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Inspiring work of Milnor on Lie groups

Let G be a Lie group and let G δ denote the same group with the
discrete topology. The natural homomorphism from G δ to G
induces a continuous mapping η : BG δ → BG .

Conjecture (Isomorphism conjecture)

For a any Lie group G with finitely many connected components,
the map η : BG δ → BG induces isomorphisms in homology and
cohomology with mod p coefficients.

I Friedlander posed a similar conjecture for Lie groups defined
over algebraically closed fields.

I Milnor proved the isomorphism conjecture for solvable Lie
groups.

I We can ask a similar question for other topological group
G = Diff(M),Homeo(M),Symp(M, ω),Ham(M, ω), . . . .
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Theorem (Milnor)

For any Lie group with finitely many connected components, the
induced maps

H∗(BG ;Fp)→ H∗(BG δ;Fp),

H∗(BG ;Z)→ H∗(BG δ;Z),

are injective.

Idea of the proof.

Becker-Gottlieb transfer for the map BN → BG where N is the
normalizer of the maximal torus.



Stable result for Lie groups

Suslin proved the isomorphism conjecture for GLn(C) where , in
the stable range:

Theorem (Suslin)

The natural map
BGLn(C)δ → BGLn(C)

induces isomorphisms

Hi (BGLn(C)δ;Fp)
∼−→ Hi (BGLn(C);Fp).

for i ≤ n.

Question
Does the map η : BDiffδ(M)→ BDiff(M) induce an injective map
in cohomology? Is there a “range” depending on M that η induces
an injective map on cohomology or surjective map in homology?
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What is so different about G = Diff(M)?

For a manifold M, the group of diffeomorphisms Diffδ(M) contains
“the information” of two very different groups

1→ Diff0(M)→ Diff(M)→ MCG(M)→ 1

I The group Diff0(M) is an interesting object from dynamical
system and foliation point of view.

I The group MCG(M) is an interesting object from geometric
topology point of view.



M = S1

η : BDiffδ(S1)→ BDiff(S1) ' CP∞

Theorem (Herman)

H1(Diffδ(S1);Z) = 0

Theorem (Thurston, ’72)

There is a surjective map

H2(Diffδ(S1);Z)→ Z⊕ R.

Theorem (Morita, ’85)

For all k ≥ 1, there is a surjective map

H2k(Diffδ(S1);Z)→ Z⊕ Sk
QR.
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A lost theorem of Thurston

Let Diffω(S1) denote the analytic diffeomorphisms of the circle.
Thurston claimed that for all flat analytic S1-bundle on 6-manifolds
the cube of the Euler class is zero. This means that the map

H6(CP∞;Q)→ H6(BDiffω,δ(S1);Q)

is zero. However, it is not hard to show that

H6(CP∞;Z)→ H6(BDiffω,δ(S1);Z)

is not zero!



M = surface

Let Σg ,k denote a surface of genus g and k boundary components.
We consider the following cases:

BDiffδ(Σg ,k , ∂)→ BDiff(Σg ,k , ∂)

BSympδ(Σg ,k , ∂)→ BSymp(Σg ,k , ∂)

BDiffδ(D2 − n points, ∂)→ BDiff(D2 − n points, ∂)

Remark

BDiff(Σg ,k , ∂) ' BMCG(Σg ,k) Earle-Eells Theorem

BDiff(Σg ,k , ∂) ' BSymp(Σg ,k , ∂) Moser’s Theorem

BDiff(D2 − n points, ∂) ' BBrn

.
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Main theorems

Theorem (N)

The induced maps on cohomology

H∗(BDiff(Σg ,k , ∂);Fp)→ H∗(BDiffδ(Σg ,k , ∂);Fp)

H∗(BSymp(Σg ,k , ∂);Fp)→ H∗(BSympδ(Σg ,k , ∂);Fp)

are injective for ∗ ≤ (2g − 2)/3.

Theorem (N)

In the case of punctured disk, we have

H∗(BDiff(D2− n points, ∂);Z)→ H∗(BDiffδ(D2− n points, ∂);Z)

is injective in all degrees.

The idea:
∐

n BBrn is a free E2-algebra!
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Idea of the proof

Step 1: We know that BDiff(Σg ,k , ∂) exhibits homological
stability (Harer). So we showed that BDiffδ(Σg ,k , ∂) is also
homologically stable (Morita’s problem).

Step 2: Let G = Diff(Σ∞,k , ∂),

BG δ BG

Ω∞0 MTSO(2)?

η

where the righthand vertical map is a homology isomorphism
(Madsen-Weiss Theorem).
Recall MTSO(2) is the Thom spectrum of of the virtual bundle
−γ, where γ is the tautological bundle over BGL+2 (R).
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Haefliger spaces

Definition
Let Γ2 denote the topological groupoid whose objects are R2 and
whose morphisms are germs of orientation preserving
diffeomorphisms (with sheaf topology). The classifying space of
this groupoid is the Haefliger space of oriented codimension two
foliations.

There is a map
ν : BΓ2 → BGL+2 (R).

Definition
Let MTν be the Thom spectrum of the virtual bundle ν∗(−γ).

We showed that there is a map

BG δ → Ω∞0 MTν

which induces a homology isomorphism.
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Idea of the proof continued

Step 3: One can use maps of groupoids

S1δ → Γ2 → GL+2 (R),

to show that the natural map

Ω∞0 MTν → Ω∞0 MTSO(2)

has a section after p-completion.



MMM-classes

One can use the main theorem to show that the map

Z[κ1, κ2, . . . ]→ H∗(BG δ;Z)

is injective. However, Morita showed that κi in H∗(BG δ;Q) is zero
for i > 2. This implies that the natural map

H∗(BG δ;Z)⊗Q→ H∗(BG δ;Q)

has a huge kernel. Also for i > 2 one can use Cheeger-Simons
theory to define MMM-characters

κ̂i : H2i−1(BG δ;Z)→ R/Z

which maps to κi via the Bockstein map.



Other characteristic classes

I Secondary characteristic classes: One can use these methods
to show that

H3(BDiffδ(D2, ∂);Q)→ H3(BG δ;Q)

is surjective.

I Morita and Kotschick showed that there is a surjective map

H2k(Sympδ(Σ, ∂);Q)→ Q⊕ S2R⊕ · · · ⊕ Sk(S2R).

for g(Σ) ≥ 3k + 1.



I We can give a more direct proof of the Morita-Kotschick
theorem by using the universal space BΓvol

2 . We used these
methods to show that

H2(Sympδ(Σ, ∂);Z[
1

6
])
∼−→ H4(BΓvol

2 ;Z[
1

6
]),

and it is not hard to see that H4(BΓvol
2 ;Z) surjects to

Z⊕ S2
QR.

I There is a short exact sequence

1→ H̃am
δ
(Σ, ∂)→ Sympδ(Σ, ∂)→ H1(Σ;R)→ 1.

Bowden observed that all κi ∈ H∗(H̃am
δ
(Σ, ∂);Q) are zero.
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Haefliger’s conjecture
On a manifold M all plane fields of dim ≤ b(dim(M) + 1)/2c are
integrable up to homotopy.

Conjecture

The map
H∗(BDiffδ(M);Z)→ H∗(BDiff(M);Z)

is an isomorphism for ∗ ≤ dim(M).

I For M = Rn, it is implied by a theorem of Segal.

I Thurston proved the case ∗ = 1.

I Thurston proved the bound is optimum for C 2

diffeomorphisms of M = Sn.

I Thurston proved that the map

BHomeoδ(M)→ BHomeo(M)

induces a homology isomorphism in all degrees!
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Happy birthday dear Michael!


