151) is
dﬂ /\27
i vD*a, (4.1.54)

where D is the differentiation matrix given in (4.1.27). When an explicit method is
used to integrate (4.1.54) in time, the maximum allowable time step needs to satisfy

At=0 ( L ) , (4.1.55)
vo(D?)

where o(D?) is the spectral radii for 2 It can be shown (cf. [167]) that the spectral

radii for the first and second Hermite differentiation matrices are O(v/N) and O(N),

respectively. Hence, the stability condition (4.1.55) is very mild (At < CN71)

compared to the Fourier case (At < C'N~2) and Legendre or Chebyshev cases (At <
CN~%). Thisvery mild stability condition can be further alleviated by using a proper
scaling. Indeed, since o(D?) = O(a% N) with N = O(y/1/v) and ay = O(V'N)

(see [167]), we obtain At = O(1). This suggests that the step-size in time can be
independent of IV when v issmall.

We now provide a pseudo-code for solving the heat equation (4.1.51) with the
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Hermite spectral method. The ODE system (4.1.54) isintegrated by using the forward
Euler’'s method.

CODE Hermitexheat.l
Input N, v, At, T, wugp(x)
Call a subroutine to get the roots of }LV+1(X),i.e.,xj,
0<I<N
Choose a scaling factor a=xz¢o/M
Call a subroutine to obtain ﬂ%d=ﬁﬁ(xﬂ
Compute the collocation point x(j) and the initial data:
x(3)=x;j/o, u(j)=up(x(j)), 0<IN
time=0
While time < T
$form the Hermite expansion coefficient 4,

for n=0, N do

a(n) =Y gu(3) #Hy ()

endfor
$compute a2(n)=@g)
a2(0)=0.5%a%(-a(0)+v2a(2)), a2(1)=0.5xa?(-3*a(1)+V6a(3))

a2 (N+1)=0, a2(N+2)=0
for n=2, N do
a2 (n)=0.5%a2(y/(n—1)na (n2)—(2n+1) a (n)+/(n+1)(n+2)a (n2) )
endfor
$forward Euler time integration
for j=0 to N do
u(3) =u(j) +vxAtx S0 a2 (n) xH, (z;)
endfor
Update time: time=time+At
endWhile

In the above code, a subroutine for finding the roots of Hy1(x) issimilar to CODE
LGauss .1 givenin Section 1.3. Moreover, the recurrence formula (4.1.14) must be
used to evaluate H, ().

We use CODE Hermitesxheat .1 to solve the problem in Example 4.1.2. Fig-
ure 4.2 gives a comparison between the exact solution and the numerical results ob-
tained by using a scaling factor, & = 14/1.5. The solution domain is therefore
|z| < 1.5. With N = 32 and At = 0.01, it is seen that the agreement between the
exact solution and the numerical result is good. However, if a scaling factor is not
used, then reasonable approximate solutions cannot be obtained, even with a much
larger values of N; see Figure 4.3.
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108 —06 0402 0 02 04 06 08 1
Figure4.2

Example 4.1.2: Comparison between the exact (solid lines) and numerical (pluses) solutions at
different time levels, with aconstant scaling 8 = z/1.5, N = 32 and At = 0.01.

45 T T T T T T T  § T
41 =05 N=128
No scaling used
35F 1

_0'5—1 -0.8 -06 -04-02 0 02 04 06 08 1

Figure 4.3

Example 4.1.2: Numerical solutions at different time levels without using ascaling (i.e., 5 = 1).
N = 128 and At = 0.005. The exact solutions are displayed in Fig.4.2.

Example4.1.3 Consider the parabolic problem (4.1.44) with » = 1 and the follow-
ing source term

f(z,t) = (ac cosz + (t+ 1)sin x) (t+1)"32exp <_4(tx7—|2—1)> (4.1.56)
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This example was proposed by Funaro and Kaviart®!. Its exact solution is of the
form

sin z x?
u(x,t) = i exp (_4(t n 1)> (4.1.57)

We denote

maxog; <N [un (75,t) — u(x;,t)|
MaX<j<N \u(xj,t)|

En(t) = [ut) —un®)lyoz1r  ENoo(t) =

We solve the above problem using (4.1.46) and the scaling factor (4.1.47) with (&, 0)

= (0.5,0) which corresponds to the classical approach, and with (§,0) = (1,1)

which corresponds to a time-dependent scaling. For ease of comparison, we use the
same mesh size as used in [54]. Table 4.1 shows the error Ey(1) with different

time steps. We note the result in [54] is obtained by an explicit first-order forward
difference in time.

Table 4.2 shows the order of accuracy for the scheme (4.1.46) together with the
Crank-Nicolson time-discretization. It isobserved from the numerical results that the
numerical scheme is of second-order accuracy in time and spectral accuracy in space.

Table4.1 Errorsatt = 1 with N = 20 using different methods

time step Funaro and Kavian's Classical method (4.1.46) Proposed method (4.1.46)
T scheme [54 with (50, 6) = (0.5,0) with (50, 6) = (1,1)
25071 2.49E-03 1.95E-04 2.96E-06
10007+ 6.20E-04 1.95E-04 1.19E-06
4000~* 1.55E-04 1.95E-04 1.18E-06
16000~* 3.89E-05 1.95E-04 1.18E-06

Table4.2 Errorsof the scheme (4.1.46) using the scaling factor (4.1.47) with

(503 5) = (13 1)
T N Ex(1) En,oo(1) Order
1071 1.70E-03 9.78E-04
1072 1.70E-05 9.77E-06 72:00
1073 30 1.70E-07 9.77E-08 72:00
1074 1.70E-09 9.80E-10 72:00
10 5.16E-03 1.19E-03
1074 20 1.18E-06 1.25E-07 N—12:10
30 1.70E-09 9.80E-10 N—16.14




158 Chapter 4  Spectral Methods in Unbounded Domains

Exercise 4.1

Problem1 Approximate f(x) = sin(10z), x € [—m, 7], using the Hermite spectral
(or Hermite pseudo-spectral) method:

N
sin(10z) ~ Zaan(az). (4.1.58)
n=0

a Find a,, for N = 11,21 and 31.

b.Letz; =2mj/M (j =Y, -4 +1,..., Zywith M = 200. Plot the right-
hand side function of (4.1.58) by using its values at = x;. Compare your results

with the exact function f(z) = sin(10z).
¢. Repeat (a) and (b) above by using an appropriate scaling factor, see (4.1.34).
Problem 2 Solve Example 4.1.1 to verify the claims for that example.

Problem 3 Solve problem (4.1.51) and (4.1.52) with v = 0.01. Compute u(z,2)
by using the Hermite collocation method in space and RK4 intimewith (i) At = 0.1,
N = 16, (ii) At = 0.01, N = 16, (iii) At = 0.01, N = 24.

a. What are the good scaling factors for (i)—(iii) above?
b. Plot the exact solution and numerical solutions.

Problem 4 Repeat Problem 1 in Section 5.4 using a Hermite spectral method with
aproper scaling.

4.2 Laguerre spectral methods

Generalized Laguerre polynomials

Laguerre functions

Interpolation, discrete transform and derivatives
Laguerre-collocation & Galerkin methods
Genera boundary conditions

Fourth-order equations

Scaling and numerical experiments

For problems posed on asemi-infinite interval, it isnatural to consider the (usual) La-
guerre polynomias { £,, (x) } which form acomplete orthogonal systemsin 2 (0, o)

with w(z) = e~*. Although for many problems it is sufficient to use the usual La-
guerre polynomials, it is more convenient for the analysis and for the implementation
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to introduce afamily of generalized Laguerre polynomials {[ff‘) ()} witha > —1
and £, (z) = £ (2).

Generalized Laguerre polynomials

The generalized Laguerre polynomials Eff)(x) withz € Ry = (0,00), a0 > —1,

are defined by the three-term recurrence relation:

(n+ 1)L (@) = @n+a+1-2)L0 (@)~ (n+ )L (2),

n—1

(4.2.1)
@) =1, LY@ =a+1-=
They are orthogonal with respect to the weight function w, () = z%e~*, i.e,
57(10‘) (x)ﬁﬁfb‘) (2)wa(x)dz = 'yff‘) Omms (4.2.2)
R
where
) =D(n+a+1)/T(n+1). (4.2.3)

We now collect some useful properties of the Laguerre polynomials/functions (cf.
[155)):

a. Laguerre polynomials are eigenfunctions of the following Sturm-Liouville
problem:
x~%e* 0, (xo‘ﬂe_xﬁxﬁ%o‘) (:):)) + AL (z) = 0, (4.2.9)

with the eigenvalues )\, = n.
b. We derive from (4.2.4) the orthogonality for {azzﬁf“) (x)}:

Gxﬁga) (:L’)@xﬁgf) (2)zwe (x)de = )\n%(f‘) Ormn.- (4.25)
R

c. Derivative relations:

0,L () = —LL V(@) = =3 £ (), (4.2.68)
k=0

L (@) = 0, L () — 8L, (), (4.2.6)

20, L) () = nL) (z) — (n+ ) LY, (x). (4.2.60)

The two Gauss-type quadratures associated to (4.2.2) and (4.2.5) are:

e Laguerre-Gauss quadrature Let {x§a) };-V:O be the zeros of EE\O,‘J)rl(x)
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and define the associated weights by

w(a):_I‘(N—l—oz—l—l) 1
J (N + 1)! Eg\c;) (xga))axﬁg\?il(xga))
(a)
TV+atl) % 0<j<N. 4.27)

T (NHa+ DN+ D e, @)’

Then we have

N
| p@aedn =Y el e Pavan.
R i=0

e Laguerre-Gauss-Radau quadrature Let {:L'ga)}é-v:o be the zeros
of x&xﬁﬁil («) and define the associated weights by

@ _ (a+ DI (a+ HI(N + 1)
wl® = ety , (4.2.89)
@ _ TN +a+1) 1 1<j<N. (4.2.80)

I NN +a+1) [ﬁg\o;)(x;a))]f
Then we have

N
/ p(z)x®e *dx = Zp(:):;a))wj(-a), Vp € Pyy. (4.2.9
R, -

@)

The zeros of 553)“(90) and xaxﬁg\, +1(z) can be computed using Theorem 1.2.1.

The Laguerre-Gauss points (i.e., zeros of L‘,E\O,‘J)rl(x)) can be computed as the
eigenvalues of the symmetric tridiagonal matrix (1.2.5) with

< N,

o =2 +a+1, J <
< N.

0 4.2.10
Bi=ji+a), 1< (4210

<
J

Dueto (4.2.64), the Laguerre-Gauss-Radau points of order NV with index « are
simply the Laguerre-Gauss points of order N — 1 with index « + 1 plus the,

point 0.
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Let {x§o"N )}j-V:O be the Laguerre-Gauss-Radau points. It is well known (cf. [155])

that xﬁm — 400 as N — +oo. Hence, the values of LN(xE\O,"N)) grow extremely

fast, and the associated weights in the Laguerre-Gauss-Radau quadrature decay ex-
tremely fast. Therefore, numerical procedures using Laguerre polynomials are usu-
ally very ill-conditioned. Instead, it is advisable to use Laguerre functions.

Laguerre functions

The generalized Laguerre function is defined by
ZSZO‘) (z) := e 2L (z), a>-1, zeRy. (4.2.11)

Let &, = 2%, we have that {ZSZO‘)} are L7, (R, )—orthogonal.

In what follows, we restrict ourselves to the most commonly used case,
Lo(z) = LO(z) = e *?L,(2), z€Ry, (4.2.12)
which satisfies the three-term recurrence relation (derived from (4.2.1)):

(n+1)Lny1(z) = @n+1—2)Lpn(z) — nly_1(z),

R R (4.2.13)
Lo(x) =e ™, Li(z)=(1—x)e "/,
and the orthogonality (cf. (4.2.2)):
/ Fo(@) Eon(2)dz = G, (4.2.14)
R
Moreover, due to the fact
~ 1 ~
OuLon(2) = =5 Ln(x) + e 2, L, (2), (4.2.15)
we find from (4.2.6a) that
R n—1 R 1~
OpLp(z) = — kz Li(x) = 5 Ln(x). (4.2.16)

0

We emphasize that in contrast to Laguerre polynomials, the Laguerre functions
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are well behaved, see Figure 4.4. More precisely, we have (cf. [155])

ILn(z)| <1, z€Ry; (4.2.17a)
Ln(z) = O((nz)™YY), Vaelm™, w). (4.2.17b)

where w is afinite rea number.

05

7 05

0 2 4 6 0 10 20

X X
(a) Laguerre polynomials (b) Laguerre functions
Figure4.4

(8): Graphs of thefirst six Laguerre polynomials £, (z) with0 < n < 5and = € [0, 6]; (b): Graphs of
thefirst six Laguerre functions Zn(m) with0 < n < 5andzx € [0, 20].
It is straightforward to define Gauss-type quadrature rules associated with La

guerre function approach. As an example, we present below the Laguerre-Gauss-
Radau quadrature associated with the Laguerre functions:

Let {x;}7, bethe zeros of 20, L1 (x), and
. 1 )
;= _ . 0<j<AN. (4.2.18)
(N + DL ()]
Then
N
/ p(z)dx = Zp(xj)d)j, Vpe{u: u=e v, ve Py} (4219)
Ry =

I nter polation, discrete transform and derivatives

We define
Py =span{Ly(z) : k=0,1,--- ,N}, (4.2.20)
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and denote by I the interpolation operator in Py based on the Laguerre-Gauss-
Radau points {z;}1, i.e., for al u € C(Ry), Iy satisfies

Inu(z;) = u(z;), 0<j<N. (4.2.21)

For any u € Py, we write

N N
u(@) =Y anla(z), u'(z) =Y 4P L, (w). (4.2.22)
n=0 n=0
Thanks to the Laguerre-Gauss-Radau quadrature, the interpolation coefficients {4, }
can be determined by

~

1 SN Lo(x))
. o (] |
“”—NHZ =———u(z;), 0<n<N. (4.2.23)

§=0 [EN (x])]

By using the recurrence relation (4.2.16), we can compute {ﬁﬁ}) N_, from the coef-
ficients {4, })_, asfollows:

1
iy = ~Zin,
" 1 N (4.2.24)
(3 :_§Uk_ Z Up, 0Lk N-—1.

n=k+1

We now turn to the differentiation matrix corresponding to the Laguerre function
approach. Let {z; }j-V: o be the Laguerre-Gauss-Radau points. Given u € Py, we can

write N

u(z) = ula;)h;(x), (4.2.25)

j=0
where {Bj }5’\’:0 are the Lagrange interpolation functions satisfying

iLjEﬁN, ﬁj(xk):&gj, ng,jgN.
It can be verified that the first-order differentiation matrix associated with the Laguerre-

Gauss-Radau points is given by

ENHA(M) 7 k£,
(e — 25) Ly ()
0, k=j#0,
—(N +1)/2, k=j=0.

dyj = hf(zp) = (4.2.26)
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Laguerre-collocation & Galerkin methods

Toillustrate how to solve differential equations in the semi-infinite interval using
Laguerre functions, we consider the following model equation:

—u(x) +yu(z) = fz), TER4, 7 >0,
(4.2.27)
w(0) =0, lim wu(zx)=0.

T——+00

Laguerre-collocation method The Laguerre-collocation method for
(4.2.27) isto find uy € Py such that

—un(x;) +yun () = f(x;), 1<j<N,

uar(0) 0. (4.2.28)

Setting @ = (un(20), un (1), -+ ,un(zn))t and f = (f(zo), f(z1), -, f(zn))T,
the collocation equation (4.2.28) can be written in the form

(=D? 4 ~4D)u = f, (4.2.29)
where D = (dy;) isthe N x N matrix with dy; defined in (4.2.26).

Laguerre-Galerkin methods We now consider the approximation of
(4.2.27) by using a Galerkin method. To this end, we define

HY(Ry) = {ue H'(Ry) : u(0) =0}, PY={uec Py: u0)=0}.
Then, the variational formulation of (4.2.27) isto find u € H (R,.) such that
a(u,v) == (', ") +v(u,v) = (f,v), Vo€ HI}R,). (4.2.30)
The Laguerre-Galerkin approximation uy € 13}\), to (4.2.30) is determined by
alun,vy) = Uy, vy) +v(un,on) = (Inf,on), Yoy € ]3](\]7, (4.2.31)

where Iy f € Py is the interpolating function such that Iy f(z;) = f(z;), i =
0,1,--- N,
Let us set

~

Or(x) = (Li(x) — Ly (2))e™™? = Li(x) — L (). (4.2.32)
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It follows from £,(0) = 1 that ¢ (0) = 0, and

ﬁ](\)f = Span{gg)()) gzgl? o 7&]\/71}' (4233)
Hence, defining
N-1

f’L:(IN 7$i)7 f:(f07f17"' 7fN—1)T7
Sik = (é;w ég)a S

Mg = Oy ¢i)y M = (Mir)ogi k<N-1,

= (Sik)Oéi,ngfla

we see that M is a symmetric tridiagonal matrix, and it can be verified that S =
— %M . Thus, the system (4.2.31) is reduced to the matrix form

(1 +(y-1 /4)M)a ~ 7. (4.2.34)

General boundary conditions

More general boundary conditions of the form
au(0) — bu'(0) = ¢, (4.2.35)

with b # 0 (b = 0 reduces to the simpler Dirichlet case) and ab > 0 to ensure the
ellipticity, can be easily handled as follows. First, the non-homogeneity can be taken
care of by subtracting () := ¢/(a + b/2)e~*/2 from the solution, leading to the
following homogeneous problem: Find u« = @ + v, such that

N — gy = [ — (v — 1/4)up := f;  a@(0) — b’ (0) = 0. (4.2.36)
The corresponding variational formulation is: Find u = @ 4w, € H'(R.) such that

(@, 0) + %&(O)U(O) ¥ (g, ve) = (f,0), Yo HY(R,). (4.2.37)
Since £(0) = 1 and 9,,L(0) = —k, we find that

() = (Lr(x) — apLpsr(z))e/,

(4.2.38)
ar = (a+kb+b/2)/(a+ (k+1)b+b/2),
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satisfies agy (0) — b, (0) = 0. Let
)A(:N = Span{&(b &17 to 7&]\7—1}- (4239)

TNhus, the Laguerre-Galerkin method for (4.2.37) is: Find uy = @y + up With @iy €
X n such that

V(N , 8) + (i, ) + %aN(O)@(O) — (Inf,7), Vo€ Xn. (4.2.40)

It is clear that M;; := (¢j,4;) = 0 for |i — j| > 1. One also verifies readily by
integration by parts that

which implies that S;; = 0 for |i — j| > 1. Hence, the matrix S 4 o.M associated to
(4.2.40) is again tridiagonal.
Fourth-order equations

Consider the fourth-order model problem

Q11U — QQUgy + Uggry = fa YIS R—i—
u(0) =u,(0) = lim w(z)= lm wu,(z)=0.
T——+00

r—-+00

(4.2.42)

Let H3(R;) = {u € H*(Ry) : u(0) = u,(0) = 0}. The variational formulation
for (4.2.42) is: Find u € HZ (R, ) such that

o1 (u,v) + (g, vg) + (Uge, Vo) = (f,v), Yo € HE(R,). (4.2.43)

Set X = {u € Py : u(0) = uy(0) = 0}. Then, the Laguerre-Galerkin approxima-
tion for (4.2.43) is: Find uy € )A(N such that

a1(un,v) + az(uy,v') + (U}, 0") = (fo,v), Vo e Xn. (4.2.44)

One verifies easily that

~

Ur(z) = (Li(@) — 2Lps1(2) + Lira(z))e™? € Xjia,
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and )?N = Span{lz()vlﬁlv T 7'&]\7—2}' Hence, Settlng

sk = W 00), S = (sk)k=0,1, N—2,
Wi = W5 0%), Q@ = (akj)kj=01, N2,
mg; = (V. k), M = (mj)kj=01, N~2,

o A) I i (4.2.45)
fk:(Ivawk)v f:(f()vflv"' 7fN—2)7
2

uN = ﬂk?pk, U= (’ELO,’ELl,"' 7/I:LN72)7

we find that (4.2.44) reduces to

(a1 M + aQ + S)u = f. (4.2.46)
One verifiesthat S, @ and M are all symmetric penta-diagonal and their entries can
be easily computed. Hence, (4.2.46) can be efficiently solved.

Scaling and numerical experiments

Although the Laguerre-spectral methods presented above enjoy atheoretical spec-
tral convergence rate, the actual error decays considerably slower than that of the
Chebyshev- or Legendre-spectral method for similar problemsin finiteintervals. The
poor resolution property of Laguerre polynomials/functions, which was pointed out
by Gottlieb and Orszag in [61], is one of the main reasons why Laguerre polynomi-
alg/functions are rarely used in practice. However, similarly asin [158] for the Her-
mite spectral method, the resolution of Laguerre functions can be greatly improved
by using a proper scaling factor.

The main factor responsible for the poor resolution of Laguerre polynomials
and Laguerre functions is that usually a significant portion of the Laguerre Gauss-
Radau points is located outside of the interval of interest. For example, u(z) =
(sinkx)e~® < 1078 for x > 18, so all the collocation points which are greater than
18 are essentially wasted. Thus, it makes sense to scale the function so that al the
effective collocation points are inside the interval of interest. More precisely, we
can proceed as follows: Given an accuracy threshold ¢, we estimate a M such that

u(z)] < e forxz > M. Then we set the scaling factor gy = 2 M, where
N

x%“ isthe largest Laguerre Gauss-L obatto point, and instead of solving the equation

(4.2.27), we solve the following scaled equation with the new variable y = Gya:

70 = Bivyy = 9(v); v(0) =0, lim u(y) =0, (4.2.47)
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where v(y) = u(Byz) and g(y) = f(Bnz). Thus, the effective collocation points
x; = y;/By ({y;}i-, being the Laguerre Gauss-Lobatto points) are all located in
[0, M]. In Figure 4.5, the approximations of (4.2.27) with the exact solution being
u(r) = sin 10x(x + 1)~° using the Laguerre-Galerkin method with a scaling fac-
tor=15 and without scaling are plotted against the exact solution. Notice that if no
scaling is used, the approximation with N = 128 still exhibits an observable error,
while the approximation with a scaling factor=15 using only 32 modes is virtually
indistinguishable with the exact solution. This simple example demonstrates that a
proper scaling will greatly enhance the resolution capabilities of the Laguerre func-
tions and make the Laguerre functions aviable alternative to the rational polynomials
studied in [66], [18].

5 j T j j T 0.6
i 1 05th

4 et 4 o+ 4 N=16 ] . .
35t | 04K o:N=128 without scaling

3 bmrroosoocoooo o s o o N=D4 1 03 +:N=32 with scaling
251 1 02f ¢ --: Exact solution

D msmsrrrisinnnkr e n x x4 4 x4 N=32

1.5¢

] pEmmE0000000000000000000000 0 0 0 0 O O o

0.5F N=4g { 01T

0.1
0¢

00 20 40 60 80 100 120 140 160 180_0'20 0.5 1 1.5 2 2.5

Figure4.5 Locations of the Laguerre Gauss-Radau points and effects of scaling

Example4.2.1 The Schrodinger equation,
—y"(z) +y(z) = MA(2)y(z),  0<z < oo, (4.2.48)

plays a central role in the theory of Quantum Mechanics. Here,

B 1
1 4 el@—r)/e

9

q(z)
with r = 5.08685476 and ¢ = 0.929852862. The boundary conditions are

y(0) =0, lim y(z)=0. (4.2.49)

T—00

This problem can be solved by using Weideman and Reddy’s MATLAB Differ-
entiation Matrix Suite (cf. [168]). Sincethedomainis [0, oo), solving the Schrodinger
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equation by the Laguerre spectral collocation method is a natural choice. Let D be
the second-derivative Laguerre matrix of order N + 1, as computed by 1agdif .m
in [168]. Let the scaling parameter be 3. This means that the nodes are x; = /0,

wherether; aretherootsof z Ly, (x). Thereisan additional boundary node z = 0;

incorporation of the boundary condition at this node means the first row and column
of D areto be deleted. The boundary condition at x = oo isautomatically taken care
of by the Laguerre expansion. The Schrodinger equation is therefore approximated
by the N x N matrix eigenvalue problem

(=D + Dy = AQy, (4.2.50)

where y represents the approximate eigenfunction values at the nodes, | istheidentity

matrix, and
. 1
Q = diag (71 n e(xjr)/e> .

The MATLAB function schrod.m in [168] given in Table 4.3 implements this
method.

The physically interesting eigenvalue is the one of smallest magnitude. It was
computed before to seven-digit accuracy as A = 1.424333. The Laguerre method
shown in Table 4.3 computed this eigenvalue to full accuracy with N = 20 (resp. N =
30) and all scaling parameters roughly in the range (3 € [3, 6] (resp. 8 € [2,9]).

Table4.3 Computingthe smallest eigenvalue of the Schr ddinger Equation

>>b = 4; N = 20; % Initialize parameters.
>>r = 5.08685476; epsi = 0.929852862;
% Compute Laguerre derivative
>>[x,D] = lagdif (N+1,2,b); P J
matrix.

>>D2=D(2:N+1,2:N+1) ;

o°

>>Q = diag(l./(1l+exp((x-r)/epsi)));
>>I = eye(size(D2));

Woods-Saxon potential.
Identity matrix.

o°

o°

>>e

min(eig(-D2+I,Q)) ; Compute smallest eigenvalue.

Exercise 4.2

Problem 1 Solve the boundary value problem

u"(y) — Puly) = —e V2, ye(l,0)
u(1) = e /2,
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by using the Laguerre-spectral method.
Problem 2 Solve the problem

ou 0%u
E_V@:(L ZEE(0,00),

1 x? 1
u(z,0) = exp | —— ], u(0,t) = —F/———,
(2,0) NIz p( 1/> (0,2) V4t + 1)

with v = 0.01 by using the Laguerre-collocation method in space and RK4 in time
with (i) At = 0.1, N = 16; (ii) At = 0.01, N = 16; (iii) At = 0.01, N = 24. The
exact solution is given by (4.1.53).

a. What are the good scaling factors for (i)—(iii) above?

b. Plot the exact solution and numerical solutions.

4.3 Spectral methodsusing rational functions

Rational spectral method in the whole line
Rational spectral method in a semi-infinite interval
Numerical experiments

In this section, we will discuss the use of rational spectral methods, which are par-
ticularly suitable for problems whose solutions do not decay exponentially to zero as
|| — oo. The properties of the rational spectral methods have been discussed by
several researchers, see, e.g. Boyd["- 19 and Weideman [167].

Rational spectral method in the wholeline

For problem posed in the whole line, a suitable set of rational basis functions is
defined by
R, (t) = cos(ncot (1)), n=0,1,---. (4.31)

The above orthogonal rational functions are merely mapped Chebyshev polynomi-
alswhich in turn are the transformed cosines of a Fourier series. With the map
x = t/v/1+ t2, the basis functions defined by (4.3.1) are equa to 7,,(z), where
the 7,,(z) are the usua Chebyshev polynomials. The first five basis functions are

t 2 -1

t)=1 t) = t) =
RO() ) Rl() t2—|-1’ R2() 241’
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t(t? -3 th—6t2+1
Rot) = =3 gy = L]

(t2+1) (t2+1)

In general, only the R,,’s with even n are truly rational but the others have a square
root in the denominator. The orthogonality relation is

(4.3.2)

> 1 TCh
— R =2 4.3.
/ e R (t) R, (t)dt 5 Omoms (4.3.3)

where ¢p = 2,¢, = 1(n > 1) and 0, is the Kronecker—delta. Thus, if f(t) €
LA(R) and f(t) = .22, an Ry (t), then we have
2 > 1

ap = —

e mf(t)Rn(t)dt7 n = 0.

Example4.3.1 Asan example, we consider parametrized dynamical systems of the
form
u' = f(u,)),  u(t)eRY NERP, teR, (4.3.4)

whered, p > 1. Asolution u(t) of (4.3.4) at \ iscalled a connecting orbit if the limits

u- =, lim u(t), Ugp = tlim u(t) (4.3.5)
exist.
In the case u— = wu., the orbit is called a homoclinic orbit; when v # .,

it is called a heteroclinic orbit. A closed path formed by several heteroclinic orbits
is called a heteroclinic cycle. Homaclinic orbits typically arise as limiting cases of
periodic orbits which attain infinite period but stay bounded in phase space. There
are also many applications for studying the heteraclinic orbits. For example, the
problem of finding traveling wave front solutions of constant speed for nonlinear
parabolic equations is equivaent to the problem of finding trajectories that connect
two fixed points of an associated system of ordinary differential equations (ODES).
Computation of connecting orbits involves the solution of aboundary value problem
on the real line. Therefore, the problem is frequently replaced by one on a finite
domain. The system of ODEs is then solved by a standard ODE boundary value
solvers such as a multiple shooting methods and spline collocation methods. A more
efficient method is to employ the rational spectral method. This procedure does not
require that the infinite interval be truncated. Furthermore, spectral accuracy can be
expected with this approach. Accurate numerical results can be obtained using a
small number of grid points.
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We now consider the use of the rational spectral method to solve (4.3.4). Let
u=(ug, - ,ug)T and f = (f1,---, f4)". Substituting the expansions

M+1
wi(t) = Y eaBi(t), 1<i<d, (4.3.6)
k=0

into (4.3.4), we obtain

M+1 M+1 M+1 T
S i) - 1 (zclmw,-'-,zcdkRku)) AL 1ci<a
k=0 k=0 k=0

(4.3.7)
where M is agiven positive integer. The derivatives of R(t), R (t), can be obtained
by direct calculations from (4.3.1).

In practical calculations, it is more efficient to use the pseudospectral method.
That is, we assume (4.3.7) hold at the collocation points {t; }jf‘il. As mentioned be-
fore, our basis functions R, (t) are mapped Chebyshev polynomialswhich suggests
to choose the collocation points as

tj =cot (jr/(M +1)), 1<j<M. (4.3.8)

Dueto the nature of the rational spectral functions we can add two collocation points,
to = +oo and tpr11 = —oo. Using the relation

M+1
wit;) = > cgeos(kjm/(M+1)), 0<j<M+1, (4.3.9)
k=0
we obtain
9 M+1
Cik, = m Z E;lui(tm) cos (mkmn/(M +1)), 0<k<M+1,

m=0

(4.3.10)
whereé,, =2ifm=00or M + 1,and ¢,, = 1if 1 <m < M. Using (4.3.10) and
R (t;) = ksin? (jm /(M + 1)) sin (kjr /(M + 1)), (4.3.11)

wehave, for1 < j < M,

M+1 M+41

wi(ty) = Y caRi(t;) = Y caphsin® (jm/(M + 1)) sin (kjm /(M + 1))
k=0 k=0
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k

CiCm

= M2—i— N sin? (jm /(M + 1)) ;

cos (mkm /(M + 1)) sin (kjn /(M + 1)) w;(tm)-
The problem (4.3.4) and (4.3.5) isto solve

2

s (j/ (M + 1) Y M cos (mkr /(M +1))

Lm CrCm
sin (kjm/(M + 1)) ui(tm, (4.312)
u

u(to) = u+,u(tM+1) = U_.

The above system has d A/ equations for the dM unknowns v(t;),1 < i < d,1 <
j < M. The main advantage of the pseudospectral method is that it alows one to
work in the physical space rather than the coefficient space. Thus it is possible to
handle nonlinearities very efficiently, without the convolution sums introduced by
the pure spectral method.

We can a'so solve the problem (4.3.4) and (4.3.5) by using the collocation points
(4.3.8) inthe equation (4.3.7). It follows from (4.3.11) and R, (t;) = cos(kjm/(M +
1)) that

M+1
> ksin® (jm/(M + 1)) sin (kjm /(M + 1)) car
k=0
M+1 M+1 T
= ((Z cap cos (kjm/(M + 1)), -+, > caxcos (kjm/(M + 1))) ,)\) ,
k=0 k=0

(4.3.13)

forl < j < M,1 < i < d. The above system gives dM equations. We can use
further 2d conditions, which are given by (4.3.5), to find the d(M + 2) unknowns
cik, 1 <1 <d,0< k< M+ 1.
Rational spectral method in a semi-infinite interval

By applying a mapping to the Chebyshev polynomial,we define a new spectral
basid?® 22, The new basis functions, denoted by T'L,(y), are defined by

TLy(y) := T,(x) = cos(nt), (4.3.149)
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where L is aconstant map parameter and the three coordinates are related by

1+ y—L
=L =2 = 4.3.15
y=Li— T 5T ( )
y = Lcot2£ t=2cot ! |2 (4.3.16)
5 T 3.

