Milnor-Friedlander's problem for diffeomorphisms

Sam Nariman
Universität Münster

June 7, 2018

Inspiring work of Milnor on Lie groups

Let G be a Lie group and let G^{δ} denote the same group with the discrete topology. The natural homomorphism from G^{δ} to G induces a continuous mapping $\eta: B G^{\delta} \rightarrow B G$.

Inspiring work of Milnor on Lie groups

Let G be a Lie group and let G^{δ} denote the same group with the discrete topology. The natural homomorphism from G^{δ} to G induces a continuous mapping $\eta: B G^{\delta} \rightarrow B G$.
Conjecture (Isomorphism conjecture)
For a any Lie group G with finitely many connected components, the map $\eta: B G^{\delta} \rightarrow B G$ induces isomorphisms in homology and cohomology with mod p coefficients.

Inspiring work of Milnor on Lie groups

Let G be a Lie group and let G^{δ} denote the same group with the discrete topology. The natural homomorphism from G^{δ} to G induces a continuous mapping $\eta: B G^{\delta} \rightarrow B G$.

Conjecture (Isomorphism conjecture)
For a any Lie group G with finitely many connected components, the map $\eta: B G^{\delta} \rightarrow B G$ induces isomorphisms in homology and cohomology with mod p coefficients.

- Friedlander posed a similar conjecture for Lie groups defined over algebraically closed fields.
- Milnor proved the isomorphism conjecture for solvable Lie groups.
- We can ask a similar question for other topological group $G=\operatorname{Diff}(M), \operatorname{Homeo}(M), \operatorname{Symp}(M, \omega), \operatorname{Ham}(M, \omega), \ldots$

Theorem (Milnor)

For any Lie group with finitely many connected components, the induced maps

$$
\begin{aligned}
H^{*}\left(B G ; \mathbb{F}_{p}\right) & \rightarrow H^{*}\left(B G^{\delta} ; \mathbb{F}_{p}\right), \\
H^{*}(B G ; \mathbb{Z}) & \rightarrow H^{*}\left(B G^{\delta} ; \mathbb{Z}\right),
\end{aligned}
$$

are injective.
Idea of the proof.
Becker-Gottlieb transfer for the map $B N \rightarrow B G$ where N is the normalizer of the maximal torus.

Stable result for Lie groups

Suslin proved the isomorphism conjecture for $G L_{n}(\mathbb{C})$ where, in the stable range:
Theorem (Suslin)
The natural map

$$
B G L_{n}(\mathbb{C})^{\delta} \rightarrow B G L_{n}(\mathbb{C})
$$

induces isomorphisms

$$
H_{i}\left(B G L_{n}(\mathbb{C})^{\delta} ; \mathbb{F}_{p}\right) \xrightarrow{\sim} H_{i}\left(B G L_{n}(\mathbb{C}) ; \mathbb{F}_{p}\right) .
$$

for $i \leq n$.

Stable result for Lie groups

Suslin proved the isomorphism conjecture for $G L_{n}(\mathbb{C})$ where, in the stable range:
Theorem (Suslin)
The natural map

$$
B G L_{n}(\mathbb{C})^{\delta} \rightarrow B G L_{n}(\mathbb{C})
$$

induces isomorphisms

$$
H_{i}\left(B G L_{n}(\mathbb{C})^{\delta} ; \mathbb{F}_{p}\right) \xrightarrow{\sim} H_{i}\left(B G L_{n}(\mathbb{C}) ; \mathbb{F}_{p}\right)
$$

for $i \leq n$.
Question
Does the map $\eta: \operatorname{BDiff}^{\delta}(M) \rightarrow \operatorname{BDiff}(M)$ induce an injective map in cohomology? Is there a "range" depending on M that η induces an injective map on cohomology or surjective map in homology?

What is so different about $G=\operatorname{Diff}(M)$?

For a manifold M, the group of diffeomorphisms $\operatorname{Diff}^{\delta}(M)$ contains "the information" of two very different groups

$$
1 \rightarrow \operatorname{Diff}_{0}(M) \rightarrow \operatorname{Diff}(M) \rightarrow \operatorname{MCG}(M) \rightarrow 1
$$

- The group $\operatorname{Diff}_{0}(M)$ is an interesting object from dynamical system and foliation point of view.
- The group MCG (M) is an interesting object from geometric topology point of view.
$M=S^{1}$
$\eta: \operatorname{BDiff}^{\delta}\left(S^{1}\right) \rightarrow \operatorname{BDiff}\left(S^{1}\right) \simeq \mathbb{C} P^{\infty}$
$M=S^{1}$

$$
\eta: \operatorname{BDiff}\left(S^{1}\right) \rightarrow \operatorname{BDiff}\left(S^{1}\right) \simeq \mathbb{C} P^{\infty}
$$