To avoid confusion as we leap from one coordinate to another, we shall adopt the con-
vention that y € [0, co) is the argument of the T'L,(y), = € [—1, 1] is the argument
of the ordinary Chebyshev polynomials,and ¢ € [0, 7] is the argument for cosines.
We are free to calculate in whichever of these three coordinates are most convenient.

We shall refer to the T'L,,(y) as the rational Chebyshev functions on a semi-
infinite interval. Thefirst five basis functionsfor L = 1 are

y—1 y? —6y+1

TL =1, TL =2 — TL =,

0(y) 1(y) ST 2(y) TESE
315y + 15y — 1 4 28y3 + T0y% — 28y + 1
TLy(y) = L0 T W 2 gy =L -2 T 00 220

(y+1)° (y+1)4

(4.3.17)

By merely changing the variable in the usual orthogonality integral for the cosines,
one can show that the rational Chebyshev functions are orthogonal:

©° TLn(y)TLa(y)VL  _ men
/O D)= g (4.3.19)

where ¢y = 2,¢, = 1(n > 1). The pseudospectral grid in y is simply the image
under the mapping of an evenly spaced Fourier grid,
tl' . 7T(2’L + 1)

Yi = Lcot®? 2, ;=

M) 0<i<N. 431
2 N2 US? (4.3.19)

If we have adifferential equation defined intheinterval [« co) instead of y € [0, 00),
then we merely generalize (4.3.16) toy = a+ L cot?(t/2). Therelevant modification
isthat the collocation grid is changed to

ti 21 +1
yi:Oé+LCOt2—z, ti_ﬂ(l—i_ )

= — 7/ <1< — 1. ..
5 oy 0SisN-1 (4.3.20)

A boundary condition is to be imposed at yy (note that T'L,,(«) = TL,(yn) =
cos(nm) = (—=1)™).
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Numerical experiments
Example 4.3.2 The Huxley equation,

wy = w,, + f(w,a), z€R, t>0,

(4.321)
fw,a) :=w(l —w)(w—a), ac(0,1).

We look for traveling wave solutions to (4.3.21) of the form w(z,t) = u(z + bt),
where b is the wave speed.

The problem (4.3.21) gives the first-order ODE system

du;ix) _ u2(x)7 (4 3 22)
du;i‘ix) = bug(x) — f(u1(x),a),

wherez = 2z + bt. If a = 0.5 and b = 0, then (4.3.22) has afamily of periodic orbits
of increasing period. In the limit, as the period goes to infinity, the orbits approach
aheteroclinic cycle with the equilibrium points (0,0) and (1, 0). Thefirst of the two
heteroclinic orbits has the exact representation

(o) = ROV
1+ exp(z/V2)
The second heteroclinic connection is obtained by reflecting the phase plane rep-

resentation of the first with respect to the horizontal axis w, = 0. Since this test
problem has (4.3.23) as an exact solution, it is useful to test our spectral method.

us () = d“;g(f). (4.3.23)

Itisknown that a scaling factor 3 isuseful to optimize computational accuracy. It
isobserved in [105] that if 8 isnot carefully chosen, then numerical oscillations are
present. It is aso observed that a reasonable choice of 5 in this caseisin the region
[0.1,0.5], since this leads to smooth curves. It was found that the accuracy isnot very
sensitive to the choice of the scaling factor in the neighborhood of the optimum £.
Therefore, it is safe to use any ( in this “trusted” region. Based on this observation,
for any given M we can obtain a corresponding interval from which we can choose
any value as (.

For Example 4.3.2, the exact representation of the two branchesisb = +/2(a —
0.5). Therefore in the case a = 0.5 the exact value of b is0. In [105], the numerica
values of |b| against the number of collocation points, M, are presented, with cor-
responding scaling factors used. It was observed that if M > 10, then the scaling



176 Chapter 4  Spectral Methods in Unbounded Domains

factors used are ailmost independent of M. For agiven M, we define the numerical
errors as

error = 12’1}5% llu(t;) — U(tj) |2, (4.3.24)

where v = (u1,us)T isthe exact solution given in (4.3.23), and U is the numerical
solution. The numerical errors are plotted in Fig. 4.6, which also shows a spectra
convergence rate.

crror
T T

107!
107 ¢ a=05
1073 ¢
10—4 L
105 ¢
1070 ¢

107 ¢

-8 . . . .
i 0 > 10 N 15 20 25

Figure4.6 The maximum errors between the exact and the numerical solutions of w ;.

Exercise 4.3

Problem 1 The differential equation
u'(y) — yPuly) = —e V2 yeR

has an exact solution u(y) = e ¥*/2. Solveit by using the rational spectral method.
Show spectral accuracy by using a number of collocation points.

Problem 2 Solve
u'(y) — Puly) = —e V2 ye(1,0),
u(l) = e 12

by using the rational spectral method.
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4.4 Error estimatesin unbounded domains

Laguerre-Galerkin method
Hermite-Galerkin method

In this section, we will discuss some basic techngiues for obtaining error bounds for
spectral methods in unbounded domains. There have been several works relevant to
the topic in this section; see e.q. [117], [34], [45], [74], [113], [144], [ 76].

Laguerre-Galerkin method

Let w, = % * and &, = z®. We begin by considering the Lia-orthogonal
projection: my,q : L2_(Ry) — Py, defined by

(u — TN, QU UN)w, =0, Yoy € Pn. (4.4.0)

We derive from the orthogonality of [4(1“) (4.2.2) that

TN,aU = Z Un Lgla ,  with agza) = (u7 nga))wa /’Yr(la)'

Similar to the Jacobi approximations, we introduce

H™ (Ry):={u: duel? (Ry), 0<k<m}, (4.4.2)

Wayy* Watk

equipped with the norm and semi-norm
2k 2\ 2 m/2am, |12
iz, . = (D2 N 20kl2,) ™ Julug, . = le™ 205,
k=0

Before presenting the main result, we make the observation that

PELO (x) = (1)L (@), n>k, (4.4.3)

n

which follows by using the derivative relation (4.2.6a) repeatedly. Hence, {@Eﬁf‘)}
are mutually orthogondl in I, ., (Ry),i.e

n

—+00
/ OF LD OF LD woypdr = ATH5,
0
By Stirling's formula (1.8.12) and (4.2.3),

k‘ _7

~ for 1.
Tn—k+1) ~" o>

(a
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Then, using an argument similar to that in the proof of Theorem 1.8.1 leads to the
fundamental approximation result for Laguerre polynomials.

Theorem 44.1 Foranyu € H]! (Ry)andm >0,

< NEM2) gm0 0< T < m. (4.4.4)

105 (Tv.0w = W) sy S

We now consider the corresponding approximation result for Laguerre functions.
Forany u € L2 (R,), wehaveue™? € L2 (R.). Let usdenote

and define the operator
TNl = 6_“"/27TN7a(uex/2) € ﬁN, (4.4.6)

where Py is givenin (4.2.20). Clearly, by (4.4.1),

(ANt = U, 0N)a, = (TN,a(ue™?) = (ue’?), (vne™?))y,

~ (4.4.7)
=0, VYouy € Py.
Hence, 7, is the orthogonal projector from L?:;a (R4) onto Py.
Theorem 442 Letd, = 9, + 5. Then
104 (N0t = W)lons, S N0  Ulls, . 0ST<m. (448)

Proof Letwv = ue®/2. Itisclear that
OL(mn,av — v) = (e (7N qu — u)) = 2O (FNau — u),

and likewise, 07'v = et/ 23;%. Hence, the desired result is a direct consequence of
(4.4.49). O

Hereafter, let w = e~%, and denote
Hy,(Ry) = {u € Hy(Ry) = u(0) =0}, Py = Hg,(Ry)N Py.

Before we study the errors of the Laguerre-Galerkin approximation for (4.2.27), we
need to establish a few lemmas. We shall first establish a Sobolev inequality and a
Poincaré inequaity in the semi-infinite interval.
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Lemma4.4.1 For anygivenv € H (R, ), we have

z 1 1
le 5ol ey < VR, ol <20l (449)

Proof Forany =z € R,

e [Td
) = [ SR )y

from which we derive

(4.4.10)

© dov(y
< 2/ e Yv(y) ( )\dy < 2[oll, vl -
0 dy

Thisimplies the first conclusion. Letting x — oo, we get the second inequality. [
Consider the orthogonal projection my” : H{ ,(Ry.) — PY., defined by
((u— 7y u),vly)o =0, Yoy € PY. (4.4.11)
Lemma4.4.2 Ifue Hj (Ry), andd,u € H', ' (Ry), thenfor m > 1,

m
2

mk0u — w1, S N2~ % 2™ 0 ul,. (4.4.12)

~

Proof Letuy(z) = [ my_1,0u'(y)dy. Thenu — uy € Hj (R ). It follows from
Lemma4.4.1 and Theorem 4.4.1 with a = 0 that

Iy = ullw < Jluy — ulhw S Ju—unho

<SNFF 2" 9l

This ends the proof. O
Note that for any u € H} (R ) we have ue/? € Hj ,(R.). Define the operator
1,0

T U= e*x/Qw}\}O(uex/Q) € Py, Vue H}(Ry).

The following lemma characterizes this operator.



180 Chapter 4  Spectral Methods in Unbounded Domains

Lemma4.4.3 For anyu € H} (R, ), we have

1 ~
((u— 7T]1VO Y, V) + 4(u - 7T]1V0u vy) =0, Yoy € Py. (4.4.13)

Letd, = 0, + 1. Ifu € HY(Ry) and 0w € L2, (R.), then we have
in"u —ull S N275 )0 ulls,, - (4.4.14)

Proof Using the definition of 7TN , and integration by parts, we find that for any
oy = wye %2 withwy € PY,

((u—7y"u)' vy
1 1
= ([(ue™?) = w3 (e )] = S1ue™/?) = w3 (ue™’?)], wly = swy )

(
3 ) 0 = e e () R e )
0

1 1
- _Z((ue:t/Q) _ le\}o(uex/Q),’U)N)w 4(u . 7r]1\70u ’UN)
which implies the identity (4.4.13). Let v = ue®/2. It isclear that
O, (7T]1VO’LL B u) _%e—x/Q(ﬂ_Jl\}Ov - ’U) 33/28 (7TN v — ’U)

Hence, using Lemma (4.4.2) and the fact 9'v = v/ 23;%, leads to

102 (A" — w)|| S 7300 = vl + [|02(TN"0 — V)|
<N E (|27 olly S N2 a™F 07 l.
Similarly, we have
1 m —1 A
730u — ul| S N33 ||2"% 9.

This completes the proof. O

A complete error analysis for (4.2.31) needs error estimates for the laguerre-
Gauss-Radau interpolation which are much more involved than the interpolation er-
rors on afinite interval. We shall refer to [121] (and the references therein) where
some optimal Laguerre interpolation error estimates were established. To simplify
the presentation, we shall ignore the interpolation error here. We are now in a posi-
tion to perform the error analysis.
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Theorem 443 Letd, = 0, + 4, v > 0, and let u and uy be respectively the
solution of (4.2.27) and (4.2.31) where ! f isreplaced f. Then, if u € H}(R,) and
Oue L (Ry), wehave

—1

2|00 ullg,, (4.4.15)

=

lu —unli SN

Proof Letey = uy — 7y uand éy = u — 7y u. Hence, by (4.2.30) and (4.2.31),
a(uy —u,oy) =0, Yoy € PY.

Dueto (4.4.13), we have a(en,vy) = a(én,vn) = (v — 1/4)(én,vn). Using the
Cauchy-Schwarz inequality and Lemma4.4.3 yields, for v > 0,

~ 1_m m—1 A
lenlls S llénll S N2~ 2|22 07 ul.

Finally, the estimate (4.4.15) follows from the triangle inequality and Lemma 4.4.3.
O

Her mite-Galerkin method

The analysis for the Hermite case can be carried out in a similar fashion. Let
w = e~*" be the Hermite weight. We define the L2 -orthogona projection my :
L2(R) — Py by
(u—7Nu,vN)w =0, Yoy € Py.

We derive immediately from (4.1.2) that

N
myu(x) = Zﬂan(x),
n=0
with
0= g | w)Ha(@e a0 >0
Uy = —=—— u(x x)e z, n=0.
w2l ) " ’

To obtain the approximation result for 7y, we observe from (4.1.4a) that
OH,(x) =2"n(n—1)---(n—k+ 1) H,_(z), n>k, (4.4.16)

which impliesthat { H,, } are orthogonal under theinner product of the Sobolev space
H'(R). Hence, using an argument similar to that for the proof of Theorem 1.8.1, we
can easily establish the following result:
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Theorem 4.4.4 For any u € H'(R) withm > 0,

10L (v — u) ||l < N2 07|, 0<1< m. (4.4.17)

~

We now consider the corresponding approximation result for Hermite functions.
Sinceue™/? € L2(R) for any u € L2(R). We define

ANU 1= 6_x2/27TN(U6$2/2) € Py, (4.4.18)

where Py isgivenin (4.1.20). It is easy to check that 7y u isthe L2(R)—orthogonal
projection of « onto Py since

(u—TNu, V) = (uex2/2 — ﬁN(UGIQ/Q),UNeIQ/Q)w =0, Yoy € Py. (4.4.19)

Thefollowing result is adirect consequence of Theorem 4.4.4.

Corollary 4.4.1 Letd, = 9, + x. For any §u € L2(R) withm > 0,

10L (Anu — w)|| < NE™2)19m), 0< 1< m. (4.4.20)

With the help of the above approximation results, it is straightforward to establish
error estimates for the Hermite-Galerkin approximation to Poisson type equations.

Exercise4.4

Problem1 Givena; > 0and as > 0. Let w and uy be respectively the solutions
of (4.2.43) and (4.2.44). Show that for u € H§(Ry) and 92u € H,_,(Ry), with
m > 2, we have

lu—unllz S N2 [fullpgm—2
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In this chapter, we present applications of the spectral method to some typical one-
dimensiona problems. The first section is concerned with two-point boundary value
problems with boundary layers. Spectral collocation methods have some advantages
for handling this class of problems, but specia tricks are needed to deal with ex-
tremely thin layers. The second section is concerned with the Fredholm integral
equations. It will be demonstrated that the spectra method is ailmost as efficient as
the standard product integration methods while producinf much more accurate ap-
proximations. In Section 5.3, we present a Chebyshev spectral method for parabolic
equations, and in Section 5.4 we consider Fourier spectral methods for the KdV equa-
tion. In the final two sections, we discuss Fourier approximation to discontinuous
functions, the use of the spectral filters, and the applications to nonlinear hyperbolic
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conservation laws. The last section — essentially non-oscillatory spectral methods
— requires some background in hyperbolic conservation laws. A good reference on
this topic is the book by LeVequd10H,

5.1 Pseudospectral methodsfor boundary layer problems

A direct application of PS methods
Boundary layer resolving spectral methods
Transformed coefficients

Numerical experiments

The case when ¢ <« 1 in (2.4.1) is particularly interesting and challenging. Many
different phenomena can arise in such problems, including boundary layers and com-
plicated internal transition regions. The last few decades have witnessed substantial
progress in the development of numerical methods for the solution of such problems
and several packages, such asCOLSY 9%, PASVAR 100 and MUS122 are presently
available.

In this section, we consider the case where thin boundaries are formed when
e < 1. Itiswell-known that spectral methods are attractive in solving this type of
problems thanks to the fact that the spectral collocation points are clustered at the
boundary, more precisely, we have

1 /72 )
|z1 —xo| = |on —xN_1] = |cos(m/N) — 1] = 3 (N) ~NT
In other words, the spacing between the collocation points near the boundaries is
of order O(N~2), in contrast with O(N~!) spacing for finite differences or finite
elements.

Although spectral methods are much more efficient than finite differences and fi-
nite elements in solving boundary layers, still alarge N isrequired to obtain accurate
solutions when e is sufficiently small. In the past few years, several modified spectral
methods have been proposed that are designed to resolve thin boundary layers,see
e.g. [47], [64], [160].

A direct application of PS methods

Wefirst usethe CODE PSBVP. 2 in Section 2.4 to compute the numerical solu-
tion of the following problem with small parameter e.

Example 5.1.1 The following example has variable coefficients and the solution
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devel ops two boundary layers of width O(¢) near the boundaries. The equation is
eu’(x) — xu'(x) —u = f(2),

where f(z) = (r+1)/e — 1) exp(—(z +1)/e) —=2((x — 1) /e + 1) exp((x — 1) /¢).
The boundary conditions are u(—1) = 1, u(+1) = 2.

It can be verified that the function u(z) = e @+t1/e 4 20(x=1/¢ gisfies the
above ODE. It also sdtisfies the boundary conditions to machine precision (which is
about 16-digits in double precision) for all values of ¢ < 0.05. The following table
contains the maximum errors for e = 1072,1072 and 10~%:

N €=10"2 €=10"3 =104

32 1.397e-03 4.388e+00 6.450e+01
64 1.345e-10 3.024e-01 2.792e+01
128 8.843e-14 1.598e-04 7.006e+00
256 5.372e-13 9.661e-13° 1.321e-01

We observe that the Chebyshev pseudospectral method fails to resolve the solution
satisfactorily for e = 1074, even with N = 256.

For comparison, we solve the problem by using the central-difference finite dif-
ference method with ¢ = 10=2 and 1073, respectively. The following results show
that even with 1000 grid points the boundary layers are not well resolved:

N €=10"2 €=10"3 N €=10"2 =103
32 1.900e+00 1.879e+00 256 1.077e+00 1.987e+00
64 1.866e+00 1.941e+00 512  6.443e-01  1.954e+00
128 1.560e+00 1.972e+00 1024  3.542e-01  1.714e+00

Boundary layer resolving spectral methods

In order to resolve very thin boundary layers by using a reasonable number of un-
knowns IV, we transform the singularly perturbed linear BVP (2.4.1) viathe variable
transformation = — y(x) (or x = x(y)) into the new BVP

ev”(y) + P(y)v'(y) + Qy)v(y) = F(y), (5.1.1)

where v isthe transplant of u, v(y) = u(z(y)). The transformed coefficients are

~ p(x) 6y”(ﬂs) ~ q(x) _ fl=)
POy e VT yer T Ty 612

@ We used CODE DM. 3 in Section 2.1 to compute the differentiation matrix D*. That is, we
have used the formulas (2.1.15) and (2.1.16). If we use more accurate formulas (2.1.17), this error will
reduce to 6.84e-14.
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whereagain x = z(y). It isclear from (5.1.1) and (5.1.2) that for any variable trans-
formation = — y(x) the two quantities 1/4/(x) and " (x)/[y'(z)]? are of interest
and should be easy to calculate.

We now introduce the iterated sine functions = = ¢, (y),m =0, 1, - - -, where
. ™
0@ =y, @) =sin(Fon1), m>1 (613

Thefollowing result characterizes these transformations based on the relative spacing
of the transformed Chebyshev points.

The following two statements hold for any integer m > 0:
(8 The map g,, isone-to—one and g,,,([—1,1]) = [-1,1];
(b) If the z; are Chebyshev points z; = cos(mj/NN), then

gm(xO) - gm(xl) = gm(fol) - gm(xN)
m 5.1.4)
8 [ 72\? o 9 (
-8 (H) (1+0(N2).
For part () we need to show that ¢, (y) # 0 fory € (—1,1), |gm(y)] < 1 and
gm(+1) = +1, which can be proved by mathematical induction. Part (b) can aso be
established by induction (with respect to m).

Transformed coefficients

We now consider the transformation = z(y) := g, (y). From (5.1.4) it can be
expected that the transformations (5.1.3) together with the Chebyshev PS method can
deal with extremely small boundary layers using afairly small number of collocation
points. For m = 1,2 and 3 (which correspond to one, two and three sine trans-
formations), the distance between each boundary point and its nearest interior point
isO(N—),0(N~8) and O(N~16), respectively. Therefore, even for very small e
such ase = 10~'2, at least one collocation point lies in the boundary layer even for
moderate values of NV, if two or three sine transformations are used.

After having the transformation z(y) = ¢, (y), we need to work on the trans-
formed coefficients P(y), Q(y) and F(y) given by (5.1.2). The computation of
1/y/(x) is straightforward. Differentiating the recursion (5.1.3) we obtain

s s

B =1 gnly) = Fcos (F9m1®)) o), m>1.  (5.15)
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Sincey'(z) = 1/g.,(y), we have
1 m—1

y'(x)

s

<§ cos (ggk(y)>> , m>=1. (5.1.6)

—

k=0

Further we define the functions h,,, (x), mapping [—1, 1] onto itself, recursively via

ho(x) =z, hm(x) = %aresin (hm—1(x)), m

WV

1. (5.1.7)

We will show that h,,, = g;,,}, form = 0,1,--- (thisimpliesthat y(x) = hy,(x)).
The case m = 0 istrivial. For m > 1, welet z = h,;,(gm(y)). It can be shown by
induction that

9k(2) = hin—k(gm(y)),  0<k<m. (5.1.8)
For k¥ = m we therefore obtain
Im(2) = ho(gm () = gm(¥), (5.1.9)

and, since g,,, isinjective, it followsthat y = z,i.e. y = hy,(9m(v)).

We now proceed to find a recursion for the quantity #/,(z)/[h.,(z)]>. From
(5.1.7) we obtain

sin (ghm(:):)) = hpm—1(z), m > 1. (5.1.10)

Differentiating the above equation twice with respect to x yields

s

5 08 (Shm(@)) W) = iy (),

= (5) sin (Gm@) (@) + () o5 (Gm(@)) Hia) = 100,
(5.1.11)

Finally, using the above results we obtain the recursion

hl" (x) T T s T R ()
TAe (§hm(x)) + 5 cos <§hm(x)> m (5.1.12)

Note that hy(z) = 1 and hj(xz) = 0. Since y(x) = hy,(z), the quantity
y"(x)/y'()]? can be computed easily using (5.1.12).
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Using (5.1.6) and (5.1.12), we are able to compute the coefficients P(y), Q(y)
and F'(y) in the transformed equation (5.1.1). The pseudocode for solving (5.1.1) is
provided below:

CODE Layer.1l
Input M, N, ¢, p(x), g(x), £(x), B, Br
Collocation points: x(j)=cos(wj/N)
$first order differentiation matrix
call CODE DM.3 in Section 2.1 to get D1
$compute second order differentiation matrix
D2=D1*D1
% compute x=¢,, (y) and 1/y’ (x) at grid points
for j=1 to N-1 do
gm=y (j); yp(j)=1
for mm=1 to M do
yp (3)=(m/2) *cos (m*gm/2)
gm=sin (m*gm/2)
endfor
x(j)=gm
$ compute hn,(x) and y"(x)/[y (x)]
hm=x(j); hd(j)=0;
for mm=1 to M do
hm= (2/7) *asin (hm)
hd (j) = (x/2) *tan (m*hm/2) + (7/2) *cos (w*hm/2) *hd (7 )
endfor

2

endfor
% compute the stiffness matrix A
for i=1 to N-1 do
P(i)=p(x(i))*yp(i)+e*hd (1)
Q(i)=qg(x(i))*(yp(i))?; F(i)=£f(x(i))*(yp(i))
ssl=e*D2(1,0)+P(1i)*D1(i,0);
ss2=€*D2 (1,N)+P (i) *D1(i,N) ;
for j=1 to N-1 do

— o~

if i=j
A(i,j)=e*D2(i,])+P(i)*D1(i,j)+0Q (1)
else
A(i,j)=e*D2(i,])+P(i)*D1(i,])
endif
endfor

[)

% compute the right-hand side vector b
b(i)=F(i)-ssl1*fr-ss2*0
endfor

[)

% solve the linear system to get the unknown vector
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u=A"'b
Output u(l), u(2), ---, u(N-1)

The MATLAB code based on the above agorithm is given below.

CODE Layer.2

Input eps, M, N, p(x), g(x), f(x), betal, betaR

pil=pi/2;

j=[1:1:N-1]; vy=I[cos(pi*j/N)]"';

% MATLAB code for DM1 is given by CODE DM.4 in Section 2.1

D1=DM1 (N); D2=D1"2;
for j=1:N-1
gm=y(j); yp(j)=1;

for mm=1:M
yp(j)=yp(j) *pil*cos (pil*gm); gm=sin (pil*gm) ;

end
x(J)=gm;
$compute y’’ (x) /[y’ (x)]172
hm=x(j); hd(j)=0;

for mm=1:M
hm=asin (hm) /pil;
hd(j)=pil*tan(pil*hm)+pil*cos (pil*hm) *hd(j) ;
end
end

% compute the stiffness matrix
for i=1:N-1

Pl=p(x (1)) *yp (i) +eps*hd (1) ;
Q1=q(x (1)) *yp(i)"2; Fl=f(x(i))*yp (i) 2;
for j=1:N-1
if i==3
A(i,j)=eps*D2(i+1,j+1)+P1*D1(i+1,j+1)+0Q1;
else
A(i,j)=eps*D2(i+1,j+1)+P1*D1 (i+1,j+1);
end if
end for

ssl=eps*D2 (i+1,1)+P1*D1(i+1,1);
ss2=eps*D2 (i+1,N+1)+P1*D1 (i+1,N+1) ;
b(i)=Fl-ssl*betaR-ss2*betal;

end

% solve the linear system

u=A\b’ ;
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Numerical experiments

We compute the numerical solutions for Example 5.1.1 using the above MAT-
LAB code. The following table contains the results of our experiments for ¢ =
1073,e = 107% and e = 10~?. We use two sineiterations in the above code.

N e=10"3 e=10"6 e=10""?

32 1.96e-02 4.77e+00 6.56e-01

64 3.91e-04 2.11e-01 3.20e-01
128 1.74e-09 7.48e-03 3.03e-01
256 8.66e-12 6.82e-07 9.00e-02
512 1.25e-09 3.87e-10 6.24e-05

The maximum errors in the above table suggest that with two sine iterations very
thin boundary can be resolved with ©O(100) collocation points.

We close by pointing out that there have been various types of methods for han-
dling singular solutions or coordinate singularities with spectral methods see, e.g.
[136], [42], [85], [48], [103], [77], [104].

Exercise 5.1

Problem 1 Solve the boundary value problem in Problem 1 of Exercise 2.4 with
CODE Layer. 1, and compare the errors thus obtained.

5.2 Pseudospectral methods for Fredholm integral equations

Trapezoidal method and simpson’s method
Integral of Lagrange polynomials

Linear system

Computational efficiency

We consider the Fredholm integral equation of the second kind,
1
u(z) —l—/ K(z,s)u(s)ds = g(x), x € [—-1,1], (5.2.1)
—1

where the kernel functions K (z, s) and g(z) are given. There exist many product-
integration type numerical methods for the solution of (5.2.1), such as second-order
trapezoidal method, fourth-order Simpson’s method, see e.g. Brunnef28!, Davig®"]
and Atkinsonl8l. In this section, we describe a method based on the Chebyshev pseu-
dospectral method. For comparison, we begin by introducing the trapezoidal and
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Simpson’s methods.

Trapezoidal method and Simpson’s method
We divide [-1, 1] into IV equal intervals by the points
—l=yo<y1 <---<yn-1<ynv =1

Specifically, if h = 2/N isthe common length of the intervals, theny; = —1 4+ jh,
0 < j < N. The so-called composite trapezoidal rule for the integral of a given
function f(s) is defined by

1
/_lf(s)dsﬁh<@+f(y1)+~~+f(y]v1)-1—@) . (5.2.2)

Using the composite trapezoidal rule to treat the integral term in (5.2.1) leads to the
following trapezoidal method:

N
Uly;) + 1Y 6 'Ky u)Uwe) = g(y;),  0<j<N,
k=0

where ¢; = 1 except ¢ = ¢y = 2. Solving the above linear system will give an
approximate solution for (5.2.1). The convergence rate for this approach is two.

Similarly, the composite Smpson’s rule is given by

1
[ s () + 45n) + 26 o) + 45 () + 26 )+
+2f (yn—2) +4f (yn-1) + Fuw) ). (523)

where N is an even®, positive integer. Using the composite Simpson'’s rule to treat
the integral termin (5.2.1) leads to the following Simpson’s method:

N
h .
Uly;) + 3 > K (v, y6)U (k) = 9(y5), 0<j<N.
k=0

Herecy = 1l,ey = 1,¢, =4forl <k < N—-landkodd, ¢, =2for1 < k< N-1
and k even. The convergence rate for this approach is four.

To obtain abetter understanding of the above two methods, they will be employed
to solve the following example.

@ For simplicity, it isaways required that NV, the number of sub-intervals, is even for Simpson’s
method.
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Example5.2.1 Consider (5.2.1) with K(z, s) = ¢** and
g(z) = e + (65”4 - e_(5”+4)) /(z+4).

The exact solution isu(z) = €**.

The maximum errors obtained by using the trapezoidal and Simpson’s methods
are listed below:

N Trapezoidal method Simpson’s method
8 7.878e-01 5.782e-02

16 3.259%9e-01 7.849e-03

32 1.022e-01 6.825e-04

64 2.846e-02 4.959e-05

128 7.500e-03 3.329e-06

256 1.924e-03 2.154e-07

The second-order convergence rate for the trapezoidal method and the fourth-
order convergence rate for the Simpson’s method are observed from the above table.
Integral of Lagrange polynomials

In our computation, we need the values of the integrals

1
bk—/ Tk(s)ds, Oék‘gN
-1

They can be computed using (1.3.4),

1 1
2by, = k——|—1<Tk+l(1) - Tk+1(—1)> i (kal(l) - Tk—l(—1)>, k=2,
bo=2, by =0.
(5.2.4)
Since Ty (+1) = (£1)*, we obtain
0, k odd,
b = { 2/(1— k),  k even, (525)

As before, the Chebyshev points are defined by z; = cos(7j/N), 0 < j < N.
For afixed k, 0 < k < N, let Fi(s) be the polynomia of minimal degree which
takesthevaue lat s = o, and O at s = xj, j # k (i.e. Fj(s) isthe Lagrange
polynomial). Expand F(s) in terms of the Chebyshev polynomials, i.e., Fi.(s) =
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Z;VZO ai;T;(s),s € [—1,1]. Similar to the derivation of (5.3.4), we obtain

cos (jkm/N) .

agj = 1y () cos (jmm/N) =

Nc] Nc¢jey

The above result gives

5 N
= N—Z cos (jkm/N) T} (s).
§=0

Integrating on both sides from —1 to 1 leads to

1
2
dy, := / Fi(s)ds = — & 'b; cos (jkm/N), (5.2.6)
—1 NCk; . J
7 even

where b; is defined by (5.2.5).

Linear system

We can now use the Chebyshev pseudospectral method to solve (5.2.1). Thetrick
is that we expand the functions in the integrand, rather than expanding the unknown
function only:

K(z,s)u(s) ~ > Fr(s)K (x,50)U(sk), sk = cos(wk/N), 0<k<N.

(5.2.7)
where U(sy,) is the approximation for u(si), 0 < k < N. We then use (5.2.7) and
let (5.2.1) hold at the Chebyshev points {z; }:

N 1

Ule;) + ZK(:):j,sk)U(sk)/ Fe(s)ds = gla;),  0<j<N.
k=0 -1

We write the above equations into matrix form,
U(zo) Ul(so) g(zo)
: + M(z, s) : = : , (5.2.8)
U(zn) U(sn) g(zN)
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where the matrix Mz, s) is defined by

doK(zo,s0) diK(zg,s1) -+ dnK(xo,snN)

doK(CEl,So) dlK(.Il,Sl) dNK(.Il,SN)
M(z,s) = ) . )

doK(zn,s0) diK(zn,s1) -+ dvK(xzn,sn)

with d;. given by (5.2.6). Since s, = x4, 0 < k < N, we obtain

(I + M(z,2))U =g,

where U = (U(xo), -, U(zn))" and § = (g(x0),- -, g(zn))T.

A pseudocode is given below:

CODE Intgl.1l
Input N, K(x,s), g(x)

Compute the collocation points: x(k)=cos(7wk/N)

x (k) =cos(mk/N); ¢c(k)=1
end
¢(0)=2; ¢(N)=2; ¢(k)=1, 1<k<N-1

% compute the integral of the Chebyshev function, by

for k=0 to N do
if k is even then Db(k)=2/(1-k2)
else b(k)=0
endif
endfor
% compute dy
for k=0 to N do
dd=0
for j=0 to N do
dd=dd+b (j) *cos (jkn/N) /¢ (3)

endfor
d(k)=2*dd/ (N*¢ (k) )
endfor

% form the stiffness matrix
for i=0 to N do
for j=0 to N do

if i=j then A(i,j)=1+d(i)*K(x(1),x(1i))
)

else A(i,j)=d(j)*K(x(i),x(3)
endif
endfor

[}

% form the right-hand side vector

i

(5.2.9)

(5.2.10)
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b(i)=g(x(i))
endfor
% solve the linear system
u=A"'b
Output u(0), u(l), ---, u(N)

Using the above code to compute the numerical solutions of Example 5.2.1 gives
the following results (the maximum errors):

N Maximum error N Maximum error
6 1.257e-02 14 1.504e-09
8 2.580e-04 16 1.988e-11
10 5.289e-06 18 2.416e-13
12 9.654e-08 20 2.132e-14

Computational efficiency

For differential equations, numerical methods based on the assumption that the
solution is approximately the low-order polynomials lead to a sparse system of a-
gebraic equations. Efficient softwares are available to compute the solutions of the
system. In contrast, a similar approach for the integral equation (5.2.1) leadsto afull
system. Even with the (low-order) trapezoidal method the stiffness matrix isfull.

It isclear that the spectral method is much more accurate than the trapezoidal and
Simpson’s methods. Asfor computational efficiency, the only extratime used for the
spectral method isthe calculation of dy, (see (5.2.6)). By using FFT, it means that the
extra cost is about O(N log V) operations. In other words, the computational time
for the three methods discussed above are almost the same.

In summary, the spectral method is almost as efficient as the standard product
integration methods, but it produces much more accurate approximations.
Exercise 5.2

Problem 1 Assumethat f(6) isperiodicin [0, 27]. If f issmooth, it can be shown
that the trapezoid rule (5.2.2) converges extremely fast (i.e. exponentially). Therapid
convergence of the periodic trapezoid rule can be found in [81]. For illustration,

evauate ,
T /1
I= / \/— sin2 @ + cos2 0d6.
0 4

How many terms have to be used to get the 12-digits correct (I =4.8442241102738
)?
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Problem 2 Consider the following integro-differential equation:

1
22/ (x) + e“u(x) —I—/ ety (s)ds = f(z), —-1<z<1,
—1

u(—1) +u(l) =e+el.

Choose f(z) = (22 +¢e®)e® + (T2 —e~(*+2)) /(2 4-2) so that the exact solution
isu(xz) = €. Solve this problem by using the spectral techniques studied in this
chapter, with N = 4,6, 8,10, 12, 14. Plot the maximum errors.

Problem 3 Consider the following integro-differential equation:

1
e“"u"(:):)—|—cos(x)u’(ac)+sin(:):)u(:):)—l—/ et sy (s)ds=g(z), -1<z<1
—1

u(1) +u(—1) +u'(1) =2e +e 1, w(l) +u(=1) —d/(=1) =e.

Choose f(x) = (e + cos(z) + sin(x))e® + (e*12 — e~ (*+2)) /(z + 2) so that
the exact solution is u(x) = €*. Solve this problem by using the spectral techniques
studied in this chapter, with N = 4,6, 8,10, 12, 14. Plot the maximum errors.

5.3 Chebyshev spectral methods for parabolic equations

Derivatives and their coefficients
Linear heat equation
Nonlinear Burgers' eguation

L et us begin with the simple case, the linear heat equation with homogeneous bound-
ary conditions:

Up = Ugy, x € (—1,1); u(£1,t) = 0. (5.3.1)

An initial condition is aso supplied. We can construct a Chebyshev method for the
heat equation as follows:

Step 1 Approximate the unknown function u(z, t) by

N

uN (2, t) = ap(t)Ti(z), (5.3.2)

k=0

where T}, (x) are the Chebyshev polynomials.
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Step 2 Let {z;} bethe Chebyshev-Gauss-Lobatto points z; = cos (7j/N), 0 <
< N. Substituting the above polynomial expansion into the heat equation and
aswmmg that the resulting equation holds at {:zj ,1 , wefind

du'y N
%(wj,t):Zaw)Té’(xj), 1<j<N-1; uV(£1Lt)=0. (533
k=0

Notice that {a;} can be determined explicitly by {u" (z;,t)} from (5.3.2), namely,
we derive from (1.3.17) that

N
2
= ¥a Z N(xj,t)cos (mjk/N),  0<k<N, (5.3.4)
=0

where ¢y = 2,éy =2and¢; = 1for1 < j < N — 1. Thus, combining the above
two eguations gives the following system of ODE:

d
EUN(xﬁt) = Gj (uN(x()?t)?uN(xlvt)a to ,UN(LIZ‘N,t)), 1< ] < N — 17

where G; can be expressed explicitly.

Derivatives and their coefficients

Notice that deg(u"Y) < N. Thefirst derivative of uy has the form

N-1
=3 o)) () Th(2), (5.35)
k=0

where the expansion coefficients a,(:) will be determined by the coefficients a; in
(5.3.2). It follows from T{(z) = 0 and (5.3.2) that

N-1

oulN
o = > ar(t) T (). (5.3.6)

k=1

On the other hand, (1.3.4) and (5.3.5) lead to

N-—1
=5 o)) () Ti(x)
k=0
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N
= o Ti0) + 1 T 4 Dol 0) |y Thea(o) - T @)
= N-1
—ao)Tl +22k Z ok EglJ’)»lTk( )
k=1
- | W W) g
- ; % (Ckak 1 ak+1) T;.(z),

(5.3.7)

where we have assumed that aﬁ) = a§;>+1 = (0. By comparing (5.3.6) and (5.3.7),
we obtain

aay) (1) = al)y(t) + 20k + Dagpa(t), k=N—-1,N—-2---,0,

where ag\l,lrl(t) =0, aﬁ) (t) = 0. If we write the higher-order derivatives in the form

omulN
Oxrm Z ak k m 21,

asimilar procedure as above will give the following recurrence formula

&al™ (t) = al"h(t) + 2(k + Dall Y (6), k=N-—m,N—m—1,---,0,

a%nll( t) =0, agz,n)(t) =0, for mz>1.
(5.3.8)
Linear heat equation
We first consider the heat equation (5.3.1) with the initial condition
u(z,0) = up(x), x € (—1,1). (5.3.9)

We solve the above problem by using the spectral method in space. For ease of
illustration for the spectra method, we employ the forward Euler method in time
direction. High-order accuracy temporal discretization will be discussed later. By
use of (5.3.5), the model problem (5.3.1) becomes

Zak ) cos (mjk/N) . (5.3.10)

=1
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The procedure for using the above formulainvolving two FFTs:

e Use FFT to evaluate ay(t,, ), which will be used to evaluate aﬁf) (t,,) with small
amount O(N') operations based on (5.3.8);

e Then FFT can be used again to evaluate the right-hand side of (5.3.10).

The following pseudocode implements the numerical procedure. The ODE sys-
tem (5.3.10) is solved by the forward Euler method.

CODE Exp.1

Input N, wug(x), At, Tmax

$collocation points, initial data, and ¢
for j=0 to N do

x(j)=cos(mj/N), u(j)=up(x(j)), é(j)=1
endfor
¢c(0)=2, ¢(N)=2
$set starting time time=0

While time < Tmax do
% Need to call F(u), the RHS of the ODE system
rhs=RHS (u, N, ¢)
$Forward Euler method
for j=1 to N-1 do
u(j)=u(j)+At*RHS (J)
endfor
%$set new time level
time=time+At
endwhile
Output u(l),u(2),---,u(N-1)

The right-hand side of (5.3.10) is given by the following subroutine:
CODE Exp.2
function r=RHS (u,N, ¢)
%$calculate coefficients ay (t)
for k=0 to N do
a(O,k)=2/(N*6(k))}:?;Ou(j)cos(wjk/N)/6(j)
endfor _
$calculate coefficients ag)(t), i=1, 2
for i=1 to 2 do
a(i,N+1)=0, a(i,N)=0
for k=N-1 to 0 do
al(i k) =(a (1,k+2)+2 (k+1)*a(i-1,k+1) )/E(k)
endfor
endfor
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$calculate the RHS function of the ODE system
for j=0 to N do
r(§) =N ,a(2,k)cos (rik/N)
endfor

Example5.3.1 Consider themodel problem (5.3.1) with theinitial function w(x) =
sin(mz). The exact solution is given by u(z, t) = ¢ ™t sin(mz).

Thefollowing is the output with T;,,.« = 0.5:

N |lelloo (At=1073) |le]leo (At=10"%) N |le|loc (At=1073) |lelloo (At=10"1%)
3 1.083e-02 1.109e-02 7 1.635e-04 1.855e-05
4 3.821e-03 3.754e-03 8 1.642e-04 1.808e-05
5 7.126e-04 8.522e-04 9 1.741e-04  1.744e-05
6 2.140e-04 5.786e-05 10 1.675e-04 1.680e-05

Itisobserved that for fixed values of At the error decreases until N = 7 and then
remains aimost unchanged. Thisimpliesthat for N > 7, the error is dominated by
that of the time discretization. Due to the small values of the time step, the effect of
rounding errors can also be observed.

For comparison, we also compute finite-difference solutions for the model prob-
lem (5.3.1). Weusetheequal space mesh —1 = 2y < 21 < -+ < xxy = 1, with
xj = xj—1 +2/N,1 < j < N. The central-differencing is employed to approxi-
mate the spatial derivative u,, and the forward Euler is used to approximate the time
derivative u;. It iswell known that the error in this case is O(At + N2). Below is
the output:

N |le]lc (At=1073) |lefloo (At=10"%) N |le]loc (At=1073) e (At=10"%)

3 2.307e-02 2.335e-02 10 1.007e-03 1.163e-03
5 5.591e-03 5.792e-03 15 3.512e-04 5.063e-04
7 2.464e-03 2.639e-03 20 1.185e-04 2.717e-04

We now make some observations from the above two tables. Assumethat ahighly
accurate and stable temporal discretization is used. In order that the maximum error
of the numerical solution to be of order O(10-?), the spectral method requires that
N = 7 (i.e. 6 grid points inside the space direction), but the central finite-difference
method needs more than 40 points. The difference in the number of grid points will
become much larger if smaller error bound is used.

Nonlinear Burgers equation

By dlightly modifying the pseudocode (the boundary conditions and the right-
hand side functions need to be changed), we can handle nonlinear non-homogeneous
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problems. We demonstrate this by considering a simple example below.

In the area of computational fluid dynamics (CFD), the Burgers' equation
Ut + Uy = €Uy (5.3.11)

is apopular model equation. It contains the nonlinear convection term uw, and the
diffusion term eu,,. Let

0
%(m V).

Then (5.3.11) becomes the (linear) diffusion equation ¢} = €., which alows an
analytical solution. For example,

Example 5.3.2 Consider the Burgers equation (5.3.11) on (—1, 1) with boundary
conditions and initial condition such that the exact solution is (5.3.12).

u = 2¢

The changes for the pseudocode CODE Exp . 1 are given below:

CODE Exp.3

Input N, wug(x), ur(t), ugr(t), e, At, Tmax

$collocation points, initial data, and ¢

Set starting time: time=0

While time < Tmax do
Boundary conditions: u(l)=ur(time), u(N+1l)=upr(time)
Call the RHS function of the ODE system: rhs=F(u,N,¢c,c¢)

$solve the ODE system, say by using the Euler method

Set new time level: time=time+At
endwhile
Output u(1l),u(2),---,u(N-1)

To handle the right-hand side function, the changes for the pseudocode CODE
Exp .2 are given below:

CODE Exp.4
function r=F(u,N,c¢,c¢€)
%$calculate coefficients ay (t)
$calculate coefficients ag)(t), i=1, 2
$calculate the RHS function of the ODE system
for j=0 to N do
r(§)=e*Yn ja(2,k)cos (m3k/N) -u(3) *Sn_ja(1,k)cos (13k/N)
endfor
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In the following, we list the numerical results with T;,,.x = 0.5 and e = 1:

N [l (At=1073) |le|loc (At=10"%) N |le]loc (At=1073) |lefo (At=10"%)
3 3.821e-05 7.698e-05 7 4.689e-05 4.692e-06
4 9.671e-05 5.583e-05 8 4.391e-05 4.393e-06
5 3.644e-05 5.177e-06 9 4.560e-05 4.562e-06
6 4.541e-05 4.376e-06 10 4.716e-05 4.718e-06

It is seen that for N > 6 the error is amost unchanged. This again suggests that
the error is dominated by that of the time discretization. To fix this problem, we
will apply the Runge-Kutta type method discussed in Section 1.6. For the nonlinear
Example 5.3.2, applying the collocation spectral methods yields a system of ODES:
dU i
E = cAU — dlag(Ul, Uy, ,UN_l)BU + b(t),
where (B);; = (D1);;,1 < i,j < N—1, thevector b is associated with the boundary
conditions;

(b); = 6[(D2)j70U0 + (DQ)LNUN] - Uj [(Dl)j,OUo + (Dl)j,NUN}-

Notethat Uy = ugr(t) and Uy = u(t) are given functions.

In the following, we first give the subroutine for computing the vector b and then
give the code which uses the RK4 algorithm (1.6.8) to solve the nonlinear Burgers
equation.

CODE RK.2
function b=func_b (N, UL,UR,en,D1,D2,U)
for j=1 to N-1 do

b(j)=e*(D2(j,0)*UR+D2(j,N) *UL) -U(j) * (D1 (j,0) *UR+D1 (j,N) *UL)

endfor

CODE RK.3
Input N, wug(x),ur(t),ur(t),e, At, Tmax
$Form the matrices A, B and vector b
call CODE DM.3 in Sect 2.1 to get D1(i,j), 0<i,j<N
D2=D1*D1;
for i=1 to N-1 do

for j=1 to N-1 do

A(i,j)=D2(i,3j); B(i,j)=D1(1i,3)

endfor
endfor
Set starting time: time=0
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Set the initial data: U=ug(x)
While time < Tmax do
%$Using RK4 (1.6.8)
U0=U; C=diag(U(1),U(2),---,U(N-1))
UL=ur (time) ; UR=ugr(time) ;
b=func b (N,UL,UR,¢,D1,D2,0)
Kl=e*A*U-C*B*U+b
U=U0+0.5*At*K1; C=diag(U(1),U(2),---,U(N-1))
UL=uy, (time+0.5*At); UR=up (time+0.5*At) ;
b=func.b (N, UL,UR,¢,D1,D2,U)
K2=e¢*A*U-C*B*U+b
U=U0+0.5*At*K2; C=diag(U(1),U0(2),---,U(N-1))
b=func.b (N, UL,UR,¢,D1,D2,U)
K3=€¢*A*U-C*B*U+b
U=U0+At*K3; C=diag(U(1),U(2),---,U(N-1))
UL=uy, (time+At) ; UR=upr (time+At) ;
b=func.b (N, UL,UR,¢,D1,D2,U)
K4=e*A*U-C*B*U+b
U=UO0+At* (K1+2*K2+2*K3+K4) /6

Set new time level: time=time+At
endwhile
Output UO(1),U(2), ---, U(N-1)

The maximum errors below are obtained for T,.x = 0.5 and ey = 1. The
spectral convergence rateis observed for N = O(10) when RK4 is employed.

N Max error (At=le-3) Max error (At=5e-4)
3 8.13e-05 8.13e-05
4 5.13e-05 5.13e-05
5 1.82e-06 1.82e-06
6 1.88e-07 1.88e-07
7 7.91e-09 7.91e-09
8 2.19e-09 2.20e-09
9 9.49e-10 8.10e-11
Exercise 5.3

Problem 1 Solve (5.3.1) with the initial condition u(z,0) = sin(wz) by using the
Chebyshev spectral methods described in CODE Exp . 1, except replacing the Euler
method by the 2nd-order Runge-Kutta method (1.6.6) with o = %

1.Use N = 6,8,9,10, 11, 12, and give the maximum errors [u™ (z, 1) —u(z, 1)].

2. Plot the numerical errors against N using semi-log plot.
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Problem2 Repeat Problem 1, except with the 4th-order Runge-Kutta method (1.6.8).

Problem 3 Solve the problem in Example 5.3.2 by using a pseudo-spectral ap-
proach (i.e. using the differential matrix to solve the problem in the physical space).
Take3 < N < 20, and use RKA4.

5.4 Fourier spectral methods for the KdV equation

An analytic solution for the KdV equation

Numerical scheme based on a two-step method

Numerical scheme based on the RK4 method

Dual-Petrov Legendre-Galerkin method for the kdv equation

In this section, we describe a method introduced by Fornberg and Whitham[54 to
solve the KdV equation

up + Buty + plgee =0, x € R, (54.1)

where 3 and . are given constants. The sign of p is determined by the direction of
the wave and its shape. If © < 0, by use of the transforms v — —u,x — —z and
t — t, the KdV equation (5.4.1) becomes

U + futy — pge, =0, x €R.

Therefore, we can always assume p > 0. Some linear properties for solutions of
(5.4.1) were observed numerically by Kruskal and Zabusky in 1966%. The soliton
theory has been motivated by the numerical study of the KdV equation.

In general, the solution of (5.4.1) decays to zero for |z| > 1. Therefore, numeri-
cally we can solve (5.4.1) in afinite domain:

up + Puug + HUgzr = 0, HAS (_p7 p)a (542)

with a sufficiently large p.
An analytic solution for the KdV equation

For the computational purpose, it is useful to obtain an exact solution for the
nonlinear problem (5.4.1). To this end, we will try to find a traveling wave solution

of the form u(x,t) = V(z — ct). Substituting this form into (5.4.1) gives —cV’ +
BVV' + pV" =0, where V' = V¢(¢). Integrating once gives
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B
2
where o is an integration constant. Multiplying the above equation by 2V and
integrating again yields

—cV + V2 + ,uV” = O,

—cV? + §V3 + u(V? =201V + a,
where a5 isa constant. Note that we are looking for the solitary solution: away from
the heap of water there is no elevation. This meansthat V (x), V'(z), V" (z) tend to
zero as |x| — oo, which impliesthat a; = 0 and ay = 0. Therefore, we obtain the
ODE

B
3
One of the solutions for the above nonlinear ODE is

V() = 3 och? (%\/C/—M(C - 96’0)) :

This can be verified by direct computation. To summarize: One of the exact solutions
for the equation (5.4.1) is

—cVE4 2V (V)2 =0,

u(x,t) = %sech2 <%\/C/u(a§ —ct— x0)> , (5.4.3)
where ¢ and z( are some constants.
Numerical scheme based on a two-step method
A simple change of variable (x — 7 /p+m) changesthe solution interval [—p, p)
to [0, 27]. The equation (5.4.2) becomes

3
g+ Py + BT e =0, w€[0,27). (5.4.4)
p p

It follows from (1.5.14) that

% = FY (k)" F{u}},  n=1,2.

An application of the above results (with n = 1 and 3) to (5.4.4) gives
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du(xj,t) 18

= () F (kP (u) + i

F7YEF(u)), 1<j<N-1,

dt P p3
(5.4.5)
where we have replaced the continuous Fourier transforms by the discrete transforms.
Let U = [u(z1,t), - ,u(zy_1,t)]T. Then (5.4.5) can be written in the vector form
U; = F(U),

where F is defined by (5.4.5). The discretization scheme for time used inl5Y is the
following two-step method:

U(t + At) = U(t — At) + 2AtF(U(1)).

For this approach, two levels of initial data are required. The first level is given by
the initial function, and the second level can be obtained by using the fourth-order
Runge-Kutta method RK4. Thisway of time discretization for (5.4.5) gives

3
u(z, t+At) = u(z, t—At)—Qi%TAtu(x, t)F_l(kF(u))—l—QiAtupigF_l(k?’F(u)).
(5.4.6)
Stability analysis for the above scheme gives the stability condition
At 1
N < 3~ 0.0323. (5.4.7)

In order that the FFT algorithms can be applied directly, we use the transform # =
k+ N/2in (1.5.15) and (1.5.16) to obtain

=

1 : .
(k' ,t) = F(u) = ~ (—Du(zj, t)e”* =i 0< K <N -1,

o

2&:

-1

F Y kF(u) = (-1 Y (K — N/2)a(k , t)e*™,  0<j<N—1.

(]

X
Z
| o

1
FUEPFw) = (-1 Y (K — N2k t)e®,  0<j<N-1
k'=0

The FFT algorithms introduced in Section 1.5 can then be used. A pseudo-code is
given below:

CODE KdV.1
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Input 3, p, i, N, uo(x), X (At=)Az3)
Ax=2*p/N; At=AAz?
Grid points x(j) and initial data: x(j)=27J/N; u0(j)=ug(J)
% use an one-step method to compute ul(j):=u(x;, At)
time=At
while time < T do
for j=0 to N-1 do
$Need to call function to calculate F (ul)
RHS=F (ul,N, 3, p, p); u(j)=u0(j)+2At*RHS(])
endfor
$update vectors u0 and ul
for j=0 to N-1 do

u0(j)=ul(j); ul(j)=u(j)
endfor
Update time: time=time+At
endwhile

Output the solutionu(j) which is an approximation toul(x;,T) .

In forming the function F (ul,N,3, u, p), CODE FFT.1 and CODE
FFT. 2 introduced in Section 1.5 can be used. If the programs are written in MAT-
LAB, the MATLAB functions £ft and 1 £ft can be used directly. In MATLAB,
fft (x) isthe discrete Fourier transform of vector x, computed with afast Fourier
algorithm. X=fft (x) and x= ifft (X) implement the transform and the inverse
transform pair given for vectors of length NV by

X(k‘) _ i x(j)e‘2m(j_1)(k_1)/N x(]) _ i i X(k)e2“(j_1)(k_1)/N.

j=1 ’ N k=1
(5.4.8)
Notethat X (k) hasan N~! factor difference with our definition in Section 1.5. With
the above definitions, a pseudo-code for the function F(u, N, 3, 1, p) used above is
given below:

CODE KdV.2
function r=F(u,N,3, p, p)
for j=0 to N-1 do

y(3)=(-1)T*u(3)
endfor
Compute F(u): Fu=fft(y)/N

%Scompute kF(u) and k°F (u)
for k=0 to N-1 do

y(k)=(k-N/2)*Fu(k); Fu(k)=(k-N/2)3Fu(k)
endfor
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Compute the two inverses in the formula: y=ifft(y)*N;

Fu=ifft (Fu) *N

$compute F(u,N,(3, u, p)

for j=0 to N-1 do

T (§)=-i*B*m/pru(3) * (-1)7*u(F) +1i*p* (7/p)>* (-1)I*Fu (5)

endfor
Since fft and 1 £ £t arelinear operators, it can be verified that without the IV factors
in the steps involving ££t and i ££t we will end up with the same solutions. The
MATLAB code for the function F(u, N, 3, u,p), CODE KdV. 3, can be found in
this book’s website:

http://www.math.hkbu.edu.hk/ " ttang/PGteaching

Example 5.4.1 Consider the KdV eguation (5.4.1) with 3 = 6, . = 1, and initial
condition u(z,0) = 2sech?(x).

By (5.4.3), the exact solution for this problem is u(z,t) = 2sech?(z — 4t). The
main program written in MATLAB for computing «(z, 1), CODE Kdv. 4, can also
be found in this book’s website, where for simplicity we assume that u(x, At) has
been obtained exactly.

In Figure 5.1, we plot the exact solution and numerical solutions at ¢t = 1 with
N = 64 and 128. The spectral convergence is observed from the plots.

2 T T T T T T T 2 T T T T T T T
1.8}
151 1 1.6 F
14F
1F 4 1.2+
2 z
= =
0.5F r 0.8
0.6 |
0 xxxxx Xxxxxxx X s Xxx 04
02F
—0.5 1 1 1 1 1 1 1 0 L
=20 -15-10 =5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
X X
(a (b)
Figure5.1

Fourier spectral solution of the KdV equation with (a): N=64(the maximum error is 1.32e-0.1),
and (b): N=128(the maximum error is 6.08e-0.3).
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Fornberg and Whitham modified the last term of (5.4.6) and obtained the follow-
ing scheme

u(z,t + At) = u(x,t — At) — Qi%Atu(x, t)F L (EF(u))

+2iF 1 (sin (uw3k3p_3At) F(u)) . (5.4.9

Numerical experiments indicate that (5.4.9) requires less computing time than that of
(5.4.6). The stability condition for this scheme is

At 3
— < — ~0.0484 4.1
N < 53 0.0484, (5.4.10)

which is an improvement of (5.4.7).

Numerical scheme based on the RK4 method

Numerical experiments suggest that the stability condition can be improved by
using RK4 introduced in Section 1.6. A modified code using the formula (1.6.11),
CODE KdvV. 5, can be found in the website of this book. The errors with NV = 64,
128 and 256 are listed below:

N Maximum error time step
64 8.65e-02 1.59e-02
128 1.12e-05 1.98e-03
256 1.86e-12 2.48e-04

It isobserved that comparing with the second-order time stepping methods (5.4.6)
and (5.4.9) the RK4 method allows larger time steps and leads to more accurate nu-
merical approximations.

Dual-Petrov L egendre-Galerkin method for the KdV equation

Although most of the studies on the KdV equation are concerned with initial
value problems or initial value problems with periodic boundary conditions as we
addressed in the previous section, it is often useful to consider the KdV equation on
a semi-infinite interval or a bounded interval. Here, as an example of application to
nonlinear equations, we consider the KdV equation on afinite interval:

avy + Bug + Yovg + Uz =0, x € (—1,1), t € (0,71,
U(_lat) = g(t)a U(lvt) = Uw(lvt) =0, te [OvT]v (5.4.11)
v(x,0) =vo(x), x€(-1,1).
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The positive constants «, 5 and ~ are introduced to accommodate the scaling of the
spatial interval. The existence and uniqueness of the solution for (5.4.11) can be
established asin [32],[16]. Besides its own interests, the equation (5.4.11) can also
be viewed as alegitimate approximate model for the KdV equation on a quarter-plane
before the wave reaches the right boundary.

Let us first reformulate (5.4.11) as an equivalent problem with homogeneous
boundary conditions. To this end, let d(z,t) = 1(1 — z)%g(t) and write v(z,t) =
u(z,t) + 0(x, t). Then, u satisfies the following equation with homogeneous bound-
ary conditions:

ouy + a(z, t)u + b(x, t)uy + yuu, + ugee = f, x € (=1,1), t € (0,7,
u(£1,t) = u,(1,t) =0, te€[0,T],
u(z,0) = ug(x) = vo(z) — 0(x,0), =€ (-1,1),

(5.4.12)

where

a(z,t) = g(x —1)g(t), bx,t)=p0+~y0(x,t), f[flz,t)=—at(x,t).

We consider the following Crank-Nicolson leap-frog dual-Petrov-Galerkin approxi-
mation:

« _ 1 _ _
Sk T o)+ S (@ ), 2 o)

= (INf(a tk)v ’UN)w*L1 - ’)/(IN(’U,%&U’U,?CV), vN)w*Ll

— (aukr on)wo11 + (W, 0 (buy w™bY)), Vun € V.

(5.4.13)

Thisis asecond-order (in time) two-step method so we need to use another scheme,
for example, the semi-implicit first-order scheme, to compute «,. Since the trun-
cation error of a first-order scheme is O(At)?, the overal accuracy of the scheme
(5.4.13) will still be second-order in time.

It is shown in [145] that this scheme is stable under the very mild condition
SN < C (as opposed to SN3 < C in the previous subsections). Setting uy =
1
2

(uhHt —uk~1), wefind at each time step we need to solve

%N(UN,UN)M—Ll + (8xuN,8§(va_1’l)) = (h,’UN)w—l,l, Yoy € Vi,
(5.4.14)
where h includes all the known terms from previous time steps. The system (5.4.14)
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is exactly in the form of (3.7.27) for which a very efficient algorithm is presented
in Section 3.6. Note that the nonlinear term Iy (uy0,un) can be computed by a
procedure described in Section 2.5.

Now, we present some numerical tests for the KdV equation. We first consider
theinitial value KdV problem

Up + Uy + Ugze = 0,  u(z,0) = ug(x), (5.4.15)
with the exact soliton solution
u(z,t) = 12r%sech? (k(z — 4K%t — x0)). (5.4.16)

Since u(z,t) converges to O exponentialy as |z| — oo, we can approximate the
initial value problem (5.4.15) by aninitial boundary value problem for z € (—M, M)
aslong as the soliton does not reach the boundaries.

Wetake k = 0.3, zp = —20, M = 50 and At = 0.001 so that for N < 160,
the time discretization error is negligible compared with the spatial discretization
error. In Figure 5.2, we plot the time evolution of the exact solution, and in Figure
5.3, we plot the maximum errors in the semi-log scale at ¢ = 1 and t = 50. Note
that the straight lines indicate that the errors converge like e ¢V which is typical for
solutions that are infinitely differentiable but not analytic. The excellent accuracy for
this known exact solution indicates that the KdV equation on afinite interval can be
used to effectively simulate the KdV eguation on a semi-infinite interval before the
wave reaches the boundary.

t 0 -50

Figure5.2 Time evolution for exact KdV solution (5.4.16)

In the following tests, we fix M = 150, At = 0.02 and N = 256. We start with
the following initial condition
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5

ug(z) = Z 12k2sech? (ki (z — x;)) (5.4.17)
i=1
with

K1 = 0.3, Ro = 0.25, R3 = 0.2, R4 = 0.15, Ry = 0.1,

(5.4.18)
r1 = —120, Tro — —90, Tr3 = —60, Ty = —30, Ty — 0.

{64 Maximum errors at =1 (¥*) and =50 (0)
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Figure5.3 TheKdV problem (5.4.15) and (5.4.16): maximum error vs. N.

et

150

et
0-150"

Figure5.4 Time evolution for the numerical solution to (5.4.15) and (5.4.17).

In Figure 5.4, we plot the time evolution of the solution in the (z,¢) plane. We also
plot the initial profile and the profile at the fina step (t = 600) in Figure 5.5. We
observe that the soliton with higher amplitude travels with faster speed, and the am-
plitudes of the five solitary waves are well preserved at the final time. Thisindicates
that our scheme has an excellent conservation property.
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3

25T

0350 “100 =50 0 50 100 150

Bottom: profile at #=0; Top: profile at /=600
Figure5.5 Top curveistheinitial profile (5.4.17) and the bottom is the profile at ¢ = 600.

Exercise5.4

Problem 1 Consider the Sine-Gordon equation,
Ut = Ugy — sin(u), x € (—00,00), (5.4.19)
withinitial conditions

u(z,0) =0, ug(x,0) = 2v/2sech(z/V/2). (5.4.20)

The exact solution for this problem is

B 1 [ sin(t/V?2)
u(w,t) = 4tan™? <7cosh(x/ \/5))

The Sine-Gordon equation (5.4.19) is related to the KdV and cubic Schrodinger
equations in the sense that all these equations admit soliton solutions.

1. Reduce the second-order equation (5.4.19) by introducing the auxiliary vari-
able u;.

2. Applying the method used in this section to solve the above problem in a
truncated domain (—12.4, 12.4), with N = 32 and 64. Show the maximum absolute
errorsat t = 2w, 47 and 6.

3. The numerical solution in the (z,t) plane is plotted in Figure 5.6. Verify it
with your numerical solution.
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Problem 2 Usethe Fourier spectral methods to solve the Burgers' equation (5.3.11)
with e = 0.15 and with periodic boundary condition in [—m, 7] (p. 113,[1%%]). The
initial datais

sin?x,  forz € [-x,0],

u(z,0) = { 0, for z € (0,7].

Produce solution plotsat time 0, 0.5, 1, - - - , 3, with asufficiently small time step,
for N = 64, 128 and 256. For N = 256, how small avalue of ¢ can you take without
obtaining unphysical oscillations?

Problem 3 Write a spectral code to solve the following nonlinear Schrodinger’s
equation for super-fluids:

ieus + ugy + (Jul> = Du =0, z¢€ (- ),

u(z,0) = a2e 2%l

where e = 0.3. The problem has a periodic boundary condition in [—, 7]. Choose a
proper time stepping method to solve the problem for 0 < ¢ < 8.

u(x, )

Figure5.6 Breather solution of the sine-Gordon equation.