Theorem (Herman)
$H_{1}\left(\operatorname{Diff}^{\delta}\left(S^{1}\right) ; \mathbb{Z}\right)=0$

$$
\eta: \operatorname{BDiff}{ }^{\delta}\left(S^{1}\right) \rightarrow \operatorname{BDiff}\left(S^{1}\right) \simeq \mathbb{C} P^{\infty}
$$

Theorem (Herman)
$H_{1}\left(\operatorname{Diff}^{\delta}\left(S^{1}\right) ; \mathbb{Z}\right)=0$
Theorem (Thurston, '72)
There is a surjective map

$$
H_{2}\left(\operatorname{Diff}^{\delta}\left(S^{1}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Z} \oplus \mathbb{R} .
$$

$$
\eta: \operatorname{BDiff}^{\delta}\left(S^{1}\right) \rightarrow \operatorname{BDiff}\left(S^{1}\right) \simeq \mathbb{C} P^{\infty}
$$

Theorem (Herman)
$H_{1}\left(\operatorname{Diff}^{\delta}\left(S^{1}\right) ; \mathbb{Z}\right)=0$
Theorem (Thurston, '72)
There is a surjective map

$$
H_{2}\left(\operatorname{Diff}^{\delta}\left(S^{1}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Z} \oplus \mathbb{R} .
$$

Theorem (Morita, '85)
For all $k \geq 1$, there is a surjective map

$$
H_{2 k}\left(\operatorname{Diff}^{\delta}\left(S^{1}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Z} \oplus S_{\mathbb{Q}}^{k} \mathbb{R} .
$$

A lost theorem of Thurston

Let Diff ${ }^{\omega}\left(S^{1}\right)$ denote the analytic diffeomorphisms of the circle. Thurston claimed that for all flat analytic S^{1}-bundle on 6 -manifolds the cube of the Euler class is zero. This means that the map

$$
H^{6}\left(\mathbb{C} P^{\infty} ; \mathbb{Q}\right) \rightarrow H^{6}\left(\operatorname{BDiff}^{\omega, \delta}\left(S^{1}\right) ; \mathbb{Q}\right)
$$

is zero. However, it is not hard to show that

$$
H^{6}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right) \rightarrow H^{6}\left(\operatorname{BDiff}^{\omega, \delta}\left(S^{1}\right) ; \mathbb{Z}\right)
$$

is not zero!

$M=$ surface

Let $\Sigma_{g, k}$ denote a surface of genus g and k boundary components. We consider the following cases:

$$
\begin{aligned}
{B \operatorname{Diff}^{\delta}}\left(\Sigma_{g, k}, \partial\right) & \rightarrow B \operatorname{Diff}\left(\Sigma_{g, k}, \partial\right) \\
B \operatorname{Symp}^{\delta}\left(\Sigma_{g, k}, \partial\right) & \rightarrow B \operatorname{Symp}\left(\Sigma_{g, k}, \partial\right) \\
B \operatorname{Diff}^{\delta}\left(\mathbb{D}^{2}-n \text { points, } \partial\right) & \rightarrow B \operatorname{Diff}\left(\mathbb{D}^{2}-n \text { points, } \partial\right)
\end{aligned}
$$

$M=$ surface

Let $\Sigma_{g, k}$ denote a surface of genus g and k boundary components. We consider the following cases:

$$
\begin{aligned}
{B \operatorname{Diff}^{\delta}}\left(\Sigma_{g, k}, \partial\right) & \rightarrow B \operatorname{Diff}\left(\Sigma_{g, k}, \partial\right) \\
B \operatorname{Symp}^{\delta}\left(\Sigma_{g, k}, \partial\right) & \rightarrow B \operatorname{Symp}\left(\Sigma_{g, k}, \partial\right) \\
B \operatorname{Diff}^{\delta}\left(\mathbb{D}^{2}-n \text { points, } \partial\right) & \rightarrow B \operatorname{Diff}\left(\mathbb{D}^{2}-n \text { points, } \partial\right)
\end{aligned}
$$

Remark

$$
\begin{gathered}
B \operatorname{Diff}\left(\Sigma_{g, k}, \partial\right) \simeq B \operatorname{MCG}\left(\Sigma_{g, k}\right) \text { Earle-Eells Theorem } \\
B \operatorname{Diff}\left(\Sigma_{g, k}, \partial\right) \simeq B \operatorname{Symp}\left(\Sigma_{g, k}, \partial\right) \text { Moser's Theorem } \\
B \operatorname{Diff}\left(\mathbb{D}^{2}-n \text { points, } \partial\right) \simeq B \operatorname{Br}_{n}
\end{gathered}
$$

Main theorems

Theorem (N)

The induced maps on cohomology

$$
\begin{aligned}
& H^{*}\left(\operatorname{BDiff}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(\operatorname{BDiff}^{\delta}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right) \\
& H^{*}\left(\operatorname{BSymp}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(\operatorname{BSymp}^{\delta}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right)
\end{aligned}
$$

are injective for $* \leq(2 g-2) / 3$.