55 Fourier method and filters

Fourier approximation to discontinuous function
Spectral-filter
Fully discretized spectral-Fourier method

We consider what is accepted by now as the universal model problem for scalar con-
servation laws, namely, the inviscid Burgers' equation
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u + (u?/2) =0, (55.1)

subject to given initial data. We want to solve the 27-periodic problem (5.5.1) by the
spectral-Fourier method. To this end, we approximate the spectral-Fourier projection
of u(z,t),

N 2
4 1 4
_ ~  jkx A —ikx
Pyu = Z e, e ; u(x)e dz, (5.5.2)
k=—N
by an N-trigonometric polynomial, v (x,t),
N .

uN(@,t) = ) ag(t)e’t. (5.5.3)

k=—N

In this method the fundamental unknowns are the coefficients 4 (¢), |k| < N.
A set of ODEs for the 4, are obtained by requiring that the residua of (5.5.1) be
orthogonal to all the test functions e~ |k| < N:

2
/ (ul +uN ul)e * dz = 0.
0

Due to the orthogonality property of the test and trial functions,

() + (WNul), =0, [k <N, (5.5.4)
where )
— 1 us .
(uNul)), = —/ u™N ul 7 dg, (5.5.5)
2m Jo

Theinitial condition are clearly

1 2 )
U (0) = %/0 u(z,0)e* dx. (5.5.6)

Equation (5.5.5) isaparticular case of the general quadratic nonlinear term

o 1 2m )
(uv),, / uve”Fdy, (5.5.7)
0

T o

where v and v denote generic trigonometric polynomials of degree N, which have
expansions similar to (5.5.2). When these are inserted into (5.5.7) and the orthogo-
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nality property isinvoked, the expression

(w), = > iy, (5.5.8)
ptq=k

results. The ODE system (5.5.4) is discretized in time by an ODE solver such as
Runge-Kutta methods described in Section 1.6.

Fourier approximation to discontinuous function

The Fourier approximation (5.5.3) isavery good way of reconstructing the point
values of u(z, t) provided that v is smooth and periodic. However, if adiscontinuous
function u(z, t) is approximated by its finite Fourier series Pyu, then the order of
convergence of Pyu to u is only O(N~1) for each fixed point'®% 63, Moreover,
Pyu has oscillations of order 1 in a neighborhood of O(N—1) of the discontinuity.
To see this, we consider asimple test problem.

Example5.5.1 Consider the Burgers equation (5.5.1) with the initial data

u(z) = { sin(z/2), 0<z<1.9, (55.9)

—sin(x/2), 1.9 <z < 2.

Figure 5.7 shows the behavior of the spectral-Fourier solution for the Burgers
equation, which is subject to the discontinuous initial condition (5.5.9). Theresulting
ODE system for the Fourier coefficients was integrated up to ¢t = 0.1 using the third-
order Runge-Kutta method. The oscillatory behavior of the numerical solution is
clearly observed from this figure.

1

0.5

_1.5 1 1 1 1 1 1
0 1 2 3 4 5 6

Figure5.7 Spectral-Fourier solution with N = 64.
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Spectral-filter

There have been many attempts to smooth the oscillatory solution. It was ob-
served that the oscillations may be suppressed, or smoothed, by a gradual tapering of
the Fourier coefficients. Among them is a spectral-filter approach in which the first
step isto solve for the coefficients of the spectral expansion, 1, and then to multiply
the resulting coefficient by afactor o, = o(k/N). Here o is called afilter. We will
follow the presentation by Vandeven [1%6] and Goittlieb and Shu®3! to introduce the
Fourier space filter of order p. A real and even function o (n) iscalled afilter of order
pif

e () o(0)=1, c®D0)=0,1<I<p—1.

o (i) o(n)=0, Inl>1
e (iii) o(n) e CP=D | |y < oc0.

There are many examples of filters that have been used during the years. We
would like to mention some of them:

e In 1900, Fejér suggested using averaged partial sums instead of the original
sums. Thisis equivalent to the first order filter

e The Lanczos filter is formally afirst-order one,

-

However, note that at n = 0, it satisfies the condition for a second-order filter.

e A second-order filter is the raised cosine filter

o3(n) = 0.5(1 + cos(mn)).

e The sharpened raised cosine filter is given by

aa(n) = o5(n)(35 — 84a3(n) + 7003 (1) — 2005 (1))
Thisis an eighth-order filter.
e The exponential filter of order p (for even p) is given by

—omP

o5(n) =e
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Note that formally the exponentia filter does not conform to the definition of the
filter aso5(1) = e~®. However, in practice we choose o such that e~ is within the
round-off error of the specific computer.

The filtering procedures may be classified as follows:

e Pre-processing The initial condition is filtered in terms of its continuous
Fourier coefficients

N

ug®(z) = Y o(2rk/N)iy(0)e™.
k=—N

e Derivative filtering In the computation of spatial derivatives the term ik is
replaced by iko(2rk/N), i.e.,

N
d .
d—“: N iko(2nk /N,
X

k=—N

e Solution smoothing At regular intervals in the course of advancing the solu-
tion in time, the current solution values are smoothed in Fourier space, i.e.,

N

u(a,t) = Y o(2mk/N)iy(t)e™.

k=—N

Fully discretized spectral-Fourier method

In order toillustrate the use of the spectral-filter approach, we will discuss amore
genera fully discretized method which uses the standard spectral-Fourier method in
space and Runge-Kutta methods in time. This fully discretized method will also be
employed in the next section. Consider the conservation eguation

+ =0, 0<z<2m, t>0,
ug + f(u) T < am (5.5.10)
u(z,0) = up(zr), 0<x<2m.
If the cell average of « is defined by
1 x+Ax/2
i = 511
et =5y [ wenac, (5511)

then (5.5.10) can be approximated by
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S 0) + o [ (ul + Aa2,0) = £ (ula = A/2,0) | =0

(5.5.12)
a(z,0) = @°(x).
Hence a semi-discrete conservative scheme
d _ B 1 /. R
%Uj = L(u); := " Ax (fj+1/2 - fj71/2> (5513

will be of high order if the numerical flux fjH/Q approximates f (u(x + Az/2,t))
to high order. Notice that (5.5.13) is a scheme for the cell averages u;. However, in
evaluating fj+1/2, which should approximate f(u(x; + Ax/2,t)), we aso need ac-
curate point values u;_ ; /». For finite difference schemes the reconstruction from cell
averages to point values is a major issue and causes difficulties. For spectral meth-
ods, thisisvery simple because @ is just the convolution of « with the characteristic
function of (x;_; /9, %;41/2). To be specific, if

N
u(x) = Z apet® (5.5.14)
k=—N

(we have suppressed the time variable t), then

N
u(x) = Z apett” (5.5.15)
k=—N
with
_ sin(kAx/2)
= =——" > f <N, =1. 5.1
aj TLAak , Tk kAx/Q or0< ’k‘ 70 (55 6)

We now state our scheme as (5.5.13) with

Fivaye = Flu(@igryo.t)), (5.5.17)

where u is defined by (5.5.14). We obtain the Fourier coefficients @, of @ from
{u;} by collocation, and obtain a;, of u needed in (5.5.14) by (5.5.16). To discretize
(5.5.13) in time, we use the high-order TVD Runge-Kutta methods proposed in
[148]:
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=(0) — (k) . 7 (k) -
aV) = aipu"” + BipAtL(u , =1,---,7

;§)< " & ( )) ’ (5.5.18)
a(O) i ﬂnJrl _ a(r) )

In our computation, we will use athird-order Runge-Kutta scheme, i.e. » = 3, with
arp = B0 = Lagg = 3,00 = 0,001 = fBo1 = },a30 = 3,030 = oz =
B31 = 0,32 = B3 = % A small At will be used so that the temporal error can be
neglected. A suggested algorithm can be

e (1) Starting with {w;}, compute its collocation Fourier coefficients {a,} and
Fourier coefficients {ay } of u by (5.5.16).

e (2) Compute u(x;41/2) by

N
u(x) = Y o(2rk/N)age™™. (5.5.19)
k=—N

In the above, a solution smoothing with afilter function is used.

e (3) Use fj+1/2 = f(u(xj11/2,t)) in (5.5.13), and use the third-order Runge-
Kutta method (5.5.18).

o (4) After thelast time step, use astronger filter (i.e. lower order filter) in (5.5.19)
to modify the numerical solution u(z,T').

A pseudocode outlining the above procedure is provided below:

CODE Shock.1
Input N, oy and G, 1<3<3, 0<k<2
Input At, we(xz), T
Ax=27/ (2N+1) , z;=JAx 0<j<2N
Compute #(j,0)=uo(x;), |j|<2N, using (5.5.11)
time=0
While time < T
For r=0 to 2 do
$Compute Fourier coefficients of % and uw using collocation
method
for |k|< N do
ar= (Y20 (3,r)e o) / (2N+1)
Tr=8in (kAx/2) / (KAx/2) ; arp=ai/Tk
endfor
$Compute u(z;;1/2) using a weak filter
for j=0 to 2N do
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Tjy1/2=Tj+0.5*%Ax; u(xjH/Q)=EkN:7NU(27Tk/N)akeik”J+1/2
endfor
%Runge-Kutta method
for j=0 to 2N do
RHS (], r)=- (£ (u(wjr1/2)) -L(ulzj_1/2))) /Ax
if r=0 then
w(j,1)=u(j,0)+At RHS(J,0)
elseif r=1 then
u(j,2)=3u(3,0)+iu(3,1)+4LRHS (§,1)
elseif r=2 then
w(3,3)=3u(3,0)+3u(3,2) +2AtRHS (§,2)
endif
endfor
endFor
Update the initial value: @ (j,0)=u(j,3), 0L<j<2N
time=time+At
endWhile
$Final solution smoothing using a stronger filter o
for |k|< N do
dp= (Y otize~h73) / (2N+1) 5 ag=an /T
endfor
for j=0 to 2N do
u(a:j)=Z£[=_N&(27Tk/N)ake“”-7+1/2
endfor

We reconsider Example 5.5.1 by using CODE Shock.1. The weak filter o used
aboveis

o(n) = 15107 (5.5.20)
and the strong filter 6 used aboveis

o(n) = e 1m0, (55.21)

The time step used is At = 0.01 and 7" = 0.5. Thefiltered spectral-Fourier solution
with N = 64 is displayed in Figure 5.8, which is an improvement to the standard
spectral-Fourier solution.

Exercise 5.5
Problem 1 Solve the periodic Burgers' equation

ug + (u?/2), =0, x€[0,27], t>0

. (5.5.22)
u(z,0) =sin(z), u(0,t) = u(2n,t),
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using (a) the spectral-Fourier method; and (b) the filtered spectral-Fourier method.

0.8

0.6 F
04F
02}
-02f
041
~0.6F

Figure5.8 Filtered spectral-Fourier solution with N = 64.

5.6 Essentially non-oscillatory spectral schemes

Spectral accuracy from the Fourier coefficients
Essentially non-oscillatory reconstruction

Naive implementations of the spectral method on hyperbolic problems with discon-
tinuous solutions will generally produce oscillatory numerical results. The oscilla
tions arising directly from the discontinuity have a Gibbs-like, high-frequency char-
acter. These oscillations are not in themselves insurmountable, for according to a
result of Lax!%), they should contain sufficient information to permit the reconstruc-
tion of the correct physical solution from the visually disturbing numerical one.

We consider the one-dimensional scalar conservations law
ug + f(u), =0, (5.6.1)

with prescribed initial conditions, u(z,0) = uy(x). It iswell known that solutions of
(5.6.1) may develop spontaneous jump discontinuities (shock waves) and hence the
class of weak solutions must be admitted. Moreover, since there are many possible
weak solutions, the equation (5.6.1) is augmented with an entropy condition which
requires

U(u)y + F(u), <0. (5.6.2)
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Here, U(u) and F'(u) are any entropy function and the corresponding entropy-flux
pair associated with (5.6.1), so that a strict inequality in (5.6.2) reflects the existence
of physical relevant shock waves in the entropy solution of (5.6.1) and (5.6.2). Fur-
ther theoretical support for the use of spectral methods on non-smooth problems was
furnished by many authors, see e.g. [59], [157], [115], [73]. Lax and Wendroff®’]

proved that if the sequence »"V (N > 0) of the solutions produced by a Fourier or
Chebyshev collocation method for the equation (5.6.1) is bounded and converges al-
most everywhere, as N — oo, then the limit isaweak solution of (5.6.1). This means
that it satisfies the equation

//(uqbt b () b ) dardt = /u(x,O) 6(x,0) dz

for all smooth functions ¢ which vanish for large ¢t and on the boundary of the domain.
The limit solution thus satisfies the jump condition, s = [f(u)]/[u]. Hence, any
shocks that are present are propagated with the correct speed.

It was observed by many authors that using a filter approach is equivalent to
adding an artificial viscosity for finite difference methods. When applied too often,
a strong filter will unacceptably smear out a shock. On the other hand, frequent
applications of aweak filter may not be enough even to stabilize the calculation. In
this section, wefollow Cai, Gottlieb and Shu?®! to describe aFourier spectral method
for shock wave calculations.

Spectral accuracy from the Fourier coefficients

For simplicity, assume that u(x), 0 < = < 27, isa periodic piecewise smooth
function with only one point of discontinuity at = = «, and denote by [u] the value of
the jump of u(x) at o, namely [u] = (u(at) — u(a™))/27. We assume that the first
2N + 1 Fourier coefficients 4y, of u(x) are known and given by (5.5.2). The objective
is to construct an essentially non-oscillatory spectrally accurate approximation to
u(x) fromthe Fourier coefficients ;. s. We start by noting that the Fourier coefficients
@).s contain information about the shock position « and the magnitude [u] of the
shock:

Lemmab5.6.1 Let u be a periodic piecewise smooth function with one point of dis-
continuity . Then for |k| > 1 and for any n > 0,

o) 27 1,,(n)
~  _  —dka [u ] 1 / [’LL ] —ikx
Uy = e E (k)T + o (k) e "dx. (5.6.3)
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Proof It follows from

1 2

A 1 [%s A 1 2 .
U = — u(z)e M de = — / u(x)e” " dx + —/ u(z)e " dz,
2m Jo 2m Jo 27 )y,

and integration by parts that

o pita ) —u(ag) |1 /Ld
0

=c omil o il

the rest is obtained by induction. This completes the proof. O

Asan example, consider the sawtooth function F'(z, o, A) defined by

— Az, T < o,
F(:):,a,A)—{ A@n—2), z>a. (5.6.4)

Note that the jump of the function, [F], is A and all the derivatives are continuous:
[F@] = 0forall j > 1. That means the expansion (5.6.3) can be terminated after the
first term, yielding the following results for f, the Fourier coefficients of F'(x, o, A):

Ae—ikza
ik

~

fo(Oé,A) :A(?T—Oé), fk(avA) =

k| >1. (5.6.5)

This example suggests that we can rewrite (5.6.3) as

nlor,G) 127 [y

~ ¢ —tka U u —ikx

tg = frla, [u])+e Z(i[k)jlﬁ%/o ﬁe Mde, |k >1. (5.6.6)
Jj=1

The order one oscillations in approximating w(x) by its finite Fourier sum Byu are
caused by the slow convergence of

N

Fy(z,onu) = Y fule, [u])e® (56.7)

k=—N

to the sawtooth function F'(x, «, [u]). Therefore, those oscillations can be eliminated
by adding a sawtooth function to the basis of the space to which u(z) is projected.
To be specific, we seek an expansion of the form

. A .
on(@) = Y ape®+ N %e*“@yem (5.6.8)
|k|<N |k|>N
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to approximate u(z). The 2N + 3 unknowns ¢, , (|k| < N), A and y are determined
by the orthogonality condition

2
/ (u —vy)e %dx =0, lj| < N +2. (5.6.9)
0

The system of eguations (5.6.9) leads to the conditions

ag = ﬁk, ‘k" < N, (5610)

A . )
T e MNHY — s =1.2 5.6.11
’L(N+j)e UN+j, J 5 4y ( )

where 4, are the usual Fourier coefficients of (), defined by (5.5.2). Solving equa-
tions (5.6.11) gives

X N + 1) ;
eV = # , A=i(N+ )N gy, (56.12)
N+2

The procedure described in (5.6.12) is second-order accurate in the location and jump
of the shock. In fact, we can state

Theorem 5.1 Let u(x) be a piecewise C function with one discontinuity at = cv.
Let y and A be defined in (5.6.12). Then

ly —a| = O(N2), |A — [u]| = O(N7?). (5.6.13)

Proof It follows from (5.6.3) that

Dy o+ ey O ()|

(N+2)an+2 vt [[U] - Z(]\E'u;]— 2) " ° <( : ) ]

:eiacs [1+O(N_2)] )

By the same token,

1/2

" 2 P
|A|=(N +1)|un+1] = [{[U] - (N[—l—]l)Q } + (]\[[_’_]1)2

=l [1+ 00 ].
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This completes the proof of Theorem 5.1. O

Essentially non-oscillatory reconstruction

Formally, we obtain from (5.6.5), (5.6.8) and (5.6.10) that

N
A . .
on(x) =19 — A(m —y) + Z (ﬁk — E(f”‘”’) e L F(x,y,A), (5.6.14)
k=—N
k#0

where the function F' is defined by (5.6.4). Applying appropriate filters, we modify
(5.6.14) to give aformula for computing the approximation to w:

N
A . .
un(z) =g — A(m —y)+ Y o(27k/N) (uk — Ee—lk?f) e*® 4 F(x,y, A).

k=—N
k#0

(5.6.15)
Note that (5.6.12) is an asymptotic formula for the jump location y and strength
A. In practice, it is found that the coefficients of modes in the range (V' N, N%7)
give the best results to detect shock location and strength. Therefore, we choose
VN < N; < N%7 and solve A and y by the following formulas:

. N- 1) i
o= % , A=V + )M Wy (5.6.16)
1+

A pseudocode outlines the above procedure is provided below:

CODE Shock.2
Input N, Ni, ug(x)
Ax=2m/(2N+1), z;j=JAx 0<j<2N
Compute Fourier coefficients i, for |k|<N
$ Compute the jump position y
y = -i*1log ((N1+1)*tin141/ (N1+2) *Un142)
y=Re (y)
% Compute the strength of the jump
A=i* (N1+1) *exp (1 (N1+1)y) *Uni41
A=Re (A7)
$ To recover the pointwise value from the
Fourier coefficients
For j=0 to 2N do
% Compute the last term in (5.6.15)
if z;<y then F=-A*g;
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else F=A*(27-z;)
endif
% Compute the approximations
u(x;) =tog-A* (1-y) +0 (27k/N) * (U-A/ (ik) *exp (-i*k*y))
*exp (i*k*x;) +F
endFor

Example5.6.1 We use the above pseudocode on the following function

u(z) = { sin(x/2), 0<x2<1.9, (5:6.17)

—sin(z/2), 1.9 <z < 2.

Notice that [u(*)] # 0 for al k > 0. Using (5.5.2) we obtain for all k > 0,

) 1 ( o—i(k+0.5)x1.9 ei*(k0.5)*1.9>

Uk = — + (5618)
27

k+0.5 k—0.5

Numerical results using CODE Shock. 2 are plotted in Figures 5.9 and 5.10. In
the following table, we list the errors of the jump location and its strength determined
by CODE Shock. 2. Thefilter function used in the codeis

o(n) = e~ 15In10n'?

1
0.8 F
0.6
04r
02}

0¥ i

02 .

047 7
0.6 b

08} K\ -
= L L n L s L

0 1 2 3 4 5 6

Figure5.9 Thesolid lineis the exact solution and the pul ses
the numerical solution with N = 32.
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107!
107 ¢
107
107
107§
107 F

107

108

10°°

0 1 2 3 4 5 6

Figure5.10 Error of the re-construction on logarithm scalefor NV = 8,16, 32.

Notice that the second-order accuracy is verified.

Location (exact:1.9) Strength (exact:-sin(0.95)/7)
error order error order
8 1.1e-02 3.4e-04
16 3.4e-03 1.69 9.8e-05 1.79
32 9.2e-04 1.89 2.6e-05 1.91
64 2.4e-04 1.94 6.8e-06 1.93

In obtaining the convergence order, we have used the formula:
error(h)
der =1 — .
order = oes (error(h/2)>
In using the filters, we choose the parametersa« = m =4,k = 0.

We remark that if « is smooth, (5.6.8) keeps spectral accuracy because A deter-
mined by (5.6.12) will be spectrally small.

We now state our scheme as (5.5.13) with

fj+1/2 = fon(Zj11/2:1)), (5.6.19)

where vy is defined by (5.6.8). We obtain the Fourier coefficients @, of @ from {a;}

by collocation, and obtain o of u needed in (5.6.8) by (5.5.16). The main difference
between the conventional spectral method and the current approach is that we use
the essentially non-oscillatory reconstruction vy instead of the oscillatory Pyu in

(5.5.17).
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To discretize (5.5.13) in time, we use the high-order TVD Runge-Kutta methods
(5.5.18). A pseudocode outlines the above procedure is provided below:

CODE Shock.3
Input N, a;; and f(jr, 1<3j<3, 0<k<2
Input At, we(z), T
Ax=27/(2N+1), z;=JAx 0<J<2N
Compute %(j,0)=ug(x;), |j|<2N,
using (5.5.11)
time=0
While time<T
For r=0 to 2 do
% Compute Fourier coefficients of ax and ay
using collocation method
for |k|< N do
ap= (}:?%u(j r)e %) / (2N+1) ; Tr=sin(kAx/2)/ (kAx/2)

ag=ag/ Tk
endfor
$Compute the jump position y
N1=N%6; y = -i*log((N1+1)*an1+1/ (N1+2) *an142); y=Re (y)

%Compute the strength of the jump
A=i* (N1+1) *exp (1 (N1+1)y) *an14+1; A=Re (A)
$To recover pointwise value from Fourier coefficients
for j=0 to 2N do
%Compute the last term in (5.6.15)
if 7;<y then F=-A*g;
else F=A*(27-x;)
endif
$Compute u(zji1/2) using a weak filter
Tjy1/2=7;+0.5%Ax
U(Tj41/2) =0-B(T-y) +D ;0 0 (27k/N) (a-Be”*V/ (ik) ) eMit1/24+F
endfor
$Runge-Kutta method
for j=0 to 2N do
RHS(j,r)=-(f(u ($3+1/2)) f(ulzj_12)))/Ax
if r=0 then u(j,1)=u(j,0)+At RHS(] 0)
elseif r=1 then u(j,2)= % (3, 0)+4+ 2u(3,1)+ tRHS(j,l)
elseif r=2 then u(j,3)=3u(3,0)+3u (], 2)+ QAtRHS(j,Z)
endif
endFor
Update the initial value: «(j,0)=u(j,3), 0<j<2N
time=time+At
endWhile
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$Final solution smoothing using a stronger filter o
for |k|< N do
ap= (7 5gu e~ ) / (2N+1) ; ay=ai/ 7
endfor
for j=0 to 2N do
U (@) =ag-A(T-y) +3 00 (27k/N) (a-Be” "/ (ik) ) e*isF
endfor

We now reconsider Example 5.6.1 by using CODE Shock.3. The weak filter o
used above is o(n)) = e~ 1510 and astrong filter & used is o(n)) = e~ 15 107"
The numerical solution with7 = 0.5 and N = 32 isdisplayed in Figure 5.11. At

t = 2, we employed a coarse grid with N = 32 and afiner grid with N = 64. The
convergence with respect to the mesh size is observed from Figures 5.12 and 5.13.

2 3 4 5 6

Figure5.11 Inviscid Burgers equation with the initial
function (5.6.17) (V. = 32 and ¢t = 0.5).

—2 3 4 % ¢ o0 1 2 3 4 5 6
Figure5.12 SameasFigure5.11, except t =2. Figure5.13 Same as Figure 5.12, except N =64.
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In this chapter, we are mainly concerned with spectral approximations for the follow-
ing model problem:
ou—Au=f (6.0.1)

in aregular domain 2 with appropriate boundary conditions.

Devel oping efficient and accurate numerical schemesfor (6.0.1) isvery important
since

e (i) one often needs to solve (6.0.1) repestedly after a semi-implicit time dis-
cretization of many parabolic type equations;

e (ii) asin the one-dimensional case, it can be used as a preconditioner for more
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general second-order problems with variable coefficients, such as

d d
Lu = — Z D;(a;jDju) + ZDi(biu) +hu=f, el (6.0.2)
ij=1 i=1

Unlike in the one-dimensional case, it is generally not feasible to solve the (non-
separable) equation (6.0.2) directly using a spectral method. In other words, for
(6.0.2) with variable coefficients, it is necessary to use a preconditioned iterative
method.

Computational costsfor multidimensional problems using spectral methods could
easily become prohibitive if the algorithms are not well designed. There are two key
ingredients which make spectral methods feasible for multidimensional problems.

Thefirst is the classical method of “separation of variables” which write the so-
lution of a multidimensional separable equation as a product of functions with one
independent variable. We shall explore this approach repeatedly in this chapter.

The second is the observation that spectral transforms in multidimensional do-
mains can be performed through partial summation. For example, Orszad'?! pointed
out that one can save afactor of 10,000 in the computer time for his turbulence code
CENTICUBE (128 x 128 x 128 degrees of freedom) merely by evaluating the mul-
tidimensional spectral transforms through partial summation. We will illustrate his
idea by a two-dimensional example.

Suppose the goal is to evaluate an M x N spectral sum at each point of the
interpolating grid. Let the sum be

M—-1N-1

F@y) =" amndm(@)dn(y)- (6.0.3)

m=0 n=0

To compute (6.0.3) at an arbitrary point as a double DO LOOP, atotal of M/ N mul-
tiplications and M N additions are needed even if the values of the basis functions
have been computed and stored.

Since there are M N points on the collocation grid, we would seem to require
atota O(M?2N?) operations to perform a two-dimensiona transform from series
coefficients to grid point values. Thus, if M and N are the same order of magnitude,
the operation count for each such transform increases as the fourth power of the
number of degreesin x direction —and we have to do this once per time step. A finite
difference method, in contrast, requires only O(M N) operations per time step.
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Now arrange (6.0.3) as

M-1 N-1

F@y) =Y onl@)| D amndn(y)]. (6.04)
n=0

m=0

Let usdefine theline functions via f;(z) = f(z,y;),0 < j < N —1. It follows from
(6.0.4) that

M-—1
fi@) =Y aDon(z), 0<j<N-1,
m=0
where
' N—-1
oD =" tnénly;), 0<Sm<M-1,0<j<N-1 (6.0.5)
n=0

There are M N coefficients a%), and each isasum over N termsasin (6.0.5), so the
expense of computing the spectral coefficients of the f;(z) is O(M N?). Each f;(x)
describes how f(z,y) varies with respect to = on a particular grid line, so we can
evaluate f(x,y) everywhere on the grid. Since f;(«) are one-dimensional, each can
be evaluated at a single point in only O(M) operations:

Conclusion:

e In two-dimensions, [direct sum] O(M?N?) — O(MN?) + O(M?N) [partial
sumj;

e Inthree-dimensions, L x M x N pointson x,y and z directions: [direct sum]
O(L?M?*N?) — O(LMN?) + O(LM?N) + O(L*MN) [partial sum];

e The cost of partial summation can be reduced further to O(N M log(N M))
in two-dimensions and O (LM N log(LM N)) in three-dimensions if we are dealing
with aFourier or Chebyshev expansion.

In the rest of this chapter, we shall present severa efficient numerical algorithms
for solving (6.0.1).

6.1 Spectral-collocation methodsin rectangular domains
Let Q = (—1,1)2. We consider the two-dimensional Poisson type equation

{ au — Au = f, in €, (6.1.1)

u(z,y) =0, on 9.
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For the sake of simplicity, we shall use the same number of points, N, in the z
and y directions, although in practical applications one may wish to use different
numbers of pointsin each direction. Let Xy = {u € Py X Py : u|po = 0} and
{&1, be the Chebyshev or Legendre Gauss-Lobatto points. Then, the Chebyshev-
or Legendre-collocation method is to look for uy € Xy such that

aun (&,&5) — Oun (&, &) — Oyun (&, &) = f(&,&5), 1<i,j < N —1. (6.1.2)

Let {h,(£)}2_, be the Lagrange polynomial associated with {&}Y. We can write

N N
UN(-Tay) = Z ZUN(fm,fn)hm(w)hn(y)

m=0n=0

Let D5 bethe second-order differentiation matrix, given in Section 2.4 for the Cheby-
shev case, and let U and F' be two matrices of order (N — 1) x (N — 1) such that

U = (un (Em &)mnzrs F = (f(Ems €n))mnts-
Then, (6.1.2) becomes the matrix equation
aU — DyU —UDJ = F, (6.1.3)
which can also be written as a standard linear system,
(@l @I —1®Dy—Dy® D= Jf, (6.1.4)

where I isthe identity matrix, f and @ are vectors of length (N — 1)? formed by the
columns of F' and U, and ® denotes the tensor product of matrices, i.e. A® B =
(Abij)

Since D is afull matrix, a naive approach using Gauss elimination for (6.1.4)
would cost O(N®) operations. However, this cost can be significantly reduced by
using a discrete version of “separation of variables’ — the matrix decomposition
method**?], known asthe matrix diagonalization method in the field of spectral meth-
ods [79 801 To this end, we consider the eigenvalue problem

Dot = \Z. (6.1.5)

It has been shown (cf. [58]) that the eigenvalues of D, are all negative and distinct.
Hence, it is diagonalizable, i.e., if A isthe diagonal matrix whose diagonal entries
{\p} are the eigenvalues of (6.1.5), and let P be the matrix whose columns are the
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eigenvectors of (6.1.5), then we have

P7iDyP = A, (6.1.6)
Multiplying (6.1.3) from the left by P~ and from the right by P, we find that

aP 'UPHT — (P~ DyP)(PU(PHT)

— Pty HhH@Ptpy (P HY) = Ptr(P Y. (@17
LetU = P~'U(P~ )T and F = P~'F(P~")T. Then (6.1.7) becomes
all — AU —UAT = F,
which gives )
U = a_f—J_A” 1<ij<N-1 (6.18)

Solving the above equations gives the matrix U. Using the relation U = PUPT
yields the solution matrix U.

In summary, the solution of (6.1.2) consists of the following steps:

e Step 1. Pre-processing: compute the eigenvalues and eigenvectors
(A, P) of Do;

e Step 2: Compute [’ = P~1F(P~1)T;

e Step 3: Compute U from (6.1.8);

e Step 4: Obtain the solution U = PUPT.

We note that the main cost of this algorithm is the four matrix-matrix multipli-
cations in Steps 2 and 4. Hence, besides the cost of pre-computation, the cost for
solving each equation is about 4 N3 flops, no matter whether Chebyshev or Legendre
points are used. We also note that the above algorithms can be easily extended to
three-dimensional cases, we refer to [80].

Example 6.1.1 Solve the 2D Poisson equation

Uzy + Uyy = 10sin(8z(y — 1)), (x,y) € Q,

6.1.9
u(z,y)|aq = 0, (6.19)

with the Chebyshev-collocation method.
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A simple, but not very efficient, MATLAB code which solves (6.1.4) directly is
provided below. The code begins with the differentiation matrix and the Chebyshev-
Gauss-Lobatto points, which was described in detail in Chapters 1 & 2.

CODE Poisson.m
Solve Poisson egn on [-1,1]x[-1,1] with u=0 on boundary

$D= differentiation matrix -- from DM.4 in Sect. 2.1
$Input N
X = cos(pi*(0:N)/N)’; y = X;

% Set up grids and tensor product Laplacian, and solve for u:
[xx,yy] = meshgrid(x(2:N),y(2:N));
% stretch 2D grids to 1D vectors
xx = xx(:); yy = yy(:);
% source term function
f = 10*sin(8*xx.* (yy-1));
D2 = D"2; D2 = D2(2:N,2:N); I = eye(N-1);
% Laplacian
L = kron(I,D2) + kron(D2,I);
figure(l), clf, spy(L), drawnow
¥solve problem and watch clock
tic, u = L\f; toc
% Reshape long 1D results onto 2D grid:
uu = zeros (N+1,N+1); uu(2:N,2:N) = reshape(u,N-1,N-1);
[xx,yy] = meshgrid(x,y);
value = uu(N/4+1,N/4+1) ;
% Interpolate to finer grid and plot:
[xxx,yyy] = meshgrid(-1:.04:1,-1:.04:1);
uuu = interp2 (xx,yy,uu, xxx,yyy, ' cubic’) ;
figure(2), clf, mesh(xxx,yyy,uuu), colormap(le-6*[1 1 1]);
xlabel x, ylabel y, zlabel u
text(.4,-.3,-.3,sprintf (‘u(2™-1/2,2"-1/2)=%14.11£f" ,value))

Exercises 6.1
Problem 1 Solve the Poisson problem
Uy + Uyy = —27° sin(7x) sin(7y), (z,9) € Q= (-1,1)%

(6.1.10)
u(z,y)lag = 0.

using the Chebyshev pseudo-spectral method with formula (6.1.8). The exact solu-
tion of this problem isu(x,y) = sin(rz) sin(my).
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Problem 2 Consider the Poisson problem

Uge + Uyy + aUy + buy = f(2,y), (x,y) € Q= (-1, 1)2,

(6.1.11)
u(z,y)loq = 0,

where a and b are constants.

a. Derive a Chebyshev pseudo-spectral method for solving this problem.
b.Leta =b=1and f(x,y) = —272sin(nz)sin(ry) + 7(cos(mx) sin(wy) +
sin(mz) cos(my)).
The exact solution of this problem isu(z, y) = sin(mz) sin(7y). Solve the problem
using your code in part (a).

Problem 3 Consider the following two dimensional separable equation in 2 =
(—1,1)2:

(&) gz + 0(2)ug + c(z)u + d(Yy)uyy + e(y)uy + f(Y)u = g(z,y),

(6.1.12)
u’ag = 0.

Design an efficient spectral-collocation method for solving this equation.

Problem 4 Write down the matrix diagonalization algorithm for the Poisson type
equation in Q = (—1,1)3.

6.2 Spectral-Galerkin methodsin rectangular domains

Matrix diagonalization method
Legendre case

Chebyshev case

Neumann boundary conditions

The weighted spectral-Galerkin approximation to (6.1.1) is. Find uwy € X y such
that

a(un, vN)w + au(un,vn) = (Inf,on)e fordl vy € Xy, (6.2.1)

where Iy : C(Q) — P¢ is the interpolation operator based on the Legendre or
Chebyshev Gauss-L obatto points, (u,v), = [, uvwd istheinner product in L2 (12)
and

aw(u,v) = (Vu,w 'V (0w))y. (6.2.2)



238 Chapter 6  Spectral methods in Multi-dimensional Domains

Matrix diagonalization method

Let {¢x}n - beaset of basis functions for Py N H{ (). Then,

XN :Span{(ﬁz(x)qu(y) : i7j 20717”' 7N_2}'

L et us denote
N-2
un = Y ko) d5(y), frj = INF, Er(2)5(Y))ws
k,j=0
/¢ )(dr(r)w(x)) dz, S = (skj)kj=01, N—2, (6.2.3)
/¢j ok (z)w(z)dx = (Mij)k,j=0,1, ,N—2,
U= (uk] k,j=0,1,-- ,N—2; (fk]) k,j=0,1,-- ,N—2-

Taking vy = ¢(z)dm(y) in(6.2.1) for i,m = 0,1,--- , N — 2, wefind that (6.2.1)
is equivalent to the matrix equation

oaMUM + SUM + MUST = F. (6.2.4)

We can also rewrite the above matrix equation in the following form using the tensor
product notation:

(aM@M+S@M+MeSTu=f, (6.2.5)

where, asin the last section, f and @ are vectors of length (N — 1)? formed by the
columnsof U and F'. Asin the spectral collocation case, this equation can be solved
in particular by the matrix diagonalization method. To this end, we consider the
generalized eigenvalue problem:

M7 = \SZ. (6.2.6)

In the Legendre case, M and S are symmetric positive definite matrices so all the
eigenvalues are real positive. In the Chebyshev case, .S is ho longer symmetric but
it is still positive definite. Furthermore, it is shown in [58] that all the eigenvalues
are real, positive and distinct. Let A be the diagonal matrix whose diagonal entries
{\p} are the eigenvalues of (6.2.6), and let £ be the matrix whose columns are the
eigenvectors of (6.2.6). Then, we have

ME = SEA. (6.2.7)
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Now setting U = EV, thanks to (6.2.7) the equation (6.2.4) becomes
aSEAVM + SEVM + SEAVST = F. (6.2.8)
Multiplying E~'S~! to the above equation, we arrive at
aAVM +VM+AVST = E71s7F .= qG. (6.2.9)
The transpose of the above equation reads
aMVTA + MVT + SVTA =GT. (6.2.10)

Let Up = (Up07vpla ce 7UpN72)T and gp = (gp()ugpl) tet agprQ)T for 0 < p <
N — 2. Then the p-th column of equation (6.2.10) can be written as

((adp + )M + X, S)0p =gp, p=0,1,--- ,N —2. (6.2.11)

These are just the N — 1 linear systems from the Legendre- or Chebyshev-Galerkin
approximation of the N — 1 one-dimensional eguations

(aXp + Dvp — Apvy = gp,  vp(£1) =0,

Note that we only diagonalize in the z-direction and reduce the problem to N — 1
one-dimensiona eguations (in the y-direction) (6.2.11) for which, unlike in the col-
location case, afast agorithm is available.

In summary, the solution of (6.2.4) consists of the following steps:

e Step 1 Pre-processing: compute the eigenvalues and eigenvectors of
the generalized eigenvalue problem (6.2.6);

e Step 2 Compute the expansion coefficients of Iy f (backward Legen-
dre or Chebyshev transform);

o Step3 Compute I = (fi;) with fi; = (Inf, ¢i(2)9;(y))w:

e Step4 Compute G = E~1S~1F;

e Step5 Obtain V' by solving (6.2.11);

e Step6 SetU = EV;

e Step 7 Compute the values of wy at Gauss-Lobatto points (forward
Legendre or Chebyshev transform).
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Several remarks are in order:

Remark 6.2.1 This algorithm is dlightly more complicated than the spectral-
collocation algorithm presented in the last section but it offers several distinct ad-
vantages.

e Unlikeinthe collocation case, the eigenvalue problems hereinvolve only sparse
(or specidly structured) matrices so it can be computed much more efficiently and
accurately.

e This agorithm can be easily applied to problems with general boundary con-
ditions (3.2.2) since we only have to modify the basis functions and the associated
stiffness and mass matrices.

o For the Dirichlet boundary conditions considered here, the basis functions take
theform ¢ (z) = arpr(z)+brpir2(x) Where p,(x) iseither the Legendre or Cheby-
shev polynomial. Thanks to the odd-even parity of the Legendre or Chebyshev poly-
nomials, the matrices .S and M can be split into two sub-matrices of order N/2 and
N/2 — 1. Consequently, (6.2.4) can be split into four sub-equations. Hence, the
cost of matrix-matrix multiplications in the above procedure can be cut by half. The
above remark applies also to the Neumann boundary conditions but not to the general
boundary conditions.

e Themain cost of thisalgorithm isthe two matrix multiplications in Steps 4 & 6
plus the backward and forward transforms. However, it offers both the nodal values
of the approximate solution as well as its expansion coefficients which can be used
to compute its derivatives, a necessary step in any real application code, at negligible
cost. Hence, this algorithm is also efficient.

e The above procedure corresponds to diagonalizing in the x direction; one may
of course choose to diagonalize in the y direction. In fact, if different numbers of
modes are used in each direction, one should choose to diagonalize in the direction
with fewer modes to minimize the operational counts of the two matrix-matrix mul-
tiplications in the solution procedure.

L egendre case

Let i (x) = (Li(z) — Li42(x))/V/4k + 6. Then, wehave S = I and M can be
split into two symmetric tridiagonal sub-matrices so the eigenvalues and eigenvectors
of M can be easily computed in O(N?) operations by standard procedures. Further-
more, we have E~! = ET. Step 2 consists of solving N — 1 tridiagonal systems of
order N — 1. Therefore, for each right-hand side, the cost of solving system (6.2.4)
is dominated by the two matrix-matrix multiplications in Steps 4 & 6.
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Chebyshev case:

Let ¢p(z) = Ti(z) — Tkro(x). Then, S is a special upper triangular matrix
given in (3.3.8) and M is a symmetric positive definite matrix with three non-zero
diagonals. Similar to the Legendre case, S and M can be split into two sub-matrices
so that the eigen-problem (6.2.6) can be split into four subproblems which can be
solved directly by using a QR method. Note that an interesting O(NN?) algorithm for
solving (6.2.6) was developed in [15]. Once again, the cost of solving system (6.2.4)
in the Chebyshev case is also dominated by the two matrix-matrix multiplications in
Steps 4 & 6.

Neumann boundary conditions

The matrix diagonalization approach applies directly to separable eliptic equa-
tions with general boundary conditions including in particular the Neumann bound-
ary conditions. However, the problem with Neumann boundary conditions

au—Au=f in
ou (6.2.12)
F,lo0 =0

n

needs some specia care, especially when o = 0 since the solution « of (6.2.12) is
only determined up to an additive constant.

Since one often needs to deal with the problem (6.2.12) in practice, particularly in
aprojection method for solving time-dependent Navier-Stokes equations (cf. Section
7.4), we now describe how the matrix diagonalization method needs to be modified
for (6.2.12). In this case, we have from Remark 3.2.1 that in the Legendre case,

ou(z) = Ly(z) — —FFE+ D) Jaeale), k=1 N2 (6219)

(k+2)(k+3
and from Remark 3.3.9 that in the Chebyshev case,

2
o(x) = Tu(w) - (ki—z)ﬁm(x), F=1. N2, (6.2.14)

For multidimensional problems, this set of basis functions should be augmented with
$o(z) = 1/+/2 in the Legendre case and ¢y (z) = 1/+/7 in the Chebyshev case.

For o > 0, we look for an approximate solution in the space

Xy = span{¢;()p;(y) : 0<i,j <N —2} (6.2.15)
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However, for o = 0, where the solution « of (6.2.12) is only determined up to an
additive constant, we fix this constant by setting |, uw(z)w(y)dzdy = 0, assuming
that the function f satisfies the compatibility condition [, fw(z)w(y)dzdy = 0. In
this case, we set

Xy = span{¢;(2)d;(y) : 0< 4,5 <N —2iorj+#0}. (6.2.16)

Using the same notations in (6.2.3), we find that the Legendre-Galerkin approxima:
tion to (6.2.12) can still be written as the matrix equation (6.2.4) with

1 o7T 0 of
wo( ) s=(0 ) 6217

where M; and S, are the mass and stiffness matrices of order N — 2 corresponding
to {ér}p -
Let us now consider the generalized eigenvalue problem Mjz = A\S;z, and let

(A1, E1) besuch that
M E| = S51E{A;. (6.2.18)

Setting

1 of 1 ot -~ /1 o\ - /o of
pe () a0 s () -0 Y). eem

where I, isthe identity matrix of order N — 2, we have
ME = SEA. (6.2.20)
Now applying the transform U = E'V to (6.2.4), we obtain, thanks to (6.2.20),
aSEAVM + SEVM + SEAVST = F. (6.2.21)
Multiplying E~15~ to the above equation, we arrive at
QAVM +IVM + AVST = E71§71F = G. (6.2.22)
The transpose of the above equation reads
oaMVIA+MVTT+SVTA =GT. (6.2.23)

Let Up = (UpOaUpla"' 7UpN72)T and gp = (gp(]agpl?"' 7gpN72)T for 0 < p <
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N — 2. Then the p-th column of eguation (6.2.23) can be written as

((adp + )M + X, S)0p =gp, p=1,--- ,N =2, (6.2.24)
(aM + S) 0o = Go. (6.2.25)

Note that for o = 0, the last equation is only solvable if gy = 0 (the compatibility
condition), and we set vy = 0 so that we have [, uyw(z)w(y)dzdy = 0.

Exercise 6.2
Problem 1 Consider the 2D Poisson type equation with the mixed boundary con-
ditions

(a4 4 byug)(x,£1) =0, (cxu+diuy)(£l,y) = 0. (6.2.26)
Write down the Legendre-Galerkin method for this problem and design an efficient
matrix diagonalization agorithm for it.
Problem 2 Consider the following two dimensional separable equation in 2 =

(—1,1)2:

s+ W) e+ A, + el + S =l oo
u(:):,il) =0,z e [_171]; ux(ilay) =0,y¢€ [_17 1] h

1. Assuming that al the coefficients are constants, design an efficient Legendre-
Galerkin algorithm for solving this equation.

2. Assuming that d, e, f are constants, design an efficient Legendre-Galerkin
method for solving this equation.

Problem 3 Write down the matrix diagonalization algorithm for the Poisson type
equation in © = (-1, 1)® with homogeneous Dirichlet boundary conditions.

6.3 Spectral-Galerkin methodsin cylindrical domains

In many practical situations, one often needs to solve partial differential equationsin
cylindrical geometries. Since a cylinder is a separable domain under the cylindrical
coordinates, we can still apply, asin the previous sections, the discrete “ separation of
variables’ to separable equations in acylinder.

Let us consider for example the Poisson type equation

aU—-AU=F inQ; Ul =0, (6.3.1)
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where O = {(z,y,2) : 22 +3® < 1, —1 < z < 1}. Applying the cylindri-
ca transformations z = rcosf, y = rsinf, z = z, and setting u(r,0,z) =
U(rcosf,rsind, z), f(r,0,z) = F(rcosf,rsin, z), Eq. (6.3.1) becomes
1 1
- ;(TUT)T - ﬁuee —Uyy + QU = f (7”,0,25) € (07 1) X [0727T) X (_]-7 1)7
u=0ar=1o0rz==+1, wuperiodicindé.
(6.32)

To simplify the notation, we shall consider the axisymmetric case, i.e., f and u are
independent of #. Note that once we have an agorithm for the axisymmetric case,
the full three-dimensional case can be easily handled by using a Fourier method in
the @ direction, we refer to [142] for more details in this matter.

Assuming f and u are independent of 6, making a coordinate transformation
r = (t+1)/2anddenoting v(t, z) = u(r,z), g(t,z) = (t+1)f(r,z)/4and 8 = a/4,
we obtain a two-dimensional equation

1
-7+ Dvze — ((t+Dve), + Bt +v=g (t2)€ (—1,1),
v=0at=1o0rz==+l.

(6.3.3)
Let usdenote 1);(z) = p;i(2) —pit2(z) and ¢;(t) = p;(t) —pi+1(t), wherep; iseither
the j-th degree Legendre or Chebyshev polynomial. Let

Xy =span{¢;(t)Yj(z): 0<i<N—-1,0<j<N-—2}

Then a spectral-Galerkin approximation to (6.3.3) isto find vy € X such that

i((t + 1)0,0n, 0-(ww)) + ((¢t + 1)0vn, O (ww)) + B((t + I)UN,w)w
= (INwg W)w, foral w € Xy,

(6.3.4)

where w = 1 in the Legendre case and w = w(t, 2) = ((1 — 3)(1 — 22))*% in
the Chebyshev casg, (-, -),, isthe weighted L2-inner product in (—1,1)?, and I, is
the interpolation operator based on the Legendre- or Chebyshev-Gauss type points.
Setting

ajj = /I(t +1) ) (¢z‘UJ(t))/dt, A = (ai5)0<G<N-1,0<<N—2,

Cij = /(t +1) ¢ piw(t)dt, C = (cij)o<i<N-1,0<G<N-25
i
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mij = /%‘ Yiw(z)dz, M = (mij)ij=0,1,-. N2,
I

Sij = /1¢; (¢iw(z)),dz7 S = (5i5)i,j=0,1,-- ,N—2,

and

fij = //IN,wg¢i(t) VYi(z)w(t,z)dtdz, F = (fij)o<i<N—1,0<G<N-25
IJI
N—-1N-2

on =Y bt (2), U= (uig)oicn—1,06<N—2-

i=0 ;=0

Then (6.3.4) becomes the matrix equation
1
ZCU?+{A+BC%H4:F. (6.3.5)

Thenon-zero entriesof M and S aregivenin (3.2.7) and (3.2.6) in the Legendre case,
and in (3.3.7) and (3.3.8) in the Chebyshev case. Using the properties of Legendre
and Chebyshev polynomials, it is also easy to determine the non-zero entries of A
and C.

In the Legendre case, the matrix A isdiagonal with a;; = 2i + 2, and the matrix C' is
symmetric penta-diagonal with

2(i +2) o
vt = )
(2i+3)(2i +5)° J=rts

4

= i1
i QitD@it3)@its) D

4+ 1) o

j=1.

(20 +1)(2i +3)’
In the Chebyshev case, A isaupper-triangular matrix with
(i+1)2ﬂ-7 ]:Za
aij = (i = j)m, j=i+1,i+3,i+5 - ,
(i+j+m, j=i+2,i+4,i+6---,

and C' isasymmetric penta-diagonal matrix with non-zero elements
i1=0,1,--- N —1,

Cii =

Cii42 = Ci4245 = — i=0,1,---,N =3,

Co1 = C10 =

Al el
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The matrix equation (6.3.5) can be efficiently solved, in particular, by using the
matrix decomposition method. More precisely, we consider the following general-
ized eigenvalue problem Sz = AMZ, and let A be the diagonal matrix formed by the
eigenvalues and E be the matrix formed by the corresponding eigenvectors. Then,

SE=MFEA or ETST=AETM. (6.3.6)

Making a change of variable U = V ET in (6.3.5), wefind
iCVETST b (A+ BC)WVET™ = F.
We then derive from (6.3.6) that
iCVA +(A4+p8C)V =FM'ET .=qG. (6.3.7)
Let v, and g, be the p-th column of V' and G, respectively. Then (6.3.7) becomes
((i)\p—kﬁ)C—kA)@p Gy p=0,1,--- N —2, (63.8)

which can be efficiently solved as shown in Sections 3.2 and 3.3.

In summary, after the pre-processing for the computation of the eigenpair (A, E)
and E~! (in the Legendre case, F is a orthonormal matrix, i.e. E-! = ET), the
solution of (6.3.5) consists of three main steps:

1. Compute G = FM~'E~T: N3 + O(N?) flops;
2. Solving V from (6.3.8): O(N?) flops;
3. SetU = VET: N3 flops.

Exercise 6.3

Problem 1 Compute the first eigenvalue of the Bessel’s equation

1 m?
— Upp — —Uyp 5 U= 5 71;
U U + U Au, 7€ (0,1) (639

u(l) =0, |u(0)] < occ.

Form =0andm = 7, list theresultsfor N = 8,16, 32, 64.

Problem 2 Design an efficient Legendre-Galerkin method for (6.3.1) where() =
{(z,y,2) ra<2®>+y? <b, 0 < z < h}, assuming F is axisymmetric.
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6.4 A fast Poisson Solver using finite differences

Second-order FDM with FFT
Fourth-order compact FDM with FFT
Thomas Algorithm for tridiagonal system
Order of convergence

Itisclear that FFT plays an essentia role in the efficient implementation of spectral
methods, it is also interesting that FFT can be exploited to construct fast algorithms
for solving boundary-value prablems of eliptic type with finite difference methods
(FDM). To illustrate the idea, we again consider the model problem:

u:v:v"i_uyy:f(‘rvy)v inQ,
{ u(z,y) =0, on 99, (6.4.1)

where 2 = {(z,y) : 0 <z < 1,0 < y < 1}. Anuniform mesh for the square

domain is given by z; = ih,y; = jh, (0 <i, j < N + 1), withh = 515.

Second-order FDM with FFT

We begin by considering a second-order finite difference approach for the Pois-
son problem (6.4.1), which is described by Kincaid and Cheney®?!. The solution
procedure will be extended to a fourth-order compact scheme in the second part of
this section.

A standard five-point scheme, based on the central differencing approach, isgiven
by

Vil — 2055 + Vi1 o Vi1~ 2v5 + vij—1

h2 12 =fij,  1<4j<N, (642)

where v;; &~ u(z;,y;), fij = f(zi,y;). The boundary conditions are

V0,j = UN+1,j = Vi,0 = ViN+1 = 0. (6.4.3)

The traditional way of proceeding at this juncture is to solve system (6.4.2) by an
iterative method. There are N? equations and N? unknowns. The computational
effort to solve this system using, say, successive over-relaxation is O(MN log N).
The alternative approach involving FFT (or Fast Fourier Sine Transform) will bring
this effort down to O(IN? log N).

Below we describe how to solve the system (6.4.2) using the Fast Fourier Sine
Transform method. A solution of system (6.4.2) will be sought in the following form:
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N
vij =Y apgsinikd  (0<i, j < N+1), (6.4.4)
k=1
where § = 7/(N + 1). Here the numbers a;; are unknowns that we wish to de-
termine. They represent the Fourier sine transform of the function v. Once the g
have been determined, the fast Fourier sine transform can be used to compute ;
efficiently.

If the v;; from (6.4.4) are substituted into (6.4.2), the result is

N
> " ag;[sin(i + 1)k — 2sin ik + sin(i — 1)k6)]
k=1
N (6.4.5)
+ Z sin ik@[ak7j+1 — 2a; + a;w-_l] = thz'j-
k=1
We further introduce the sine transform of f;;:
N A~
fis = frjsiniko . (6.4.6)
k=1
This, together with atrigonometric identity for (6.4.5), gives
N N
Z akj(—4sin ikf) sin?(k0/2) + Z sinikf(ak, j+1 — 20k + agj—1)
k=1 k=1
=h*> " frjsinik . (6.4.7)
k=1
Therefore, we can deduce from (6.4.7) that
. o k0 .
ag;j (—4 sin” 5) + Qg1 — 2ak; + ap i1 = W fr (6.4.8)

The above equation appears at first glance to be another system of N? equations
in N2 unknowns, whichisonly slightly different fromtheoriginal system (6.4.2). But
closer inspection reveals that in (6.4.8), k can be held fixed, and the resulting system
of IV eguations can be easily and directly solved since itistridiagonal. Thusfor fixed
k, the unknownsin (6.4.8) form avector [az1, - - - , axy]T in RY. The procedure used
above has decoupled the original system of N? equations into N systems of N equa-
tions each. A tridiagonal system of N equations can be solved in O(/N) operations
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(in fact, fewer than 10N operations are needed). Thus, we can solve N tridiagonal
systems at a cost of 10N?2. The fast Fourier sine transform uses O(NN log N) oper-
ations on a vector with N components. Thus, the total computational burden in the
fast Poisson method is O(N? log N).

Fourth-order compact FDM with FFT

We now extend the fast solution procedure described above to deal with a more
accurate finite difference approach, namely, 4th-order compact finite difference
method for the Poisson problem (6.4.1). The finite difference method (6.4.2) has
an overall O(h?) approximation accuracy. Using a compact 9-point scheme, the ac-
curacy can be improved to 4th-order, and the resulting system can be also solved with
O(N?log N) operations.

In the area of finite difference methods, it has been discovered that the second-
order central difference approximations (such as (6.4.2)), when being used for solv-
ing the convection-diffusion equations often suffer from computational instability
and the resulting solutions exhibit nonphysical oscillations; see e.g. [133]. The up-
wind difference approximations are computationally stable, although only first-order
accurate, and the resulting solutions exhibit the effects of artificial viscosity. The
second-order upwind methods are no better than the first-order upwind difference
ones for convection-dominated problems. Moreover, the higher-order finite differ-
ence methods of conventional type do not allow direct iterative techniques. An ex-
ception has been found in the high order finite difference schemes of compact type

that are computationally efficient and stable and yield highly accurate numerical so-
lutions [39: 78, 151, 173]

Assuming a uniform grid in both  and y directions, we number the grid points
(i yi)s (i1, 95)s (@0, Yi+1)s (@io1,95) (@0, Y5-1)s (Tit1,Y541)s (Tim1,Yjt1),
(xi_l,yj_l), (wi+1,yj_1) a0, 1 2 3,405,678, r%pectively (see Flg 61)
In writing the FD approximations a single subscript k& denotes the corresponding
function value at the grid point numbered k.

We first derive the 4th-order compact scheme. A standard Taylor expansion for
the central differencing gives

h2
3 = (um)o + _(Uxxxx)o + O(h4)7
A 12 (6.4.9)

h
2 = (uyy)o + E(uyyyy)O +O(h%).

Ul + ug — 2u0
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7 4 8
Figure6.1 The mesh stencil for the compact scheme

These results, together with the Poisson equation in (6.4.1), gives

U1+U3—2u() U2+U4—2u()
h? h?
h? 4
- fO + E(uxacacac + uyyyy)o + O(h )

(6.4.10)

In order to obtain a 4th-order accuracy, a second-order approximation for the term
Uzzex + Uyyyy 1S NEeded. However, direct central differencing approximations for
Upzza AN Uy, With O(R?) accuracy requires stencils outside the 9-points in the
box Fig. 6.1. Tofix it, we again use the governing equation for w:

(Ua:xxx + Uyyyy)O = (v4u)0 - Q(Uxxyy)o
=(V2/)o = 2(Uzayy)o (6.4.12)
=(f1+ f3 —2f0) /B> + (f2 + f1 — 2f0)/B* = 2(ugayy)o + O(h?).

It can be shown that the mixed derivative ., can be approximated by the 9-points
stencil with O(h?) truncation errors:

1 U5+u6—2u2 U1+U3—2u() U7+u8—QU4
h2 h2 B h2 h2
= ((tge)2 — 2(Uge)o + (Ugz)s) /R + O(h?) (6.4.12)

= (umyy)o + O(hQ)-

Using the above results, we obtain a 4th-order finite difference scheme using the
compact stencils:

U] +uz —2ug U + ug — 2ug
h? * h?
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=fot g [+ Fs =260+ ot fa— 240

1 [u5 +ug — 2us (6.4.13)

2u1—|—U3—2u0 uy + ug — 2uy
h2 - h2 h2

6

Using the sine expansion of the form (6.4.4): v;; = Zszl ay;sin(ik@),0 = /(N +
1), we can obtain

N
us + ug — 2up = Z ag j+1 (—4sin(ik0)) sin®(k6/2) ,

k=1
N
ur +uz — 2ug=» _ ay; (—4sin(ikd))sin®(k/2),
k=1
N
ur +us — 2ug=» _ ayj_1 (—4sin(ik0)) sin®(k6/2) .
k=1

These results, together with the results similar to f;’s, yield an equivalent form for
the finite difference scheme (6.4.13):

Z ak] — 4sin( zk& sm —|— ZN: ak»,j+1 —2ay; + akJ,l) sin(ik0)
k=1
= h? Z fk] sin(ik0) + Z fk] — 4 sin( zkﬁ)) sin? 2 0
hk2 L A A : N
+5 ; (frgs1 = 2k + frj-1) sin(ik6)
1 k6
-5 > (k1 — 2a + agj—1) (— 4sin(ik6)) sin’ - (6.4.14)

b
Il
—

where fkj is defined by (6.4.6). Grouping the coefficients of sin(ikf) gives

—4sin®(k0/2)ay,; + (ar,j+1 — 2an,; + axj—1)
2

b N . .
=n2f i+ 5 { —4sin?(k0/2) frj + (Frg+1 = 2fk + fkvj—l)}

1 .
_6(%”1 — 2a;w- + ak,j“) (—4 Sln2(k9/2)) .
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Finally, we obtain atridiagonal system for the coefficients a,; with each fixed :

2 . 5 kO 8 . 5 kO 2 . 5 kO
(1 3 sin? E) ag j+1+ (—2 3 sin? E) ag.j + (1 3 sin? E) A j—1

§ £ ~ N

Thomas Algorithm for tridiagonal system

Consider the tridiagonal system

b 7 U1 31
ay by c v 2
a; by ¢ v; = d; ,

an—1 byn-1 cnN-1 ON_1 dn_1

L anN bN

UN dn

(6.4.16)
where a;, b;, ¢; and d; are given constants. All terms in the above matrix, other than
those shown, are zero. The Thomas agorithm for solving (6.4.16) consists of two
parts. First, the tridiagonal system (6.4.16) is manipulated into the form

1 1 3 S
1 v1 1
/ !
1 ¢ V; = | d; ,
, :
1 CNfl UN d/
1 L . L YN

i.e. the coefficients a; have been eliminated and the coefficients 4, normalized to
unity. For the first equation,

1
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and for the general equation

Ci

d; — a;d’_
d=—"5_ 1<i<N, d=2"%%1

I~ 1<i<N. (64.18)
bz‘ — ;¢ bz‘ — ;¢

The second stage consists of a backward-substitution:
oy =dy and vi=d;, —viic,, i=N-—1,--- 1. (6.4.19)

The Thomas algorithm is particularly economical; it requires only 5N — 4 operations
(multiplications and divisions). But to prevent ill-conditioning (and hence round-off
contamination) it is necessary that

|bi| > |a;| + |ei] -

The procedures of solving the finite difference schemes with FFT described in this
section typically generate tridiagonal systems of equations that can be solved effi-
ciently using the Thomas algorithm.

Order of convergence

If afinite difference scheme is given, one way to find its order of convergence
is to use the Taylor expansion to find its truncation error. Another way isto find the
order by doing some simple numerical tests. The procedure is described below:

(a) Pick up asingle test equation in a simple geometry (say, square domain), such
that the exact solution is known;

(b) Solve the test equation using the given finite difference scheme with at least
three sets of mesh sizes. hy, ho, and hs;

(c) Since the exact solution is known, the errors (L}, L™ or L°) associated with
h1, ho and h3 can be obtained easily. They are denoted by ¢, e; and eg, respectively.

Having the above steps, we are able to find the order of convergence as follows.
Assume the leading term of the error is

e~ Ch®,
for some constant C' and «. Here « isthe desired order of convergence. Since

€; %Ch?, 1= 1,2,3,
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€1 ~ hl @ €1 ~ hg @
€9 - hg ’ €9 - h3 '
This gives
el hy €2 ha
ap =log | — /log — ], ax=log|— /log — .
€2 ha €3 h3

If the two o’s obtained above are very close to each other, then the value of « gives
agood approximation of the convergence order. If they are not close, asmaller mesh
h4 should be used, and the value

h
as = log (2—?1) /log (h—i>

should be compared with as and ;.

we have

In practice, we choose h; 11 = h;/2, fori = 1,2,---. Namely, we always halve
the mesh size, and to observe the change of the resulting errors. In this case, the
formula for computing the convergence order becomes

order = log, (%) . (6.4.20)

We close this section by pointing out that we presented only a simple case for
the many versions of fast Poisson solvers. There are many relevant papers on either
algorithm development or theoretical justifications; see e.q. [14], [128], [140], [143],
[153].

Exercise 6.4.

Problem 1 Consider the Poisson problem

(6.4.21)

ulp = "1V

{ Ugy + Uyy = 2€m+y’ (x,y) €Q= (07 1) X (07 1)7

The exact solution for the above problem is u(z,y) = &Y. Solve the above
problem by using the 5-point finite difference scheme (6.4.2) and list the I!-errors
and the L° errors. Demonstrate that the scheme (6.4.2) is of second-order accuracy.
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Problem 2 Solve the Poisson problem

Uz + Uy = —2n%sin(ne)sin(ry), 0 <,y <1, (6.4.22)
u(z,y) =0, on the boundary,

using the 2nd-order finite difference method (6.4.2) and the fast sine transform, with
N = 10,20 and 40. The exact solution isu(x,y) = sin(nz) sin(7y). Plot the error
function.