Main theorems

Theorem (N)
The induced maps on cohomology

$$
\begin{aligned}
H^{*}\left(\operatorname{BDiff}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(\operatorname{BDiff}^{\delta}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right) \\
H^{*}\left(\operatorname{BSymp}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(\operatorname{BSymp}^{\delta}\left(\Sigma_{g, k}, \partial\right) ; \mathbb{F}_{p}\right)
\end{aligned}
$$

are injective for $* \leq(2 g-2) / 3$.
Theorem (N)
In the case of punctured disk, we have
$H^{*}\left(B \operatorname{Diff}\left(\mathbb{D}^{2}-n\right.\right.$ points, $\left.\left.\partial\right) ; \mathbb{Z}\right) \rightarrow H^{*}\left(B \operatorname{Diff}^{\delta}\left(\mathbb{D}^{2}-n\right.\right.$ points, $\left.\left.\partial\right) ; \mathbb{Z}\right)$
is injective in all degrees.
The idea: $\coprod_{n} B \mathrm{Br}_{n}$ is a free E_{2}-algebra!

Idea of the proof

Step 1: We know that $B \operatorname{Diff}\left(\Sigma_{g, k}, \partial\right)$ exhibits homological stability (Harer). So we showed that $\operatorname{BDiff}^{\delta}\left(\Sigma_{g, k}, \partial\right)$ is also homologically stable (Morita's problem).

Idea of the proof

Step 1: We know that $\operatorname{BDiff}\left(\Sigma_{g, k}, \partial\right)$ exhibits homological stability (Harer). So we showed that $B \operatorname{Diff}^{\delta}\left(\Sigma_{g, k}, \partial\right)$ is also homologically stable (Morita's problem).
Step 2: Let $G=\operatorname{Diff}\left(\Sigma_{\infty, k}, \partial\right)$,

where the righthand vertical map is a homology isomorphism (Madsen-Weiss Theorem).
Recall MTSO(2) is the Thom spectrum of of the virtual bundle $-\gamma$, where γ is the tautological bundle over $B G L_{2}^{+}(\mathbb{R})$.

Haefliger spaces

Definition

Let Γ_{2} denote the topological groupoid whose objects are \mathbb{R}^{2} and whose morphisms are germs of orientation preserving diffeomorphisms (with sheaf topology). The classifying space of this groupoid is the Haefliger space of oriented codimension two foliations.
There is a map

$$
\nu: B \Gamma_{2} \rightarrow B G L_{2}^{+}(\mathbb{R})
$$

Haefliger spaces

Definition

Let Γ_{2} denote the topological groupoid whose objects are \mathbb{R}^{2} and whose morphisms are germs of orientation preserving diffeomorphisms (with sheaf topology). The classifying space of this groupoid is the Haefliger space of oriented codimension two foliations.
There is a map

$$
\nu: B \Gamma_{2} \rightarrow B G L_{2}^{+}(\mathbb{R})
$$

Definition

Let $\mathrm{MT} \nu$ be the Thom spectrum of the virtual bundle $\nu^{*}(-\gamma)$.
We showed that there is a map

$$
B G^{\delta} \rightarrow \Omega_{0}^{\infty} \mathrm{MT} \nu
$$

which induces a homology isomorphism.

Idea of the proof continued

Step 3: One can use maps of groupoids

$$
S^{1^{\delta}} \rightarrow \Gamma_{2} \rightarrow G L_{2}^{+}(\mathbb{R})
$$

to show that the natural map

$$
\Omega_{0}^{\infty} \mathrm{MT} \nu \rightarrow \Omega_{0}^{\infty} \mathrm{MTSO}(2)
$$

has a section after p-completion.

MMM-classes

One can use the main theorem to show that the map

$$
\mathbb{Z}\left[\kappa_{1}, \kappa_{2}, \ldots\right] \rightarrow H^{*}\left(B G^{\delta} ; \mathbb{Z}\right)
$$

is injective. However, Morita showed that κ_{i} in $H^{*}\left(B G^{\delta} ; \mathbb{Q}\right)$ is zero for $i>2$. This implies that the natural map

$$
H^{*}\left(B G^{\delta} ; \mathbb{Z}\right) \otimes \mathbb{Q} \rightarrow H^{*}\left(B G^{\delta} ; \mathbb{Q}\right)
$$

has a huge kernel. Also for $i>2$ one can use Cheeger-Simons theory to define MMM-characters

$$
\hat{\kappa}_{i}: H_{2 i-1}\left(B G^{\delta} ; \mathbb{Z}\right) \rightarrow \mathbb{R} / \mathbb{Z}
$$

which maps to κ_{i} via the Bockstein map.