Problem 3 Repeat the above problem using the 4th-order compact scheme (6.4.13)
and the fast sine transform. Moreover, by comparing the I! errors for the three N's
to show that the numerical method used is of 4-th order accuracy.
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We present in this chapter applications of the spectral methods to several problems
in multi-dimensional domains. In Section 7.1, we present two examples of two-
dimensional time-dependent scalar advection equation in Cartesian coordinates. In
Section 7.2, we present a fourth-order time-splitting spectra method for the nu-
merical simulation of the Gross-Pitaevskii equation (GPE) which describes a Bose-
Einstein condensate (BEC) at temperatures 7" much smaller than the critical tempera-
ture T... The scheme preserves all essential features of the GPE. The remaining three
sections are concerned with topics in computational fluid dynamics. In Section 7.3,
we present a spectral approximation for the Stokes equations. In Section 7.4, we
will describe two robust and accurate projection type schemes and the related full
discretization schemes with a spectral-Galerkin discretization in space. Finaly, In
Section 7.5, we apply the spectral-projection scheme to simulate an incompressible
flow inside a cylinder.
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7.1 Spectral methods for wave equations
Linear advection problems

Numerical algorithms

Grid mapping for the Chebyshev collocation method
Numerical results

In this section, we will present two examples of two-dimensiona time-dependent
scalar advection equation in Cartesian coordinates. It isinstructive to see how one
should implement the spectral method for this class of problems. The first example
is the pure linear advection eguation and the second is the rotational wave equation.
These two equations differ only by the fact that the wave velocity is constant for
the first one while it depends on the spatial variables in the second case. They will
be used to demonstrate some practical issues in implementing the spectral methods
such as smoothing, filtering and Runge-Kutta time stepping discussed in previous
chapters. We will focus on the Fourier and Chebyshev collocation methods. Some
research papers relevant to this section include [22], [29], [118].

Linear advection problems

Example7.1.1 Thefirst exampleis

oU  oU  aU )

— ta,—— + Clya—y =0, (z,9)€(-1,1) t>0, (7.11)

ot ox
where U (z, y, t) isa function of two spatial variables (z, y) and time ¢, and the wave
speeds a, > 0 and a,, > 0 are constant. WWe assume a periodic boundary condition
in the ¢ direction and impose a Dirichlet inflow boundary condition at z = —1.

U-l,y,t)=0 —1<y<1. (7.1.2)

Equation (7.1.1) models the propagation of asignal initially at rest through its evolu-
tion in space and time. The solution of the partia differential equation (7.1.1) is

U(fv t) = UO(f_ C_it)v T = (‘ray)v a= (a:vvay)v (713)

where Uy(Z) is an initial function (signal) at ¢ = 0, that is, the shape of the signal
moving in the (z, y)-plane with aconstant speed according to the given wave velocity
vector (a,, a,) and elapsed time t (see Figure 7.2). Since the physical domainin z is
finite, the signal will move out from the right boundary in some finite time.
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Example 7.1.2 The second exampleisa linear rotational problem

U  oU  dU )
Ly — g = -1,1 7.1.4

whereU (z, y, t) isafunction of two spatial variables (z, y) and timet. The boundary
conditions are periodical in the y direction, but no boundary condition isimposed at
r = =£1.

The wave velocity (a.,ay) = (y, —x) in (7.1.4) is the tangential velocity at the
circumference of acircle. In this case, acircular axis-symmetric Gaussian pulse cen-
tered at (Cy, Cy) = (0,0) (seetheinitia conditions below) will simply rotate about
its central axis without any displacement in either direction. Hence the theoretical
solution of (7.1.4) will remain unchanged and appeared stationary at all time for the
circular Gaussian pulse centered at (C;, C,) = (0,0). It isan excellent test which
displays the dispersive and dissipative nature of along time integration by a given
numerical algorithm.

Initial condition For both examples above, the initial condition is speci-
fied as asmooth circular Gaussian function in the form of

0, L>1,

ol [ <1 (7.1.5)

Ule,y.t = 0) = Uplay) = {

where L = /(z — C;)? + (y — Cy)? /R with (C,, C,) the center of the Gaussian
function and R a given parameter that control the compact support of the Gaussian
function; a = — log(e) with e the machine roundoff errors; and -y is the order of the
Gaussian function.

In an actual implementation, R is chosen as
R = fmin(L,, L), (<1, (7.1.6)

where L, and L, are the length of the physical domain in the = and y direction,
respectively. Inour computations, we choose L, = L, = 2. For the linear advection
problem, we will take (a;,ay) = (1,2.5), (Cy,Cy) = (=1 + Ly/2,-1 4 L,/2),
B = 0.25andy = 8. Thefina timeisset at t; = 1.5. For Example 7.1.2, we
will center the Gaussian pulse in the middle of the physical domain with (C;, Cy) =
(0,0) while keeping al the other parameters unchanged.

Numerical algorithms

Since both problems are periodic in y, it is natural to employ the Fourier col-
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location method in the y direction. In the z direction, both the Legendre and the
Chebyshev collocation methods can be used. We will use the Chebyshev collocation
method in this section, partly dueto the fact that with the Chebyshev method the Fast
Cosine Transform method can be employed.

To solve the PDE numerically, we need to replace the continuous differentiation
operators by appropriate discretized counterparts. 1f we denote the Fourier differ-
entiation matrix by D{,c and the Chebyshev differentiation matrix by I, where the
subscript denotes the coordinate direction on which the differentiation operates, the
discretized version of (7.1.1) can be written in the matrix form

%—(tj +a,DEU + ayDIU =0, (7.1.7)
where the two-dimensional array U = U (x;, yj,t), with z; = cos(mi/Ny),i =
0--- N, being the Chebyshev-Gauss-Lobatto collocation points and 35 = —1 +
2j/Ny,j =0--- N, — 1 being the Fourier collocation points. Since the domain limit
inyis[—1,1) instead of the classical [0, 27), the Fourier operator Dg in(7.1.7) is
scaled by afactor of 7. The equation (7.1.7) isasystem of ordinary differential equa-
tions which can be advanced by any standard stable high-order Runge-Kutta method.
We used the third-order TVD Runge-Kutta scheme to solve the ODE systerd 49l

U = 0" + Atc(0™),
02 = %(317?1 + 0 + AtL(@Y)), (7.18)

R 1 - R o
Untl = g(U” + 202 4+ 2AtL(U?)),

where £ = —(a, DS + a, D) is the spatial operator, and U/'and U2 are two tem-

porary arrays at the intermediate Runge-K utta stages. Notice that this Runge-Kutta
scheme requires only one temporary array to beallocated sincel/ ! can be overwritten

by U2 in the second stage. The scheme has been shown to be stable for

CFL = Atmax(|az|/Az; + [ay|/Ay;) < 1. (7.1.9)
Z7j

In our computations, we used CFL=1. Furthermore, at each Runge-Kutta stage, an
appropriate boundary condition, say ﬁ(—l,yj,t) = 0, should be imposed if it is
prescribed.

As discussed in Section 5.5, filters may be needed to stabilize spectral computa-
tions. For Example 7.1.2, a 16th-order exponential filter is used in the computations.
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Grid mapping for the Chebyshev collocation method

A major disadvantage in using the Chebyshev collocation methodsisthat when ak-th
derivative (in space) is treated explicitly in atime discretization scheme, it leads to a
very restrictive CFL condition At ~ O(N—2*). Asdiscussed at the end of Section
2.3, thisis due to the clustering of the Chebyshev points at the boundaries. In order
to alleviate the time step restriction, Kosloff and Tal-Ezet®¥! devised a grid mapping
technique that maps the original Chebyshev-Gauss-L obatto points into another set of
collocation points. The mapping has the form of

v = glg, ) = S22 (7.0.10)

S (0]

where £ and = are the original and mapped Chebyshev collocation points, respec-
tively. The main effect of this mapping is that the minimum spacing is increased
from A¢ ~ O(N~2) in the original Chebyshev grid to Az ~ O(N~1!) in the new
mapped Chebyshev grid as the mapping parameter o — 1.

Under the mapping (7.1.10), the differentiation matrix 1), becomes
Dy = MDy, (7.1.12)

where M isadiagona matrix with elements

« 1

M = g/(fi, oz)fl =4 (y) = e (@) T (ay)Q' (7.1.12)

However, in order to retain the spectral accuracy of the mapped Chebyshev colloca
tion method, the parameter a: cannot be chosen arbitrarily. It had been shown that if
« ischosen as

a=«a(N,e) =sech(|lne|/N), (7.1.13)

then the approximation error isroughly e. Note that « is not a constant but afunction
of N. By choosing e to be of machine epsilon, the error of the grid mapping is
essentially guaranteed to be harmless.

A natural question iswhat will be the extrawork of grid mapping for the mapped
Chebyshev collocation method? In Figure 7.1, the eigenval ue spectrum of the original
and the mapped Chebyshev differentiation matrix with the Dirichlet boundary condi-
tion are shown with N = 64 collocation points. It is observed that the largest eigen-
value of the mapped Chebyshev differentiation matrix D, is substantially smaller
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than the one computed with the original unmapped counterpart 1),. Intuitively, we
can expect that for the k-th derivatives the mapped Chebyshev method will

Spectrum of D Spectrum of (Mapped)
(N=64) 2400 (N=64) 3400
(-92351) 435 1350
4800 4300
° [
f250 g (-56,221) 4250 g
4200 & 4200 &
4150 E 4150 .E
".4100 ° 4100
o f 50
L 1 1 -} 0 L 1 1 1 0
-200 -150 -100 -50 0 -200 -150 -100 -50 0
real real
(a) (b)
Figure7.1

(a) The eigenval ue spectrum of the original;
(b) the mapped Chebyshev differentiation matrix with the Dirichlet boundary condition.

e reduce the roundoff error from O(N?*¢) to O(N*¢) as shown in Table 7.1;

e reduce the spectral radius of the differentiation matrix from O(N?*) to O(N*)
asymptotically for D, and D, respectively, as shown in Table 7.2.

Table7.1 Absolutemaximum error for the second derivative of sin(2x)

N No Mapping with Mapping
32 0.47E-09 0.20E-09
64 0.62E-08 0.20E-08
128 0.71E-07 0.13E-07
256 0.35E-05 0.21E-06
512 0.98E-05 0.33E-06
1024 0.13E-02 0.21E-05

Table 7.2 Thespectral radius A of Dy, and Dy, with k = 1

Growth Growth

N A(Dy) Rate A(Dy) Rate
32 91.6 80.8

64 263.8 2 230.4 1.50

128 1452.7 2 555.4 1.27

256 5808.4 2 1219.1 1.13

512 23231.3 2 2553.5 1.07

1024 92922.8 2 5225.8 1.03
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In summary, the spectral algorithm consists of the following features:

e Spatial Algorithm:
Chebyshev and Fourier collocation methods.
— Differentiation and smoothing operations are done via an optimized li-

brary PseudoPack (Costa & Don);
— 16-thorder exponential filters are used for the differentiation and solution

smoothing when needed;
— TheKodloff-Tal-Ezer mapping is used for accuracy and stability enhance-
ment for the Chebyshev collocation methods.
e Temporal Algorithm:
Third-order explicit TVD Runge-Kutta method.

Numerical results

The numerical results for Examples 7.1.1 and 7.1.2 are shown in Figures 7.2 and
7.3, respectively, computed by using a 256 x 256 resolution. As depicted in Figure
7.2, the Gaussian pulse, initially at the upper left corner, moves diagonally down
and partially exits the physical domain at the later time. For Example 7.1.2, an one-
dimensional cut through the center of the solution at time ¢ = 0 (square symbol) and
t = 1.5 (circle symbol) is shown in Figure 7.4. The symbols are overlapped with
each other since the difference between them is on the order of 10-7 or smaller.

Figure 7.2 Solution of Example 7.1.1 with the Gaussian pulse at varioustime.
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Figure 7.3 Solution of Example 7.1.2 with the Gaussian pulseat ¢ = 1.5.

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 7.4 an one-dimensional cut through the center at
timet = 0 (square) and t = 1.5 (circle).

For both examples, the shape of the pulse remain sharp and well defined without
any distortion and has minimal classical dispersive and dissipative behavior we may
otherwise observe in afinite difference or afinite element computation.

The FORTRAN code can be found in
http://www.math.hkbu.edu.hk/“ttang/PGteaching;

itiswrittenin FORTRAN 90/95, and is based on the PseudoPack library co-devel oped
by Wai Sun Don and Bruno Costa. Many important and optimized subroutines for
computing differentiation by the Fourier, Chebyshev and L egendre collocation meth-
ods using various advance algorithms are incorporated into the library. Some further
information of the PseudoPack can be found in Appendix C of this book. Readers



264 Chapter 7 Some applications in multi-dimensions

who areinterested in the library can visit
http://www.cfm.brown.edu/people/wsdon/home.html

Exercise 7.1.
Problem 1 Consider the mapping (7.1.10). Show that with this mapping the mini-

mum spacing can be increased from A¢ ~ O(N~2) in the original Chebyshev grid
to Az ~ O(N~1) in the new mapped Chebyshev grid as the mapping parameter

o — 1.

7.2 Laguerre-Hermite method for Schrodinger equations
The Gross-Pitaevskii equation (GPE)

Hermite pseudospectral method for the 1-D GPE

Two-dimensional GPE with radial symmetry

Three-dimensional GPE with cylindrical symmetry

Numerical results

The nonlinear Schrodinger equation plays an important role in many fields of math-
ematical physics. In particular, at temperatures 7' much smaller than the critica
temperature 7., a Bose-Einstein condensate (BEC) is well described by the macro-
scopic wave function ¢ = 1 (x, t) whose evolution is governed by a self-consistent,
mean field nonlinear Schrodinger equation (NLSE) known as the Gross-Pitagvskii
equation (GPE)!7- 1291 \We present in this section a fourth-order time-splitting spec-
tral method for the numerical simulation of BEC. The scheme preserves all essential
features of the GPE, such as conservative, time reversible and time transverse invari-
ants, while being explicit , unconditionally stable, and spectrally accurate in space
and fourth-order accurate in time.

The Gross-Pitaevskii equation (GPE)

We consider the non-dimensional Gross-Pitaevskii equation in the form

- 0Y(x,t)
YT ot

= —%v%(x, t) + V(x)(x,t) + B [0, 1) Po(x, 1),  (7.2.2)

where the unknown is the complex wave function v, i = v/—1, 3 is a positive con-
stant and
V(x) = (v22® + vpy° +422°) /2 (7.2.2)

is the trapping potential. There are two typical extreme regimes between the trap
frequencies: (i) v, = 1,7, ~ 1 and ., > 1, it isadisk-shaped condensation; (ii)
Yo > 1,7 > land v, = 1, it is a cigar-shaped condensation. Following the
procedure used in [9], [98], the disk-shaped condensation can be effectively modeled
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by a2-D GPE. Similarly, a cigar-shaped condensation can be reduced to a 1-D GPE.
Hence, we shall consider the GPE in d-dimension (d = 1, 2, 3):

; 8¢(X7t) _ _l 2 2 d
1 8t - 2v ¢ + Vd(X)¢ + ﬁd W’ wv xecR ) (723)
$(x,0) = Po(x), x€RY
with
Yz Yy /27, '@22/2, d=1,
Ba=1< /:/2m, Va(x) =< (22 +y?) /2, d=2,
1, (ze® +ypy® +122%) /2, d=3,

where, > 0, v, > 0 and~, > 0 are constants. It iseasy to check that this equation
is conservative in the sense that

w0l = [ e ax= [ e ax (7.2
R4 R4
We normalize theinitial condition to be
/ o (x)? dx = 1. (7.2.5)
]Rd

Moreover, the GPE is time reversible and time transverse invariant (cf. [9]). Hence,
it is desirable that the numerical scheme satisfies these properties as well.
For the time discretization, we shall use the fourth-order splitting scheme (1.6.29).
To this end, we rewrite the GPE (7.2.3) in the form
us = f(u) = —iAu — iBu, u(to) = uo, (7.2.6)
1
Alb = 5d W(X, t)’2w(xv t)a B¢ = —§V2¢(X, t) + Vd(X)¢(X, t)' (727)

Thus, the key for an efficient implementation of (1.6.29) is to solve efficiently the
following two sub-problems:

i aq’”é’? t_ Ap(x,t), x € RY, (7.2.8)
and
i H(x,1) = By(x,t), xeR% lim ¢(x,t) =0, (7.2.9)

ot |x|—+00
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where the operators A and B are defined by (7.2.7). Multiplying (7.2.8) by v (x, t),
we find that the ordinary differential equation (7.2.8) leaves |y (x, t)| invariant in ¢.
Hence, for t > t, (¢t isany giventime), (7.2.8) becomes

. 0Y(x,1)
Y

which can be integrated exactly, i.e.,

= By [b(x,ts)Y(x,1), t > t,,  xE€RY (7.2.10)

P(x,t) = e_wdw(x’ts)‘Q(t_ts)w(x,ts), t>t,, xeR%L (7.2.11)

Thus, it remains to find an efficient and accurate scheme for (7.2.9). We shall con-
struct below suitable spectral basis functions which are eigenfunctions of B so that
e~ BALy, can be evaluated exactly (which is necessary for the final schemeto betime
reversible and time transverse invariant). Hence, the only time discretization error of
the corresponding time splitting method (1.6.29) is the splitting error, which isfourth
order in At. Furthermore, the scheme is explicit, time reversible and time transverse
invariant, and as we shall show below, it is also unconditionally stable.

Hermite pseudospectral method for the 1-D GPE
Inthe 1-D case, Eq. (7.2.9) collapsesto

azp 1 0%

- ER,t>0;, 1 ) =0, >0, (7212
Yot T 2922 2 ‘ hm Yt = (7212)

with the normalization (7.2.5)

()% = / " e, t)Pdz = / " lo(2)Pdz = 1. (7.2.13)

o0

Since the problem (7.2.12) is posed on the whole lineg, it is natural to use a spectral
method based on Hermite functions. Although the standard Hermite functions could
be used as basis functions here, they are not the most appropriate ones. Below, we
construct properly scaled Hermite functions which are eigenfunctions of B.

We recall that the standard Hermite polynomials H;(z) satisfy

)—2zHl( )+21H1() 0, z€R, 1>0, (7214
/ H(z e de=yr2 s, Ln>0. (7.2.15)
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We define the scaled Hermite function
hi(z) = e =12 1, (y722) | (\/ (7 /7 )1/4) seR. (7.216)
Substituting (7.2.16) into (7.2.14) and (7.2.15), we find that

2.2 20+ 1
Jz2 (2) =pihi(2), z€e R, pf= T—I_'yz, >0, (7.217)

e " dz=08n,1,n>0.(7.2.18)

1
—§h§,(2) +

/Oohl(z)hn(z)dz:/oo Wﬂl(zﬂin(z)

Hence, {h;} arethe eigenfunctions of B defined in (7.2.12).

Now, let us define Xy = span{h; : | = 0,1,--- , N}. The Hermite-spectral
method for (7.2.12) isto find ¥y (2, t) € Xy, i.e,

N
(z.t) = > _hi(t) hu(z z € R, (7.2.19)
1=0
such that
COYn(z,t) B 10%Yn(2,t) 4222
i Er = ByYn(z,t) = 5 9.2 + 5 Yn(z,t), z € R. (7.2.20)

Notethat lim,,| 4 hi(2) = 0(cf. [155]) sothe decaying condition limy,|_, o ¥~ (2, 1)
= 0 isautomatically satisfied.

Plugging (7.2.19) into (7.2.20), thanks to (7.2.17) and (7.2.18), wefind

- ddu(0) . 2A+1 -

g M) == n),  1=01. N (7.221)

Hence, the solution for (7.2.20) is given by

e (0=19) (£ b (2), t > ts. (7.2.22)

Mz

/IIZ)N(Z,t) —’LB(t ts )Q,Z)N Z t
=0

Asis standard in all spectral algorithms, a practical implementation will involve a
Gauss-type quadrature. In this case, we need to use Gauss quadrature points and
weights associated with the scaled Hermite functions.

Let {24, w7 }4_, bethe Hermite-Gauss points and weights, i.e., {zx, wi 1, de-
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scribed in Theorem 4.1.1. Then, we have from (4.1.8) and (4.1.2) that
N . .

oe HiGK)  Ha(3)

=0 M /AL rl/4/an )

Now let us define the scaled Hermite-Gauss points and weights by

= Otn, l,Ln=0,1,--- ,N. (7.2.23)

o= cn/VVe wi=df et /Am,  0< k< N. (7.2.24)

We then derive from (7.2.16) that

N
Z wz hl(zk Z O Zk/\/’% Ry (Zk/\/@) (2k/m)
k=0 =

Hi(%;)  Hn()
A2l 74

I
M= T
E>

5ln7 0 <Z,R<N

i
o

(7.2.25)

We are now ready to describe the full algorithm. Let 7' be the approximation of
(2, tn) and 1™ be the solution vector with components /7.

The fourth-order time-splitting Hermite-spectral method for 1-D GPE (7.2.3) is given

by
](61) _ ei2wn At Bilyi|? W, wl(cz) _ fh(wmw(l))m
2w L By (2)
(3) _ gmi2ws At Auly, * 02, oY = Fr(wg, @)y, (7.226)
. (4) 2 ve
1&5) = ¢i2us AL PYI 1#124), 1&6) = Fn(wa, vy,
P = e ABIUTE O 0,1, N,
where w;, ¢ = 1,2,3,4 aregivenin (1.6.30), and 7, (w,U), (0 < k < N) can be
computed from any givenw € Rand U = (U, --- ,Un)T:
Fn(w,U)y = Zeﬂ?w AT hy(z), Z wi Ulzk) hu(zr). (7.2.27)

=0

The memory reguirement of this schemeis O(N) and the computational cost per
time step isasmall multiple of N2 which comes from the evaluation of inner products
in (7.2.27). Since each of the sub-problems (7.2.8) and (7.2.9) is conservative and our
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numerical scheme solves the two sub-problems exactly in the discrete space, one can
easily establish the following result (cf. [10]):

Lemma7.2.1 Thetime-splitting Hermite-spectral method (7.2.26) is conservative,
i.e.,

N

N
”77an122 - ZWEWZP = ZwiWO(Zk)’Z = ‘WOH[Q% n = 07 17 Tt (7228)
k=0

k=0
where
N
[17 = wilp(zr) . (7.2.29)
k=0

Laguerre-spectral method for 2-D GPE with radial symmetry

In the 2-D case with radial symmetry, i.e. d = 2 and o, = , in (7.2.3), and
Yo(x,y) = o(r) in (7.2.3) withr = /22 + y2, we can write the solution of (7.2.3)
as(xz,y,t) = (r,t). Therefore, equation (7.2.9) collapses to

0(rt) _ 19 (o) | g
P = Bi(r,t) = o Or (T or Ty v(rt), 0<r< ?%2.30)
lim ¥(r,t) =0,  t>0,

where v, = v, = ,. The normalization (7.2.5) reduces to

16( )2 = 27 /Oo o (r, )P dr = 27 /OO Wo(r)2r dr = 1. (7.2.31)
0 0

Note that it can be shown, smilarly as for the Poisson equation in a 2-D disk (cf.
[142]), that the problem (7.2.30) admits a unique solution without any condition at
the poler = 0.

Since (7.2.30) is posed on a semi-infinite interval, it is natural to consider La-
guerre functions which have been successfully used for other problems in semi-
infinite intervals (cf. [52], [143]). Again, the standard Laguerre functions, although
usable, are not the most appropriate for this problem. Below, we construct properly
scaled Laguerre functions which are eigenfunctions of B.

Let L,,,(r) (m = 0,1,--- , M) be the Laguerre polynomials of degree m satis-
fying
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Tf’;;l(r)+(1 _T)[A’;n(r)—’_m[:m(r) 207 m:0717"' )

00 . . (7.2.32)
/ € " Ly (1) Lp(r) dr = dpmn, m,n=0,1,--- .
0
We define the scaled Laguerre functions L, by
Ly(r)= Ir e=r?/2 Ly (1?), 0<r<oo. (7.2.33)

T
Note that limy,|_, 4o Lim(r) = 0 (cf. [155]) hence, lim,_ o ¢ar(r,t) = 0 is
automatically satisfied.
Substituting (7.2.33) into (7.2.32), a simple computation shows

10 [ OLn(r)\ 1 44
— () 022 () = i (1), pT, = e (2m 4 1), m > 0,

27r/ Ly (r)Ly(r)r dr = / e " Ly (r) Ly (1) dr = pm, m,n = 0.
0 0
(7.2.34)

Hence, {L,,, } are the eigenfunctions of B defined in (7.2.30).

Let Yy = span{L,, : m = 0,1,--- , M}. The Laguerre-spectral method for
(7.2.30) isto find ¢ps (1, t) € Yy, i€,

M
U (r,t) =Y m(t) Lin(r),  0<7r < oo, (7.2.35)
m=0
such that
O (r,t) 10 [ Opu(r,t) e
/LT_B¢M(T’7§)__§§ T 87" + 9 T,Z)]\/[(T,t), 0<r<oo.
(7.2.36)
Plugging (7.2.35) into (7.2.36), we find, thanks to (7.2.34),
i d¢2;(t) = :u:nﬁm(t) = 72(2m + l)im(t)a m=0,1,---, M. (7.2.37)

Hence, the solution for (7.2.36) is given by



7.2 Laguerre-Hermite method for Schrodinger equations 271

M
Uur(ryt) = POy (rt) = e #m Tt (£) L (r), t > £, (7.2.38)

m=0

We now derive the Gauss-Radau points and weights associated with the scaled La
guerre functions. Let {7;, &7 }jf‘i o be the Laguerre-Gauss-Radau points and weights,

e, {217, 0™} given in (4.2:8). We have from (4.2.9) and (4.2.2) that
M A~
S G En () (i) = by mom = 0,1, M.
j=0

We define the scaled Laguerre-Gauss-Radau points r; and weights w? by

w

r=@f e e, i =\/Fi/w.  F=0,1,-- M. (7.2.39)

Hence, we have from (7.2.33) that

M M
> W Ln(ry)Enry) = S5/ Ly f73/) Ly fis/0)

M

j=0

(7.2.40)

The time-splitting Laguerre-spectral method can now be described as follows: Let
Y} be the approximation of ¢(r;, ¢,,) and ¢ be the solution vector with components
¥7. Then, the fourth-order time-splitting Laguerre-pseudospectral (TSLP4) method
for 2-D GPE (7.2.3) with radial symmetry issimilar to (7.2.26) except that one needs
to replace 3 by (32, N by M, theindex k by j, and the operator F, by Fr whichis
defined as

M M
Frlw,U); = e @i 8 0, Li(ry), Up=Y_ wj U(ry) Ly(ry). (7.2.41)
1=0 3=0

Similarly as in the Hermite case, the memory requirement of this scheme is O(M)
and the computational cost per time step is a small multiple of A2, Asfor the stabil-
ity, we have



272 Chapter 7 Some applications in multi-dimensions

Lemma 7.2.2 The time-splitting Laguerre-pseudospectral (TSLP4) method is con-
servative, i.e.,

M

M
9717 = Wil =Y wilwo(ry)]® = [¢oll,  n>0.
§=0

J=0

L aguerre-Hermite pseudospectral method for 3-D GPE with cylindrical symme-
try

In the 3-D case with cylindrical symmetry, i.e., d = 3 and v, = v, in (7.2.3),
and o (z,y,2) = Yo(r,z) in (7.2.3), the solution of (7.2.3) with d = 3 satisfies
Y(z,y,z,t) = P(r, z,t). Therefore, Eq. (7.2.9) becomes

L OY(r, 2, t) 1 M\ 9P
’LT_Bw(r,z,t)——§ [rﬁr( ar ) T2 3 (%T 722 ¥,

0<r<oo, —00<z< 00, (7.2.42)
lim (r,z,t) =0, ‘l‘Hn P(r,z,t) =0, t >0,

where v, = v, = v,. The normalization (7.2.5) now is

(1) = 27r/ / (r, z,t)[*r dzdr = |J¢h]|? = 1. (7.2.43)

Since the two-dimensional computational domain here is atensor product of a semi-
infinite interval and the whole line, it is natural to combine the Hermite-spectral and
Laguerre-spectral methods. In particular, the product of scaled Hermite and Laguerre
functions { L,,,(r)h;(z) } are eigenfunctions of B defined in (7.2.42), since we derive
from (7.2.17) and (7.2.34) that

2
5 oo (o) | () e+ (22 4922) (o) ()

[ 1d (dLa(r)\ 1
_ [_55 <r7> + 573r2Lm(7‘)] hu(2) (7.2.44)

2
3T 4 )| L)

=t Lo (r)hi(2) 4 i ha(2) Lin (1) = (pt, + 1) Lo (1) P (2).

Now, let
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XN = span{Lm(r)hl(z) rm = 0,1,"' ,M, | = 0,1,--- ,N}.

The Laguerre-Hermite spectral method for (7.2.42) is to findyn/n(r, 2,t) € Xy,
i.e.,

M N
v (r,2,8) = Y ) Po(t) Lin(r) hu(2), (7.2.45)
m=0 [=0
such that
i —8wM]\é(tr’ ) _ Byyn(r, 2,t)
0 0? 1
“a [ (%5) <] St v
(7.2.46)

Using (7.2.45) into (7.2.46), we find, thanks to (7.2.44),

. dyy, -
deé( ) _(ﬂ:n+ﬂlz)¢ml(t)a m=0,1,--- M, [=0,1,--- ,N. (7247)

Hence, the solution for (7.2.46) is given by

Y (7, 2, 1) = e By (7, 2, 8)

M N
= Z Z —i(pp, +17 ) (t—ts )w l(ts)Lm(T) hl(Z), t>t,.
=0 1=0
(7.2.48)

In summary, let ¢, be the approximation of v (r;,z,t,) and " the solu-
tion vector with components w;l The fourth-order time-splitting Laguerre-Hermite-
pseudospectra method for the 3-D GPE (7.2.3) with cylindrical symmetry is es-
sentialy the same as (7.2.26), except that now we replace 5, by (s, the index k
(0<E<N) by jk (0<j< M, 0<k<N), and the operator F,, by Fi,, defined by

Fun(w,U)jn = Z Z —2wAL(uh, +pF) 77 Upni Lin ()M (28),

m=0 [=0

. (7.2.49)
= Z Zw}” wi U(rj, 21) Lin(rj) i (21)-
=0

k=0

The memory requirement of this schemeis O(M N) and the computational cost per
time step is O(max(M?N, N2M)). Obvioudly, we have
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Lemma 7.2.3 The time-splitting Laguerre-Hermite pseudospectral method is con-
servative in the sense that

M N

ln IR =) > wiwiluf,l?
j*O k=0
M

Z wj wk’wo ijzk)‘ ”1%”1227 n = 0.
Numerical results  j=0&

(7.2.50)

We now present some numerical results. We define the condensate width along the
r-and z-axis as

— /dQQW(X,t)\ dx, a=ux,y,z, 02 = o2 —1—05.
R

Example 7.2.1 The 1-D Gross-Pitaevskii equation: We choose d = 1, 5, = 2,
B1 = 50in (7.2.3). Theinitial data vy(z) is chosen as the ground state of the 1-D
GPE (7.2.3) withd = 1, v, = 1 and 8; = 50. This corresponds to an experimental
setup whereinitially the condensate is assumed to be inits ground state, and the trap
frequency isdoubled at ¢t = 0.

We solve this problem by using (7.2.26) with N = 31 and time step £ = 0.001.
Figure 7.5 plots the condensate width and central density [+(0,)f as functions of

0.5 2
0.45 1.8
0.4 1.6
=035 L4
= Sy
=
= 03 12
0.25 1
0.2 0.8
0.15
0 2 4 6 8 065 2 4 6 8

(a) ({))
Figure 7.5 Evolution of central density and condensate width in Example 7.2.1. *—':
‘exact solutions’ obtained by the TSSP [8] with 513 grid points over an interval [—12,12]; ‘+
+": Numerical results by (7.2.26) with 31 grid points on the whole z-axis.
(@) Central density |+(0, t)|?; (b) condensate width o .
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time. Our numerical experiments also show that the scheme (7.2.26) with N = 31
gives similar numerical results asthe TSSP method!®! for this example, with 513 grid
points over theinterval [—12,12] and time step £ = 0.001.

In order to test the 4th-order accuracy in time of (7.2.26), we compute a numer-
ical solution with a very fine mesh, eg. N = 81, and a very small time step, e.g.
At = 0.0001, asthe ‘exact’ solution . Let ¢! denote the numerical solution un-
der N = 81 and time step At. Since N is large enough, the truncation error from
space discretization is negligible compared to that from time discretization. Table 7.3
shows the errors max |1 (t) — 24 (¢)] and || () — 24 (t) |2 at t = 2.0 for different
time steps At. Theresultsin Table 7.3 demonstrate the 4th-order accuracy in time of
(7.2.26).

Table7.3 Timediscretization error analysisfor (7.2.26) (At t = 2.0 with N = 81)

At 1/40 1/30 1/160 1/320
max [1h(£) — 0> (2)] 0.1619 4.715E-6 3.180E-7 2.036E-8
[ o(t) — 20 (t)]|;2 0.2289 7.379E-6 4.925E-7 3.215E-8

Example7.2.2 The2-D Gross-Pitaevskii equation with radial symmetry: we choose
d=2,% =% =Y =2, 2 =50in(7.2.3). Theinitial data +/y(r) is chosen as
the ground state of the 2-D GPE (7.2.3) withd = 2, v, = 7, = v, = 1 and 3, = 50.
Again this corresponds to an experimental setup where initially the condensate is
assumed to be in its ground state, and the trap frequency isdoubled at ¢t = 0.

We solve this problem by using the time splitting Laguerre-spectral method with
M = 30 and time step k£ = 0.001. Figure 7.6 plots the condensate width and central
14 1.8

1.6

1.4

1.2
1

[1(0,0)]

0.8

0.6

0.4

(a) (b)

Figure7.6 Evolution of central density and condensate width in Example 7.2.2. ‘—':
“exact solutions’ obtained by TSSP [8] with 5132 grid points over abox [—8, 8]2; ‘+':
Numerical results by our scheme with 30 grid points on the semi-infinite interval [0, o).
(@) Central density |1(0,t)|*; (b) condensate width o..
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density |+(0,)|? asfunctions of time. Our numerical experiments also show that our
scheme with M = 30 gives similar numerical results as the TSSP method!®! for this
example, with 5132 grid points over the box [—8, 8]> and time step & = 0.001.

Exercise 7.2

Problemn1 ProveLemma7.2.1.

7.3 Spectral approximation of the Stokes equations

Spectral-Galerkin method for the Stokes problem
A simple iterative method — the Uzawa algorithm
Error analysis

The Stokes equations play an important role in fluid mechanics and solid mechanics.
Numerical approximation of Stokes equations has attracted considerable attention in
the last few decades and is still an active research direction (cf. [55], [24], [11] and
the references therein).

We consider the Stokes equations in primitive variables:

—vAu+ Vp = f, inQ c R?,
{ vau+Vp=f (7.3.1)

V-u =0, inQ; ’u|aQ =0.

In the above, the unknowns are the velocity vector w and the pressure p; f is a
given body force and v is the viscosity coefficient. For the sake of simplicity, the
homogeneous Dirichlet boundary condition is assumed, although other admissible
boundary conditions can be treated similarly (cf. [55]).

Letusdenoteby A : H}(Q)? — H~1(Q)? the Laplace operator defined by
(Au,v) g1 g1 = (Vu, Vo), Vu,v € HE()e. (7.3.2)

Then, applying the operator V-A~! to (7.3.1), we find that the pressure can be deter-
mined by

Bp:=-V-A"'Vp=-V-A"'f. (7.3.3)
Once p isobtained from (7.3.3), we can obtain w from (7.3.1) by inverting the Laplace
operator, namely,

u = %Ail(f — Vp). (7.3.49)

Let L3(Q) = {q € L*(Q) : [, gdz = 0}. Theoperator B := —V-A~'V : L%(Q) —
L3(9) is usualy referred to as Uzawa operator or the Schur complement associated
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with the Stokes operator. We have
(Bp,q) := —(V-A"'Vp,q) = (A~'Vp,Vq) = (p, Bg). (7.35)

Therefore, B is a*“zero-th order” self-adjoint positive definite operator, and we can
expect that the corresponding discrete operator can be inverted efficiently by using a
suitable iterative method such as the conjugate gradient method.

Spectral-Galerkin method for the Stokes problem

To simplify the presentation, we shall consider only Q = (-1, 1) withd = 2 or
3. Let Xy and My be asuitable pair of finite dimensiona approximate spaces for
H(Q)4 and L2(Q2). The corresponding Galerkin method for the Stokes problem is;
Find (u,,p,) € Xn x My such that

V(quvva) - (pva'vN) = (fva)v va € Xn,

7.3.6
(V-uy,qy) =0, Vg, € Mn. ( )

It iswell-known (see [55]) that the discrete problem (7.3.6) admits a unigque solution
if and only if there exists a positive constant Gy such that

inf sup 9y, V-y)

— N > (By. (7.3.7)
S TR 3 P PR P

The above condition is referred as Brezzi-Babuska inf-sup condition (cf. [7], [23])
and Gy isreferred as the inf-sup constant.

Let {gbk}ffgl and {wk}kNﬁl be respectively basisfunctionsfor X and M. Then
we can write

Ny Np
Uy = e, Py =D ek (7.3.8)
k=1 k=1
Set
aij = (Vo;, V), AN = (@ij)ij=1,- Nus
bij = — (5, Vi), By = (bij)i=1,-- \Nu,j=1,- N, (739)
ﬂ:(ﬂl,--- vawu)ta ﬁ:(ﬁla 'aﬁzvp)tv -
fi=(UNFf,9)), f=f )t

Then the matrix form of (7.3.6) is

vAnu + Bip = f,

7.3.10
Byu = 0. ( )
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As in the space continuous case, p can be obtained by inverting the discrete Uzawa
operator:
ByAN' Bip= ByAN'f. (7.3.11)

Itiseasy to show that the discrete Uzawaoperator is positive symmetric definiteif and
only if there exists By > 0 such that the inf-sup condition is satisfied; furthermore,
it is shown (see[114]) that

cond(By Ay BY) = B> (7.3.12)

Therefore, the effectiveness of the Uzawa algorithm is directly related to the size of
BN-

It is customary in a spectral approximation to take Xy = (Py N Hi(Q))%
However, how to choose My is a non-trivial question. For any given My, let us
define

Zn ={qy € My : (qy,V-vy) =0, Vv, e Xy} (7.3.13)

Obviously if (u,,p,) is asolution of (7.3.6), then so is (u,,p, + ¢, ) for any
¢y € Zn. Hence, any mode in Zy is called a spurious mode. For the most obvious
choice My = {q, € Pn : Jqqydz = 0}, one can verify that Zy spans a seven-
dimensional spaceif d = 2 and 12N + 3-dimensional spaceif d = 3. Therefore, itis
not a good choice for the pressure space. On the other hand, if we set

My ={qy € Pn-2: /Qqux =0},

then the corresponding Zy is empty and this leads to a well-posed problem (7.3.6)
with the inf-sup constant By ~ N ~(@=1)/2 (see [11]).

Remark 7.3.1 It isaso shown in [12] that for any given 0 < A < 1, M}VA) =
{ay € Pav : Jqayda = 0} leads to a well-posed problem (7.3.6) with an inf-sup
constant which is independent of N but is of course dependent on X in such a way
that By — 0asA — 17,

A simpleiterative method —the Uzawa algorithm

We now give a brief presentation of the Uzawa algorithm which was originated
from the paper by Arrow, Hurwicz and Uzawd® had been used frequently in finite
element approximations of the Stokes problem (see [162] and the references therein).

Given an arbitrary p° € L2(12), the Uzawaalgorithm consists of defining (u**1,
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pk*1) recursively by

— AUt 4 vpF = 7, ulon = 0;

(7.3.14)
pk+1 _ pk o pkv.ukJrl

where py, is a suitable positive sequence to be specified. By eliminating «**' from
(7.3.14), we find that

PPl = pf %(Bpk +V-ATLS. (7.3.15)

Thus, the Uzawa algorithm (7.3.14) is simply a Richardson iteration for (7.3.3). We
now investigate the convergence properties of the Uzawa algorithm.

It can be shown (cf. [120]) that there exists 0 < < 1 such that
Bllal® < (Bg,q) < llall®,  Va € L§(9). (7.3.16)

Let us denote o« = min{fSmin px /v, 2 — maxy, pi/v}. Then, an immediate conse-
quence of (7.3.16) is that I — p, B/v is a strict contraction in L2(Q). Indeed, we
derive from (7.3.16) that

(1= 22 ol < (1= 225) 0.0) < (1= 5720 ) ol

which implies that

(1= 2B) a.,q)| < (1 = )llal™ (7317)

Remark 7.3.2 A particularly smple and effective choice isto take g, = v. In this
case, we have o = 3 and the following convergence result:

[u? =l + [p* —pl| S (1 - B)~ (7.3.18)

Remark 7.3.3 Consider the Legendre-Galerkin approximation of the Uzawa algo-
rithm: Given an arbitrary p” , define (u"™, p"™) € Xy x My recursively from

I/(V’U,?VJA,V'UN) — (pi,V-vN) = (f,vy), Vv, € Xn,
(7.3.19)

" ay) = 08 — peV-utl gy, Ve € My.

Then, by using the same procedure as in the continuous case, it can be shown that for
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pr = v we have

uf — gl +[Ip% —pyll S (1 - B3)F, (7.3.20)

N

where (u, ,p, ) isthe solution of (7.3.6) and Sy is the inf-sup condition defined in
(7.3.7). Thus, for a given tolerance ¢, the number of Uzawa steps needed is propor-
tional to 5&2 log e while the number of the CG steps needed for the same tolerance,
thanks to (7.3.12) and Theorem 1.7.1, is proportional to @(,1 log €. Therefore, when-
ever possible, one should aways use the CG method instead of Uzawa agorithm.

Error analysis

The inf-sup constant Gy not only plays an important role in the implementation
of the approximation (7.3.6), it is also of paramount importance in its error analysis.
Let us denote

Vn={vy, € Xn:(qy,V-v,)=0, Vg, € Mn}. (7.3.21)
Then, with respect to the error analysis, we have
Theorem 7.3.1 Assuming (7.3.7), the following error estimates hold:
lu—uyli < inf flu—vys,

v (7.3.22)

ﬁNHp_pNHO 5 inf ||u_vNH1 + ||p_QNH07
v,EVN q

inf
N N EMy

where (u,p) and (u, ,p, ) arerespectively the solution of (7.3.1) and (7.3.6).

Proof Let usdenote
V={ve H(Q): (¢,V-v)=0, VYqecIL3Q)}. (7.3.23)
Then, by the definition of V and V',

v(Vu,Vv) = (f,v), Yv eV,
7.3.24

v(Vu,,Vv,) = (f,v,), Vv, € Vy. (7:3.24)

SinceVy C V,wehaver(V(u —u,),v,) =0,Yv, € V. Hence,

Hv(u_uz\r)H2 = (V(U—UN),V(U _UN)) = inf (V(U—UN),V(’U,—'UN)),

DNGVN
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which implies immediately

IV —u)ll < inf, V(e =)l

Next, we derive from (7.3.1)—7.3.6) the identity
v(Viu—uy), Vo) —(p—py.V-v,) =0, Yv, € Xny. (7.3.25)
Hence, by using (7.3.7) and the above identity, we find that for any ¢, € My,

(qN _pwav i UN)

Bnllay —pyll < sup

’UNEXN HVUN”
= sup I/(V(U—UN),V'UN)—(p—qN,V"UN)
v EXN V|l
It follows from the identity ||Vo|| = |V x v|| + |V - ||, Vv € H}(Q)?, and the

Cauchy-Schwarz inequality that

Onllay =pyll <VIV(u —u )l +lp =gy, Vay € M.

Therefore,
Bullp = pyll < By qug]fV[N(Hp —ayll + llay — oyl
SIV(w—uy)ll+ qugAgN 1P — ayll
< vNig{,N luw—vylh + qug]fV[N P = axl-
This completes the proof of this theorem. O

We note in particular that the pressure approximation cannot be optimal if Gy is
dependent on V.

Exercise 7.3

Problem 1 Implement the Uzawa algorithm for solving the Stokes problem with
My = Pny_oN Lg(Q) and My = Py N Lg(Q) for A = 0.7,0.8,0.9. EXpIaln your
results.

Problem 2 Prove the statement (7.3.14).
Problem 3 Prove the statements (7.3.18) and (7.3.20).
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7.4 Spectral-projection method for Navier-Stokes equations

A second-order rotational pressure-correction scheme
A second-order consistent splitting scheme
Full discretization

The incompressible Navier-Stokes equations are fundamental equations of fluid dy-
namics. Accurate numerical approximations of Navier-Stokes equations play an im-
portant role in many scientific applications. There have been an enormous amount
of research work, and still growing, on mathematical and numerical analysis of the
Navier-Stokes equations. We refer to the bookd162: 8940, 561 for more details on the
approximation of Navier-Stokes equations by finite elements, spectral and spectral
element methods. In this section, we briefly describe two robust and accurate projec-
tion type schemes and the related full discretization schemes with a spectral-Galerkin
discretization in space. We refer to[89 for an up-to-date review on the subject related
to projection type schemes for the Navier-Stokes equations.

We now consider the numerical approximations of the unsteady Navier-Stokes
equations:

(7.4.1)

ur — vVAu+u-Vu+ Vp = f, inQ x (0,77,
V-u =0, in x [0,T7,

subject to appropriate initial and boundary conditions for w. In the above, the un-
knowns are the velocity vector « and the pressure p; f isagiven body force, v isthe
kinematic viscosity, (2 is an open and bounded domain in R? (d = 2 or 3 in practical
situations), and [0, 7] is the time interval.

As for the Stokes eguation, one of the main difficulties in approximating (7.4.1)
is that the velocity and the pressure are coupled by the incompressibility constraint
V-u = 0. Although the Uzawa algorithm presented in the previous section is efficient
for the steady Stokes problem, it isin general very costly to apply an Uzawa-type
iteration at each time step. A popular and effective strategy isto use afractional step
scheme to decouple the computation of the pressure from that of the velocity. This
approach was first introduced by Chorin (3% and Temam(164 in the late 60's, and its
countless variants have played and are still playing amajor rolein computational fluid
dynamics, especialy for large three-dimensional numerical simulations. We refer
to (89 for an up-to-date review on this subject.

Below, we present an efficient and accurate spectral-projection method for (7.4.1).
The spatia variables will be discretized by the Legendre spectral-Galerkin method
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described in previous chapters while two time discretization schemes will be de-
scribed: the first is the rotational pressure-correction scheme (see [163], [70]), the
second is the second-order consistent splitting scheme recently introduced by Guer-
mond and Shen (€8],

A second-order rotational pressure-correction scheme

Assuming (u*, u*~1, p*) are known, in the first substep, we look for #*** such
that

1
ﬁ(3&’““ — 4 4 uPY) — v AT 4 VpF = g(ty),
(7.4.2)

@ o0 =0,

where g(try1) = f(ter1) — (2(u® - V)u¥ — (uF~1 - V)u*~1). Then, in the second
substep, we determine (u**1, ¢**+1) such that

1
26t

Vbt Z 0, (7.4.3)

(Suk+1 o 31~1,k+1) + v¢l€+1 — O,

uk+1 . ’n|aQ =0.

The remaining task is to define a suitable 7! so that we can advance to the next

time step. To this end, we first notice from (7.4.3) that

AwFt! = AuF! + %&VAgf)k—’—l = AuFt! + VV'ﬁk+1.

We then sum up the two substeps and use the above identity to obtain:

1
26t

V-uftt =,

Bl — dub +ub ) — pAWT 4 V(g 4 pF — V@) = g(t),

uf . nloq = 0.

(7.4.9)
Therefore, it is clear that we should set

PPt = M 4 pt —u VAt (7.4.5)

We note that the only difference between (7.4.4) and (7.4.5) and a coupled second-
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order scheme is that

20t
k41 _ 2O pktt . 0
T 10} T 0 =+

u
a0 3

(where T isthetangential direction) but “small”. Hence, it isexpected that the scheme
(7.4.2), (7.4.3) and (7.4.5) provides agood approximation to the Navier-Stokes equa-
tions. Indeed, it is shown in["Y that

la(tr) — (| + Vot (l|u(ty) —u| + [p(te) — ") S 6t (7.4.6)

In practice, the coupled system (7.4.3) is decoupled by taking the divergence of the
first equation in (7.4.3), leading to:
A¢k‘+1 — ivﬁk—}—l 8¢k+1 —

20t on 160 (7.4.7)

uk+1 — ,ak‘-i—l _ %&v¢k‘+l

Hence, at each time step, the scheme (7.4.2)— (7.4.5) only involves inverting a Poisson-
type equation for each of the velocity component@**! in (7.4.2) and a Poisson equa-
tion for ¢*+1 in (7.4.7).

Remark 7.4.1 If part of the boundary isopen, i.e., the problem is prescibed with the
following boundary conditions:

ulp, = hi, n'(vVu — pl)|p, = hy, 00 =T1UTy, (7.4.8)

the above scheme should be modified as follows!®9:

251 (7.4.9)

1
= BaM! —duf + P —vAET + VPt = g(ti1a),
a**p, = B nf(wVattt —pF )|, = RS

26t (7.4.10)

1
— (3uft! = 3akth) L vkt = 0; V.t =0,
uk?-i—l . n‘Fl — hlerl n, ¢k+1|l_‘2 — O;

and
pPTh = oM pF —uveabt (7.4.11)

A second-order consistent splitting scheme

Although the rotational pressure-correction scheme is quite accurate, it still suf-
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fers from a splitting error of order 5t3 for the H'-norm of the velocity and Z2-norm
of the pressure. We present below a consistent splitting scheme which removes this
splitting error. The key idea behind the consistent splitting schemes is to evaluate
the pressure by testing the momentum equation against gradients. By taking the
L2-inner product of the momentum equation in (7.4.1) with V¢ and noticing that
(u, Vq) = —(V - uy, q), weobtain

/Vp'Vq—/(f—l-l/Au—u-Vu)-Vq, Vg € HY(Q). (7.4.12)
Q Q

We note that if w is known, (7.4.12) is simply the weak form of a Poisson eguation
for the pressure. So, the principle we shall follow is to compute the velocity and the
pressure in two consecutive steps: First, we evaluate the velocity by making explicit
the pressure, then we evaluate the pressure by making use of (7.4.12).

Denoting "1 = £ — (2u” V" — w1 Vun 1), aformally second-order
semi-implicit splitting scheme can be constructed as follows: find «*! and pF+!
such that

Juktl — quk + ub!
2At

— vAuF 4 V(ka —pk_l) = gk+1, UHI\@Q =0,
(7.4.13)
(VP Vg) = (" + vAurt! V), Vge HY(Q). (7.4.14)

Notice that we can use (7.4.13) to replace ¢+ + vAu 1 in (7.4.14) by (3u**! —
4u + uF N /(2AL) 4+ V(2pF — pF1), leading to an equivalent formulation of
(7.4.14):

3uktl — gk 4 k1

HY(Q).

(7.4.15)
We observe that if the domain € is sufficiently smooth, the solution of the above
problem satisfies the following Poisson equation:

(V(pFTt —2pF 4 pF71),Vg) = (

3uk+1 _ 4ukz + uk:—l .

2At ’ (7.4.16)

— AP = 2p" M) = -V

0 _
8_n(pk+1 o 2pk _|_pk 1)’(99 —0.

Since the exact pressure does not satisfy any prescibed boundary condition, it is clear
that the pressure approximation from (7.4.16) is plagued by the artificial Neumann
boundary condition which limits its accuracy. However, this defect can be easily
overcome by using the identity Auf+! = VV.uFt! — Vx V xuF*1, and replacing
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AuFT1in (7.4.14) by —VxVxu*T1. this procedure amounts to removing in (7.4.14)
the term V'V -«*T1. It is clear that this is a consistent procedure since the exact
velacity is divergence-free. Thus, (7.4.14) should be replaced by

(VP V) = (" — vV x VxuktL V), Vg € HL(Q). (7.4.17)

Once again, we can use (7.4.13) to reformulate (7.4.17) by replacing ¢! — vV
V xuFtt with (3ub! — 4uk + ub=1) /248 4+ V(2pF — pF~1) — vV V-uF*L, Thus,
the second-order consistent splitting scheme takes the form

3uktl — 4uk + ur1

2At — VAUt £V (2ph - pF ) = g WM g = 0,

3uftl — 4uk + uf!

k+1 —

,Vq), Vqe HY(Q), (7.4.18)

with
karl _ warl + (2pl€ _ pkfl) _ Vv.ukJrl' (7419)

Ample numerical results presented in [%8 indicate that this scheme provides truly
second-order accurate approximation for both the velocity and the pressure. How-
ever, arigorous proof of this statement is still not available (cf. [69]).

Full discretization

Itisstraightforward to discretize in space the two schemes presented above. For a
rectangular domain, we can use, for instance, the spectral-Galerkin method described
in Chapter 6. To fix theidea, let = (—1, 1) and set

Xy =PyNnHi(Q)Y, My={q€Py_a: /Qq =0}. (7.4.20)

Then, the scheme (7.4.2)—7.4.5) can be implemented as follows:

o Step1l Find @™ € Xy such that

3 . -
ﬁ(uiﬂ,v]v) + V(Vui“, Vo)
1 _ _
:ﬁ(‘lui —uli T = V2Pl — P, vy)
+ (In(fF — 2u'§‘7V . Vu’f:v + uf’v_l . Vui_l),vN), Yo, € Xn;

(7.4.21)
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e Step2 Find ¢**! € My such that

3 .
(VO Vay) = 5o (@7, Vay), Yoy € My; (7:4.22)
o Step3  Set
20t
kel _ gkl 200G gk
Uy U T VO (7.4.23)
P = o vk
The scheme (7.4.18) and (7.4.19) can be implemented in a similar way:
e Step1 Findu"™ € Xy suchthat
3 k+1 ) (v k+1 v )
2—575(UN ;o ) Fr(Vu ™, Vo,
1 _ _
= 2—&(41#;‘7V — ui L (2Vpi —pi 1),'vN)
+ (In(fFH — 2us 'Vufv —I—uifl . Vuﬁ“v’l),vl\,), Vo, € Xn;
(7.4.24)

e Step2 Find ¢**! € My such that

1 _
(VO Vay) = 55 (Bui™ —duy +ul™! Vay), Vg, € My;
(7.4.25)
e Step3  Set
Pt = o 2pl = T = vy o Vel (7.4.26)

N

Hence, at each time step, the two spectral-projection schemes presented above only
involve a vector Poisson equation for the velocity and a scalar Poisson equation for
the pressure.

In this section, we only discussed the spectral-projection method for the Navier-
Stokes equations. For numerical solutions of the Navier-Stokes equations; relevant
papers using spectral Galerkin/finite element methods include [130], [163], [132],
[116], [147], [44], while spectral collocation methods are treated in [95], [38], [87],
[88], [86].

Exercise 7.4

Problem1l Writeaprogram implementing therotational pressure-correction scheme
and consistent splitting scheme using Py for the velocity and Py for the pressure.
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Consider the exact solution of (7.4.1) (u, p) to be

2

u(z,y,t) = msint(sin 27y sin? 7z, — sin 27z sin? Ty),

p(z,y,t) = sint cos mx sin my.

Compare the errors of the velocity and pressure at time ¢t = 1 in both the I7-norm
and H'-norm using the two schemes with N = 32 for 6t = 0.1, 0.05, 0.025,0.0125.
Explain your results.

Problem 2 Use the rotatioanal pressure correction scheme to compute the steady
state solution of the regularized driven cavity problem, i.e, Q = (0,1¢ with the
boundary condition

uly=1 = (162%(1 — 2%),0), ulpa\(y=1} = 0.

Take N = 32 and Re = 1/v = 400. Compare your results with th benchmark results
in[138].

7.5 Axisymmetric flowsin a cylinder

Governing equations and time discretization
Spatial discretization

Treatment of the singular boundary condition
Numerical results

In this section, we apply the spectral-projection method presented in the last section
to simulate an incompressible flow inside a cylinder. We assume that the flow is
axisymmetric so we are effectively dealing with a two-dimensional problem. For
more detail on the physical background of this problem and its numerical simulations,
we refer to [106], [25], [109], [111], [108].

Governing equations and the time discretization

Consider a flow in an enclosed cylinder with the height H and radius R. The
flow is driven by a bottom rotation rate of 2 rad s~!. We shall non-dimensionalize
the governing equations with the radius of the cylinder R as the length scale and
1/ as the time scale. The Reynolds number isthen Re = QR?/v, where v is the
kinematic viscosity. The flow isgoverned by another non-dimensional parameter, the
aspect ratio of the cylinder A = H/R. Therefore, the domain for the space variables
(r, z) isthe rectangle

D={(r,z):re€(0,1)and z € (0,A)}.
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Let (u,v,w) be the velocity field in the cylindrical polar coordinates (r, 6, z) and
assume the flow is axisymmetric, i.e., independent of the azimuthal 6 direction, the
Navier-Stokes equations (7.4.1) governing this axisymmetric flow in the cylindrical
polar coordinates reads (cf. [111])

1 1 ~ 1
Up + ULy + WU, — ;vQ = —pr + e (V2u — ﬁu> , (7.5.1)
1 1 (2o 1
v+ uvy +wu, + —uv = — (Vo — v |, (7.5.2)
r Re r
I &2
wy + uw, + ww, = —p, + — V-w, (7.5.3)
Re
1
;(ru)r +w, =0, (7.5.49)
where )
V2=02+ =0, +9? (7.5.5)
T

is the Laplace operator in axisymmetric cylindrical coordinates. The boundary con-
ditions for the velocity components are zero everywhere except that (i) v = r a
{z = 0} which is the bottom of the cylinder; and (ii) w. = 0 a 0D\{z = 0}.

To simplify the presentation, we introduce the following notations:

V2 —1/r2, 0, 0 o,
A= 0, vZi-1/2, 0|, v=|0],
0, 0, V2 9.

Iy ={(rz2):re(0,l)andz=0}, To={(r,z):r=0andze (0,A)},
and rewrite the equations (7.5.1)—7.5.4) in vector form,

- 1 -
N = — —A
u; + N(u) Vp—i—Re u,

—_

V-u:=—(ru), +w, =0, (7.56)
T
u’aD\(Flqu) =0, u’F1 = (0, O)Tv (u, v, wT)T‘F2 =0,

where u = (u,v,w)T and N(u) is the vector containing the nonlinear terms in
(7.5.1)«7.5.3).

To overcome the difficulties associated with the nonlinearity and the coupling of
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velocity components and the pressure, we adapt the following semi-implicit second-
order rotational pressure-correction scheme (cf. Section 7.4) for the system of equa-
tions (7.5.6):

1 1 . :
oy (B0 —dut puth) - S AR = vt - (N () - N,

ﬁk“‘ap\(rlum) =0, ﬁk+1‘F1 = (0,?”, O)Tv (ak+lvﬁk+lvwf+1)T‘F2 =0.

(75.7)
%(ukﬂ _ k) 4 Tkt = 0,
V-uftl =, (7.5.8)
(uk+1 - ﬁk+1) X n|8'D — O,
and
S ST é@ Cukt (7.5.9)

where At is the time step, n is the outward normal at the boundary, and a**+! =
(@k1 P+ T and ub !l = (Wb Rt Wkt T are respectively the inter-
mediate and final approximations of u at timet = (k + 1)At.

It is easy to see that @**! can be determined from (7.5.7) by solving three
Helmholtz-type equations. Instead of solving for (W*!, $**1) from the coupled
first-order differential equations (7.5.8), we apply the operator “V-" (see the defini-
tion in (7.5.6)) to the first equation in (7.5.8) to obtain an equivalent system

- 3 -
v2¢kz+l - V. ﬁk‘-{-l,

24t (7.5.10)
On ¢ op =0,

and

2AL -
uftt = aftt — ka“. (7.5.11)

Thus, (u**!, $**1) can be obtained by solving an additional Poisson equation (7.5.10).
Next, we apply the spectral-Galerkin method for solving these equations.

Spatial discretization

We first transform the domain D to the unit square D* = (—1,1) x (—1,1) by
using thetransformationsr = (y+1)/2 and z = A(x+1)/2. Then, at each time step,
the systems (7.5.7) and (7.5.10) lead to the following four Helmholtz-type equations:
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1 .
au — gy — ——((y + Duy)y + u=f inD",

y+1 (y+ 1) (7.5.12)
ulop = 0;
3 L+ 1wy, + in D*
oV — POz — ——((Yy Vy )y 7V =49 >
y+1 (y+1) (7.5.13)

1
v]gprr =0, vy = 5(9 +1);

1 .
oaw — fwg, — ——((y + Dwy )y = h, iNnD*,
Y+ 1((9 Jwy)y (7.5.14)

wlgprz =0,  wylry = 0;

and
— Bpre — ——((y + Dpy)y = ¢ InD*
Ty v ’ (7.5.15)
8np|873* =0.
In the above, I'] = {(z,y) : ¢ = —1landy € (—1,1)}, I'5 = {(z,y) : = €

(-1,1)andy = -1}, a = 3Re/At, 3 = A=2, vy =1,and f, g, h, q areknown
functions depending on the solutions at the two previous time steps.

The spectral-Galerkin method of [142 can be directly applied to (7.5.12)—«7.5.15).
We shall discuss the method for solving (7.5.12) in some detail. The other three
equations can be treated similarly.

Let Px bethe space of al polynomials of degree less than or equal to K and set
Pny = Py x Py We set

Xnm ={w € Py wlpp= = 0}.
Then the spectral-Galerkin method for (7.5.12) isto find w,,, € Xy such that

a((y + 1)UN]\/[7/U)@ - ﬁ((y + 1)8§UNJM’/U)@ - <((y + 1)ayuNM)y’U>

1
muNJW’

w

+( v)d:((erl)f,v)@, Vove Xy,

(7.5.16)

where (u,v)y = [p. uvw(z)w(y)dzdy with w(s) to be respectively 1 or (1 —
32)‘%, depending on whether Legendre or Chebyshev polynomials are used. The
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equation (7.5.16) is derived by first multiplying (7.5.12) by (y + 1)w(z)w(y) and
then integrating over D*. The multiplication by (y + 1) is natural since the Jacobian
of the transformation from the Cartesian coordinates to cylindrical coordinates is
r = ((y + 1)/2) in the axisymmetric case. Since u,,, = 0 ay = —1, we see that
all termsin (7.5.16) are well defined and that no singularity is present.

For this problem, it is easy to verify that

with ¢;(s) = pi(s) = pi(s) — pir2(s) where py(s) is either the [-th degree Legendre
or Chebyshev polynomial. Set

N—-2M-2

Uy = Y Y wig®i(@)p;(y),

i=0 j=0

1 1
Qij = ¢j(z) pi(z)w(z)dz, bij = —/ ¢ () pi(x) w(x) dz,

1
dy == [ (1540 p)wt) o, (75.1)

1
eij = /1 ﬁm(y) pi(y) w(y) dy,

Fo= [ 4 0 mwoste)sle) o) dody,

andlet A, B, C, D, E, F and U be the corresponding matrices with entries given
above. Then (7.5.16) is equivalent to the matrix system

aAUC + BBUC + AUD + ~yAUE = F. (7.5.18)

Note that e;; is well defined in spite of the term y% since p;(—1) = 0. In the Leg-

endre case, the matrices A, B, C, D, and E are all symmetric and sparsely banded.

Treatment of the singular boundary condition

The boundary condition for v is discontinuous at the lower right corner (r =
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1,z = 0). This singular boundary condition is a mathematical idealization of the
physical situation, where there is a thin gap over which v adjusts from 1.0 on the
edge of therotating endwall to 0.0 on the sidewall. Therefore, it isappropriate to usea
regularized boundary condition (so that v is continuous) which is representative of the
actual gap between the rotating endwall and the stationary sidewall in experiments.

In finite difference or finite element schemes, the singularity is usually regular-
ized over afew grid spacings in the neighborhood of the corner in an ad hoc manner.
However, this simple treatment |eads to a mesh-dependent boundary condition which
in turn results in mesh-dependent sol utions which prevents a sensible comparison be-
tween solutions with different meshes. Essentialy, the grid spacing represents the
physical gap size.

The singular boundary condition at r = 1 is
v(z)=1laz=0, v(z)=0 for 0 <z <A,

which issimilar to that of the driven cavity problem. Unless this singularity istreated
appropriately, spectral methods may have severe difficulty dealing withiit. In the past,
most computations with spectral methods avoided this difficulty by using regularized
boundary conditions which, unfortunately, do not approximate the physical bound-
ary condition (e.g., [138], [38]). A sensible approach is to use the boundary layer

function
(z) =exp | ——
/UE A5 ’

which has the ability to approximate the singular boundary condition to within any
prescribed accuracy. Outside a boundary layer of width O(¢), w(z) converges to
v(z) exponentialy ase — 0. However, for agiven e, approximately &2 collocation
points are needed to represent the boundary layer function «. In other words, for
a fixed number of modes M, we can only use e > ¢(M) where (M) can be ap-
proximately determined by comparing I;v. and v., where v, isthe polynomial
interpolant of v. at the Gauss-Lobatto points.