Other characteristic classes

- Secondary characteristic classes: One can use these methods to show that

$$
H_{3}\left(\operatorname{BDiff}^{\delta}\left(D^{2}, \partial\right) ; \mathbb{Q}\right) \rightarrow H_{3}\left(B G^{\delta} ; \mathbb{Q}\right)
$$

is surjective.

- Morita and Kotschick showed that there is a surjective map

$$
H_{2 k}\left(\operatorname{Symp}^{\delta}(\Sigma, \partial) ; \mathbb{Q}\right) \rightarrow \mathbb{Q} \oplus S^{2} \mathbb{R} \oplus \cdots \oplus S^{k}\left(S^{2} \mathbb{R}\right)
$$

for $g(\Sigma) \geq 3 k+1$.

- We can give a more direct proof of the Morita-Kotschick theorem by using the universal space $B \Gamma_{2}^{\mathrm{vol}}$. We used these methods to show that

$$
H_{2}\left(\operatorname{Symp}^{\delta}(\Sigma, \partial) ; \mathbb{Z}\left[\frac{1}{6}\right]\right) \xrightarrow{\sim} H_{4}\left(B \Gamma_{2}^{\mathrm{vol}} ; \mathbb{Z}\left[\frac{1}{6}\right]\right)
$$

and it is not hard to see that $H_{4}\left(B \Gamma_{2}^{\text {vol }} ; \mathbb{Z}\right)$ surjects to $\mathbb{Z} \oplus S_{\mathbb{Q}}^{2} \mathbb{R}$.

- We can give a more direct proof of the Morita-Kotschick theorem by using the universal space $B \Gamma_{2}^{\mathrm{vol}}$. We used these methods to show that

$$
H_{2}\left(\operatorname{Symp}^{\delta}(\Sigma, \partial) ; \mathbb{Z}\left[\frac{1}{6}\right]\right) \xrightarrow{\sim} H_{4}\left(B \Gamma_{2}^{\mathrm{vol}} ; \mathbb{Z}\left[\frac{1}{6}\right]\right)
$$

and it is not hard to see that $H_{4}\left(B \Gamma_{2}^{\text {vol }} ; \mathbb{Z}\right)$ surjects to $\mathbb{Z} \oplus S_{\mathbb{Q}}^{2} \mathbb{R}$.

- There is a short exact sequence

$$
1 \rightarrow \widetilde{\operatorname{Ham}}^{\delta}(\Sigma, \partial) \rightarrow \operatorname{Symp}^{\delta}(\Sigma, \partial) \rightarrow H^{1}(\Sigma ; \mathbb{R}) \rightarrow 1
$$

Bowden observed that all $\kappa_{i} \in H^{*}\left(\widetilde{\operatorname{Ham}}^{\delta}(\Sigma, \partial) ; \mathbb{Q}\right)$ are zero.

Haefliger's conjecture

On a manifold M all plane fields of $\operatorname{dim} \leq\lfloor(\operatorname{dim}(M)+1) / 2\rfloor$ are integrable up to homotopy.

Haefliger's conjecture

On a manifold M all plane fields of $\operatorname{dim} \leq\lfloor(\operatorname{dim}(M)+1) / 2\rfloor$ are integrable up to homotopy.

Conjecture

The map

$$
H_{*}\left(\operatorname{BDiff}^{\delta}(M) ; \mathbb{Z}\right) \rightarrow H_{*}(\operatorname{BDiff}(M) ; \mathbb{Z})
$$

is an isomorphism for $* \leq \operatorname{dim}(M)$.

- For $M=\mathbb{R}^{n}$, it is implied by a theorem of Segal.

Haefliger's conjecture

On a manifold M all plane fields of $\operatorname{dim} \leq\lfloor(\operatorname{dim}(M)+1) / 2\rfloor$ are integrable up to homotopy.

Conjecture

The map

$$
H_{*}\left(\operatorname{BDiff}^{\delta}(M) ; \mathbb{Z}\right) \rightarrow H_{*}(\operatorname{BDiff}(M) ; \mathbb{Z})
$$

is an isomorphism for $* \leq \operatorname{dim}(M)$.

- For $M=\mathbb{R}^{n}$, it is implied by a theorem of Segal.
- Thurston proved the case $*=1$.
- Thurston proved the bound is optimum for C^{2} diffeomorphisms of $M=S^{n}$.
- Thurston proved that the map

$$
\operatorname{BHomeo}^{\delta}(M) \rightarrow \text { BHomeo }(M)
$$

induces a homology isomorphism in all degrees!

Happy birthday dear Michael! \because