Although itisvirtually impossible to match the exact physical condition in the ex-
perimental gap region, the function «. with e = 0.006 does provide areasonable rep-
resentation of the experimental gap. The function v can be resolved spectrally with
M > M. modes, where M. is such that I;v. for agiven ¢ is non-oscillatory. Due
to the nonlinear term +? /r in (7.5.1), we also require that I, v, /2 be non-oscillatory
(since (v:)* = v./,). Figure 7.7(a) shows Ip;vg.006 for various M. It is clear that
1458v9.006 IS NON-oscillatory. However, from Figure 7.7(b) we see that Ligvg.go3 IS 0S-
cillatory near z = 0, while Is4v0.003 iShot. Thus, M = 64 isrequired for e = 0.006.
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Figure7.7

Variation of Insv. (with A = 2.5) inthe vicinity of the singularity a z = 0 for (a) € = 0.006 and (b)
€ = 0.003, and various M as indicated.

Numerical results

For better visualization of the flow pattern, it is convenient to introduce the az-
imuthal vorticity n, the Stokes stream function ¢ and the angular momentum T'.
These can be obtained from the velocity field (u, v, w) asfollows:

1
F=ro; n=u,—wy; - (83 — 0 + 83) b =rn, Ylop =0. (7519

Figure 7.8 shows plots of the solution for Stokes flow (Re = 0) for this problem. The
governing equations (7.5.1)—7.5.4) in the case Re = 0 reduce to

Figure 7.8
Contoursof I" for Stokesflow (Re = 0), using vo.006 () and the ad hoc (b) regularization of the corner
singularity. The leftmost plot in each set has N = 56, M = 80, the middle plots have N = 48,
M = 64, and theright plots have N = 40, M = 48. All have been projected on to 201 uniform radial
locations and 501 uniform axial locations.
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Table7.4
N, M min(I") withe = 0.006 min(I") with ad hoc B.C.
56, 80 —2.472 x 107° —4.786 x 1073
48, 64 —9.002 x 1076 —6.510 x 1073
40, 48 —1.633 x 107* —6.444 x 1073

Largest negative values of I" on the grid points of a 201 x 501 uniform mesh, corresponding to
the solutions for Stokes flow shown in Figure 7.8.

- 1 -
Vv — —v =Vr=0o,
r

with I" = 0 on the axis, top endwall and sidewall, and I" = 7? on the rotating bottom
endwall. The singular boundary condition on the sidewall has been regularized in
Figure 7.8(a) with vy oo @nd in Figure 7.8(b) with the ad hoc method. For the solution
of the Stokes problem with ¢ = 0.006, we judge that the error is acceptably small
a M = 64 and isvery smal at M = 80. The measure of error used here is the
largest value of negative I" of the computed solution at the grid points of a uniform
201 x 501 mesh; thetrue solution has I" > 0. Thesevaues arelisted in Table 7.4. In
contrast, with the ad hoc method the error does not decrease as M increases and the
computed solutions exhibit large errors for all values of M considered.

We now present some numerical results using the spectral-projection scheme for
Re = 2494 with A = 2.5. This Re is large enough that boundary layers are thin
(thickness O(Re‘% )), but small enough that the flow becomes steady. The primary
interests here are to determine the level of spatia resolution required for an asymp-
totically grid/mode independent solution, and to examine the accuracy of transients
during the evolution to the steady state. We use rest astheinitial condition and impul-
sively start the bottom endwall rotating at ¢ = 0. Thistest case was well documented,
both experimentally (cf. [43]) and numerically (cf. [107], [110]).

We begin by determining the level of resolution needed for a spectral computation
of the case with Re = 2494, A = 2.5, and ¢ = 0.006. From the Stokes flow problem,
we have seen that for € = 0.006, the proper treatment of the singularity at the corner
requires M ~ 64. Figure 7.9 shows the solutions at ¢ = 3000, which are essentially
at steady state (i.e. changes in any quantity being less than one part in 16 between
successive time steps), from spectral computations using avariety of resolutions. The
plots are produced by projecting the spectral solutions onto 201 radial and 501 axial
uniformly distributed physical locations. A comparison of these contours shows very
little difference, except for some oscillations in 7, the azimuthal component of the
vorticity, near the axis where n ~ 0. These oscillations are considerably reduced
with an increase in the number of spectral modes used. Figure 7.10(a) presents a
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is not particularly sensitive. It illustrates the convergence of the solutions as NV and
M are increased. It also demonstrates that the temporal characteristics of the flow

detail time history of the azimuthal velocity at (r,z) = (1/2,A/2), a point which
transients are not sensitive to the level of spatial resolution.

296

56

(d) N=40, M

64

64, M =96

(a) N
(c) N=40. M

||||1|.n.|hh\\-~.””_||.\|llrlul..1lnlﬂ

but with two dif-

from different levels

, N) decreases as k increases. Fj, is defined as the sum of

3000. Solutions are from spectral

25at

Figure 7.9

2494 and A
computations with At = 0.04 and ¢ = 0.006 and N and M asindicated. All have been projected on

to 201 uniform radial locations and 501 uniform axial locations.

0,

In Figure 7.10(b), we show how the energy contribution F;,

We have also computed cases with the same spatial resolution
of modes (k

ferent temporal resolutions. Computations with At = 0.04 and At = 0.01 agree to
responding plots of the form shown in Figure 7.10(a) are indistinguishable for these

cases.

four or five digits, which is of the same order as the time discretization error, and cor-

Contours of 9, n, and I" for Re
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the energy contribution from the modes v, for : = 0,--- , M — N + k and v
for j = 0,---,k (v;; are the coefficients of the Legendre expansion of v). The
exponential decrease of L, exhibited in Figure 7.10(b) is a good indication that the
solutions are well resolved. Note also that except for afew of the highest modes, the
energy distributions of differently resolved solutions overlap each other, providing
another indication of their convergence.

From these convergence tests, we conclude that for N = 40, M = 56, At =
0.04, we aready have very good results for the primitive variables (u, v, w) but the
approximation for the azimuthal vorticity n at this resolution is not acceptable. We
recall that n is computed by taking derivatives of » and w, so it is not unexpected that
7 requires more resolution than the velocity. At N = 56, M = 80, At = 0.04, the
1 contours are very smooth and this solution can be taken as being independent of
discretization.

0.069752

— 64,96
56, 80

0069750 F 1 || {1 /1 I 20,56

0.069748 | |

0069746 || |/ |f |

0.069744 L . . - . E ) S g
2500 2600 2700 2800 2900 3000 0 10 20 30 40 350 60
t k

(a) (b)

Figure7.10

(8) Detail of the time history of v(r = 1/2,z = A/2) for Re = 2494, A = 2.5, from spectral
computations with e = 0.006, and N and M as indicated. (b) log(Ex) versus k, where Ej, is the
energy contribution, from v, from different levels of modes (k = 0,--- , M), corresponding to the
solutions in left.

As afurther illustration of the convergence of the solutions, we list in Table 7.5
the values and locations (on a201 x 501 uniform physical grid for the spectral solu-
tions, and on their own grids for the finite difference solutions) of three local maxima
and minima of  and 7.
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For more details on these ssimulations, we refer to [111].

Table7.5
N, M Y1 P2 Y3
(71, 21) (72, 22) (r3, 23)
64, 96 7.6604 x 107° —7.1496 x 1073 1.8562 x 10~°
(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
56, 80 7.6589 x 107° —7.1495 x 1073 1.8578 x 107°
(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
40, 56 7.6592 x 107° —7.1498 x 1073 1.8582 x 107°
(0.180, 1.96) (0.760, 0.815) (0.115, 1.36)
N, M m 12 13
(r1, z1) (12, 22) (73, 23)
64, 96 0.54488 -0.52342 —8.9785 x 1073
(0.235, 2.04) (0.335, 2.28) (0.0500, 1.91)
56, 80 0.54488 -0.52343 —8.9797 x 1073
(0.235, 2.04) (0.335, 2.28) (0.0500, 1.92)
40, 56 0.54502 -0.52341 —8.8570 x 1073
(0.235, 2.04) (0.335, 2.28) (0.0500, 1.92)

Loca maxima and minima of ¢ and n, and their locations for Re = 2494, A = 2.5, and e =

0.006, at ¢ = 3000.
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Differentiation matrices are derived from the spectral collocation (also known as
pseudo-spectral) method for solving differential equations of boundary value type.
This method is discussed in some detail in the last two chapters, but for more com-
plete descriptions we refer to Canuto et a[?!, Fornbergl*?, Fornberg and Sloan
150 Funaro®, Gottlieb et a3, and Weideman and Reddy!'®8l. |n the pseudo-
spectral method the unknown solution to the differential equation is expanded as
a global interpolant, such as a trigonometric or polynomial interpolant. In other
methods, such as finite elements or finite differences, the underlying expansion in-
volves local interpolants such as piecewise polynomials. In practice, this means that
the accuracy of the spectral method is superior: for problems with smooth solu-
tions convergence rates of O(e=V) or O(e—c\/ﬁ) are routinely achieved, where V
is the number of degrees of freedom in the expansion (see, e.g., Canuto et all?%,
Stenger [1521; Tadmor!158). In contrast, finite elements or finite differences yield con-
vergence rates that are only algebraic in IV, typically O(N=2) or O(N~%).

Thereis, however, aprice to be paid for using a spectral method instead of afinite
element or afinite difference method: full matrices replace sparse matrices; stability
restrictions may become more severe; and computer implementations, particularly
for problems posed on irregular domains, may not be straightforward. Nevertheless,



300 Appendix A Some online software

provided the solution is smooth the rapid convergence of the spectral method often
compensates for these shortcomings.

There are several general software packages for spectral computations, in FOR-
TRAN or MATLAB. A FORTRAN package is written by Funaro® and available
from

http://cdm.unimo.it/home/matematica/funaro.daniele/rout.htm.

This package provides subroutines for computing first and second derivative ma-
trices and has support for general Jacobi polynomials, many quadrature formulas,
and routines for computing expansion coefficients.

Another FORTRAN package, PseudoPack 2000 iswritten by Don and Costag®!!
and available from

http://www.cfm.brown.edu/people/wsdon/home.html.

PseudoPack can compute up to fourth-order Fourier, Chebyshev, and Legendre col-
location derivatives. Additional features include routines for filtering, coordinate
mapping, and differentiation of functions of two and three variables.

Some MATLAB codes for spectral computations can be found in Trefether{16!;
the corresponding programs are available online at

http://www.comlab.ox.ac.uk/oucl/work/nick.trefethen.

where the readers will find many model problems in mechanics, vibrations, linear
and nonlinear waves and other fields.

Another MATLAB package isthe MATLAB Differentiation Matrix Suite writ-
ten by Weideman and Reddy!1%8] and available from

http://dip.sun.ac.za/~weideman/research/differ.html.

In this appendix, we shall provide arather detailed description for the MATLAB
Differentiation Matrix Suite and PseudoPack 2000.

A.1 MATLAB Differentiation Matrix Suite

Below we present arather detailed description to the MATLAB Differentiation Ma-
trix Suite by Weideman and Reddy{'%8]. The suite consists of 17 MATLAB functions
for solving differential equations by the spectral collocation (i.e., pseudo-spectral)
method. It includes functions for computing derivatives of arbitrary order corre-
sponding to Chebyshev, Hermite, Laguerre, Fourier, and sinc interpolants. Auxiliary
functions are included for incorporating boundary conditions, performing interpola-



A.1 MATLAB Differentiation Matrix Suite 301

tion using barycentric formulas, and computing roots of orthogonal polynomials. It
is demonstrated how to use the package for solving eigenvalue, boundary value, and
initial value problems arising in the fields of special functions, quantum mechanics,
nonlinear waves, and hydrodynamic stability.

The Differentiation Matrix Suite is available at
http://ucs.orst.edu/~weidemaj/differ.html

and at
http://www.mathworks.com/support/ftp/diffeqvs.shtml

in the Differential Equations category of the Mathworks user-contributed (MATLAB
5) M-file repository. The MATLAB functions in the suite are listed below:

a. Differentiation Matrices (Polynomial Based)
(I) poldif.m: General differentiation matrices

(I1) chebdif.m: Chebyshev differentiation matrices
(1) herdif.m: Hermite differentiation matrices

(IV) lagdif.m: Laguerre differentiation matrices
b. Differentiation Matrices (Nonpolynomial)
() fourdif.m: Fourier differentiation matrices
(I) sincdif.m: Sinc differentiation matrices
¢. Boundary Conditions
() cheb2bc.m: Chebyshev second-derivative matrix incorporating Robin
conditions
(I cheb4c.m: Chebyshev fourth-derivative matrix incorporating clamped
conditions
d. Interpolation
() polint.m: Barycentric polynomial interpolation at arbitrary distinct
nodes
(I chebint.m: Barycentric polynomial interpolation at Chebyshev nodes

(1) fourint .m: Barycentric trigonometric interpolation at equidistant nodes
e. Transform-Based Derivatives
() chebdifft.m: FFT-based Chebyshev derivative

(I) fourdifft.m: FFT-based Fourier derivative
() sincdifft.m: FFT-based sinc derivative
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f. Roots of Orthogonal Polynomials
() 1legroots.m: Roots of Legendre polynomias
(I lagroots.m: Roots of Laguerre polynomials
(1) herroots.m: Roots of Hermite polynomials
g. Examples
() cerfa.m: Function file for computing the complementary error func-
tion with boundary condition (a) in (A.1)
(I) cerfb.m: Same as cerfa.m, but boundary condition (b) in (A.1) is
used
(I matplot.m: Script file for plotting the characteristic curves of Math-
ieu Rs equation
(IV) ce0.m: Function filefor computing the Mathieu cosine-elliptic function
(V) sineg.m: Script file for solving the sine-Gordon equation
(VI) sgrhs.m: Function file for computing the right-hand side of the sine-
Gordon system
(VI) schrod.m: Scriptfilefor computing the eigenval ues of the Schrodinger
eguation
(VIIN) orrsom.m: Script file for computing the eigenvalues of the Orr
-Sommerfeld equation

In the above, the boundary condition (A.1) is one of the two boundary conditions
below:
y=0atx=1,ory=1atz=—1. (A.1)

In Weideman and Reddy’s software, they consider the case in which the set of in-
terpolating functions {¢;(x)} consists of polynomials of degree N — 1. The two
main functions in their suite, poldif .mand chebdif . m, deal with this situation.
The former function computes differentiation matrices for arbitrary sets of pointsand
weights; the latter function is restricted to Chebyshev nodes and constant weights.

Theidea of adifferentiation matrix of the spectral collocation method for solving
differential equations is based on weighted interpolants of the form:

o) o r
ey (A2

(07

N
fla)~pya(x) =)
j=1

Here {xj}jv:l isaset of distinct interpolation nodes; a(x) isaweight function; f =
f(z;); and the set of interpolating functions {¢;(x) j-Vzl satisfies ¢ (xy) = 0;; (the
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Kronecker delta). This means that py_1(z) defined by (A.2) is an interpolant of the
function f(z), in the sense that

f(xk):prl(xk‘% k:177N

Associated with an interpolant such as (A.2) isthe concept of acollocation derivative
operator. This operator is generated by taking ¢ derivatives of (A.2) and evaluating
the result at the nodes {xy }:

f(ﬁ)( )Ni\f:d_g a(w)¢() fiy k=1,---,N
Th) = dzt | a(z;) ™’ ! vy S
The derivative operator may be represented by amatrix D\, the differentiation ma-
trix, with entries
‘
(0 _ d° [ afz)
D)= — ; . A.
k?,j dxg l:a(xj)¢j (x):| B ( 3)
T=T
The numerical differentiation process may therefore be performed as the matrix-
vector product
£ = pOf, (A.49)

where f (resp. £) is the vector of function values (resp. approximate derivative
values) at the nodes {x }.

The computation of spectral collocation differentiation matrices for derivatives
of arbitrary order has been considered by Huang and Sloari®¥, (constant weights)
and Welfert 1% (arbitrary «(x)). The agorithm implemented in poldif.m and
chebdif . mfollows these references closaly.

As discussed in Section 1.3 that in some cases (such as the set of Chebyshev
points) explicit formulas are available, but this is the exception rather than the rule.
The suite 18] hasincluded three MATLAB functions for computing the zeros of the
Legendre, Laguerre, and Hermite polynomias(called legroots.m, lagroots . m,
and herroots . mrespectively). The basis of these three functions is the three-term
recurrence relation

anrl(x) = (.I - Oén)qn(ZE) - Ean*l(x)? n= 07 17' Ty

w(z) =1, g¢-1(z)=0. (A.5)

It is well known that the roots of the orthogonal polynomial ¢v(z) are given by the
eigenvalues of the V x N tridiagona Jacobi matrix
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ayg B

go| oo _ﬁQ . (A.6)
' BN-1

BN-1 an-1

The coefficients («,, 8,) are given in the following table:

Legendre Laguerre Hermite
n 0 2n +1 0
On n/v4an? — 1 n? 1/2n

Using MATLAB’s convenient syntax the Jacobi matrix can easily be generated. For
example, in the Legendre case this requires no more than three lines of code:

>>n = [1:N-1];
>>b = n./sqrt(4*n."2-1);
diag(b,1) + diag(b,-1);

>>J

Once J has been created MATLAB’s built-in eig routine can be used to compute
its eigenvalues:

>>r = eig(J);

The functions 1legroots.m, lagroots.m, and herroots.m may be used in
conjunction with poldi £ . m to generate the corresponding differentiation matrices.
For example, in the Legendre case, assuming a constant weight the following two
lines of code will generate first-and second-derivative matrices of order N x N on
L egendre points:

>> X

legroots (N) ;
poldif (x,2);

>> D

Some calling commands for different basis functions are given below.

1. Chebyshev method

a. The calling command for chebdif .mis



A.1 MATLAB Differentiation Matrix Suite 305

>>[x, D] = chebdif (N, M) ;

On input the integer N is the size of the required differentiation matrices, and the
integer M is the highest derivative needed. On output the vector x, of length N,
contains the Chebyshev points

zp=cos((k—1)x/(N-1)), k=1,---,N, (A7)
andDisaN x N x M array containing differentiation matrices DX, ¢ = 1, ..., M.

Itisassumedthat 0 < M < N — 1.

b. The calling command for chebint .mis
>>p = chebint (£, x);

The input vector £, of length IV, contains the values of the function f(z) at the
Chebyshev points (A.7). The vector x, of arbitrary length, contains the co-ordinates
where the interpolant is to be evaluated. On output the vector p contains the corre-
sponding values of the interpolant py—1 (z).

c. Thecalling command for chebdifft.mis
>>Dmf = chebdifft (£, M);

On input the vector £, of length N, contains the values of the function f(z) at the
Chebyshev points (A.7). M isthe order of the required derivative. On output the
vector Dmf contains the values of the Mth derivative of f(x) at the corresponding
points.

2. Hermite function

a. Thecalling command for herdif .mis
>>[x, D] = herdif (N, M, b);

On input the integer N is the size of the required differentiation matrices, and the
integer M is the highest derivative needed. The scalar b is the scaling parameter b
defined by the change of variable x = bx. On output the vector x, of length IV,
contains the Hermite points scaled by b. Disan N x N x M array containing the
differentiation matrices DY), ¢ =1,--- , M.

b. The calling command for herroots.mis
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>>r = herroots (N) ;

Theinput integer N is the degree of the Hermite polynomial, and the output vector r
containsits IV roots.
3. Laguerre function

a. The calling command for 1lagdif .mis
>>[x, D] = lagdif (N, M, b);

On input the integer N is the size of the required differentiation matrices, and the
integer M is the highest derivative needed. The scalar b is the scaling parameter b
discussed above. On output the vector x, of length NV, contains the Laguerre points
scaled by b, plusanodeat x = 0. Disan N x N x M array containing differentiation
matrices D), ¢ =1,--- , M.

b. The calling command for lagroots.mis
>>r = lagroots (N) ;

Theinput integer N is the degree of the Laguerre polynomial, and the output vector r
containsits IV roots.
4. Fourier function

a. Thecalling command of fourdif.mis
>>[x, DM] = fourdif (N, M) ;

On input the integer N is the size of the required differentiation matrix, and the in-
teger M is the derivative needed. On output, the vector x, of length NV, contains the
equispaced nodes given by (1.5.3), and DM isthe N x N containing the differentiation
matrix D). Unlike the other functions in the suite, fourdi f . m computes only
the single matrix D) not the sequence DWW, ..., D(),

b. The calling command of fourint .mis
>>t = fourint (£, x)

On input the vector £, of length V, contains the function values at the equispaced
nodes (1.5.3). Theentries of the vector x, of arbitrary length, are the ordinates where
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the interpolant is to be evaluated. On output the vector t contains the corresponding
values of the interpolant ¢y (x) as computed by the formula (2.2.9a) or (2.2.9b).

c. Thecalling command for fourdifft.mis
>>Dmf = fourdifft (£, M);

On input the vector £, of length N, contains the values of the function f(z) at the
equispaced points (1.5.3); M is the order of the required derivative. On output the
vector Dmf contains the values of the Mth derivative of f(x) at the corresponding
points.

The subroutine cheb2bc . misafunction to solve the general two-point bound-
ary value problem

W (z) + q(2)u (z) + r(z)u(z) = f(z), —-l<z<l, (A.8)
subject to the boundary conditions
aru(l) +byu' (1) =cy, a_u(=1)+b_u'(-1)=c_. (A9

Itisassumed that a.y and b are not both 0, and likewise for a_ and b_. The function
cheb2bc . m generates a set of nodes {xy}, which are essentially the Chebyshev
points with perhaps one or both boundary points omitted. (When a Dirichlet con-
dition is enforced at a boundary, that particular node is omitted, since the function
value is explicitly known there.) The function also returns differentiation matrices
DWW and D@ which are the first- and second-derivative matrices with the bound-
ary conditions (A.9) incorporated. The matrices D) and D may be computed
from the Chebyshev differentiation matrices D) and D), which are computed by
chebdif .m.

TableA.1 Solvingthe boundary value problem (A.10)

>>N = 16;

>>g = [2 -1 1; 2 1 -11; % Boundary condition array

>>[x, D2t, D1t, phip, phim] = cheb2bc (N, g); % Get nodes, matrices, and
% vectors

>>f = 4%exp(x.2);

>>p = phip(:,2)-2*x.*phip(:,1); % psi+

>>m = phim(:,2)-2*x.*phim(:,1); % psi-

>>D = D2t-diag(2*x) *D1t+2*eye (size (D1lt)) ; Discretization matrix

>>u = D\ (f-p-m);

o\°

Solve system
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The function cheb2bc . m computes the various matrices and boundary condi-
tion vectors described above. The calling command is

>>[x, D2t, D1t, phip, phim] = cheb2bc (N, g);

Oninput N is the number of collocation points used. Thearray g = [ap bp cp;
am bm cm] contains the boundary condition coefficients, with a,, b+ and c; on
the first row and a_, b_ and c_ on the second. On output x is the node vector
z. The matrices D1t and D2t contain D) and D®), respectively. The first and
second columns of phip contain ¢/, (z) and ¢/, (x), evaluated at the points in the
node vector. Here ¢/, () are some modified basis functions, see[168]. Similarly, the
first and second columns of phim contain ¢/ (z) and ¢” (x), evaluated at points in
the node vector. Since¢ . (z) and ¢_ () are both 0 at points in the node vector, these
function values are not returned by cheb2bc . m.

Using cheb2bc . m, it becomes a straightforward matter to solve the two-point
boundary value prablem (A.8) and (A.9). Consider, for example,

W' — 2z + 2u = 4e*, 2u(l) — /(1) =1, 2u(-1)+4/(-1) = —1. (A.10)

The MATLAB code for solving (A.10) isgiven in Table A.1.

A.2 PseudoPack®

Global polynomial pseudo-spectral (or collocation) methods$?%,[%°! have been used
extensively during the last decades for the numerical solution of partial differential
equations (PDE). Some of the methods commonly used in the literatures are the
Fourier collocation methods for periodical domain and the Jacobi polynomials with
Chebyshev and Legendre polynomials as special cases for non-periodical domain.
They have awide range of applications ranging from 3-D seismic wave propagation,
turbulence, combustion, non-linear optics, aero-acoustics and el ectromagnetics.

The underlying idea in those methods is to approximate the unknown solution
in the entire computational domain by an interpolation polynomial at the quadrature
(collocation) points. The polynomial isthen required to satisfy the PDEs at the collo-
cation points. This procedure yields a system of ODEs to be solved. These schemes
can be very efficient as the rate of convergence (or the order of accuracy) depends
only on the smoothness of the solution. This is known in the literature as spectral

@ Thissectioniskindly provided by Dr. W. S. Don of Brown University.
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accuracy. In particular, if the solution of the PDE is analytic, the error decays expo-
nentialy. By contrast, in finite difference methods, the order of accuracy is fixed by
the scheme.

While several software tools for the solution of partial differential egquations
(PDEs) exist in the commercial (e.g. DiffPack) as well as the public domain (e.g.
PETSC), they are amost exclusively based on the use of low-order finite difference,
finite element or finite volume methods. Geometric flexibility is one of their main
advantages.

For most PDE solvers employing pseudo-spectral (collocation) methods, one ma-
jor component of the computational kernel is the differentiation. The differentiation
must be done accurately and efficiently on a given computational platform for a suc-
cessful numerical simulation. It is not an easy task given the number of choice of
algorithms for each new and existing computational platform.

Issues involving the complexity of the coding, efficient implementation, geomet-
ric restriction and lack of high quality software library tended to discourage the gen-
era use of the pseudo-spectral methods in scientific research and practical applica-
tions. In particularly, the lack of standard high quality library for pseudo-spectral
methods forces individual researchers to build codes that were not optimal in terms
of efficiency and accuracy.

Furthermore, while pseudo-spectral methods are at a fairly mature level, many
critical issues regarding efficiency and accuracy have only recently been addressed
and resolved. The knowledge of these solutions is not widely known and appears to
restrict amore general usage of this class of algorithm in applications.

This package aims at providing to the user, in a high performance computing
environment, alibrary of subroutines that provide an accurate, versatile, optimal and
efficient implementation of the basic components of global pseudo-spectral methods
on which to address a variety of applications of interest to scientists.

Since the user is shielded from any coding errors in the main computational ker-
nels, reliability of the solution is enhanced. PseudoPack will speed up code devel op-
ment, increase scientific productivity and enhance code re-usability.

Major features of the PseudoPack library

PseudoPack is centered on subroutines for performing basic operations such as
generation of proper collocation points, differentiation and filtering matrices. These
routines provide a highly optimized computational kernel for pseudo-spectra meth-
ods based on either the Fourier series for periodical problems or the Chebyshev or
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Legendre polynomials in simple non-periodical computational domain for the solu-
tion of initial-boundary value problems. State-of-the-art numerical techniques such
as Even-Odd Decomposition!®! and specialized fast agorithms are employed to
increase the efficiency of the library. Advance numerical algorithms, including accu-
racy enhancing mapping and filtering, are incorporated in the library.

The library contain a number of user callable routines that return the derivatives
and/or filtering (smoothing) of, possibly multi-dimensional, data sets. As an appli-
cation extension of the library, we have included routines for computing the conser-
vative and non-conservative form of the derivative operators Gradient V, Divergence
V-, Curl V x and Laplacian V? operatorsin the 2D/3D general curvilinear coordina-
tion.

The source codes of the library is written in FORTRAN 90. The macro and
conditional capability of C Preprocessor allows the software package be compiled
into several versions with several different computational platforms. Severa popular
computational platforms (IBM RS6000, SGI Cray, SGI, SUN) are supported to take
advantages of any existing optimized native library such as General Matrix-Matrix
Multiply (GEMM) from Basic Linear Algebra Level 3 Subroutine (BLAS 3), Fast
Fourier Transform (FFT) and Fast Cosine/Sine Transform (CFT/SFT). In term of
flexibility and user interaction, any aspect of the library can be modified by minor
change in asmall number of input parameters.

Summary of major features

1. Derivatives of up to order four are supported for the Fourier, Chebyshev and
L egendre collocation methods that are based on the Gauss-L obatto, Gauss-Radau and
Gauss quadrature nodes.

2. Matrix-Matrix Multiply, Even-Odd Decomposition and Fast Fourier Trans-
form Algorithms are supported for computing the derivative/smoothing of afunction.

3. Makefiles are available for compilation on system by IBM (RS/6000), SGI
Cray, SGI, SUN and Generic UNIX machine.

4. Native fast assembly library calls such as General Matrix-Matrix Multiply
(GEMM) from Basic Linear Algebra Level 3 Subroutine (BLAS 3), Fast Fourier
Transform (FFT) and Fast Cosine/Sine Transform (CFT/SFT) when available, are
deployed in the computational kernel of the PseudoPack.

5. Specia fast adgorithms, e.g. Fast Quarter-Wave Transform and Even-Odd
Decomposition Algorithm, are provided for cases when the function has either even
or odd symmetry.



A.2 PseudoPack 311

6. Kosloff-Tal-Ezer mapping is used to reduce the round-off error for the Cheby-
shev and Legendre differentiation.

7. Extensive built-in and user-definable grid mapping function suitable for finite,
semi-infinite and infinite domain are provided.

8. Built-in filtering (smoothing) of afunction and its derivative are incorporated
in the library.

9. Differentiation and smoothing can be applied to either the first or the second
dimension of atwo-dimensional data array.

10. Conservative and non-conservative form of Derivative operators, namely,
Gradient V, Divergence V-, Curl Vx and Laplacian V? operators in the 2D/3D
general curvilinear coordination using pseudo-spectral methods are available.

11. Memory usage by the PseudoPack is carefully minimized. User has some
control over the amount of temporary array allocation.

12. Unified subroutine call interface alows modification of any aspect of the
library with minor or no change to the subroutine call statement.

Illustration

Asan illustration of the functionality of PseudoPack, we present a Pseudo-Code
for computing the derivative of atwo-dimensiona data array f; using FORTRAN
90 language syntax.

The procedure essentialy consists of four steps:

a. Specify al necessary non-default parameters and options that determine a
specific spectral collocation scheme, for example, Chebyshev collocation method :
call PS Setup Property (Method=1)

b. Finds the storage requirement for the differentiation operator D :
call PS Get Operator Size (M D, ... )
ALLOCATE (D(M D))

c. Setup the differentiation operator D :
call PS Setup Operator (D, ... )

d. Performs the differentiation operation by computeD_£f = g, f
call ps Diff (D, £, D f, ...)
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These subroutine calls shall remain unchanged regardless of any changes made
to the subroutine arguments such as Method, Algorithm etc. It provides to the
user auniform routine interface with which to work with. For example, to change the
basis of approximation from Chebyshev polynomial to Legendre polynomial, it can
be easily accomplished by changing the input parameter Method=1 to Method=2.

Some general remarks
Some general remarks for the library are listed below:

1. The numerical solution of the PDE U (z, y, t) a any giventimet isstored in a
two dimensional array u (0 :LDY-1, 0:M) withtheleading dimension LDY >= N,
where N and M are the number of collocation pointsin x and y direction respectively.

2. The suffix _x and _y denote the coordinate direction in which the variable is
referring to.

3. The differentiation operator is D and the smoothing operator is S with the
suffice_x and _y to denote the coordinate direction.

4. The name of subroutines with prefix PS_ designates library routine calls to
the PseudoPack library. Please consult the PseudoPack’s manual for details.

5. The derived data type

Property, Grid Index, Domain, Mapping,Filtering D,
Filtering S

are used to store the specification of a specific differentiation operator.

6. The differentiation D and smoothing S operators are specified by calling the
setup subroutine PS_Setup. The behavior of the operators can be modified by
changing one or more optional arguments of the subroutine by changing the data in
the respective derived data type such as Property.

To specify the Fourier, Chebyshev and L egendre method, one set Method=0, 1,
2, respectively.

To specify the matrix, Even-Odd Decomposition and Fast Transform Algorithm,
oneset Algorithm=0, 1, 2, respectively.

7. Theimportant library callsarePS_Diff and PS_Smooth which perform the
differentiation and smoothing according to the given differentiation and smoothing
operators D and S as specified in PS_Setup.

A demonstration program for the use of PseudoPack can be found in
http://www.cfm.brown.edu/people/wsdon/home.html
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