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Surface diffeomorphism groups made discrete

Surface symplectomorphisms made discrete



Inspiring work of Milnor on Lie groups

Let G be a Lie group and let G δ denote the same group with the
discrete topology. The natural homomorphism from G δ to G
induces a continuous mapping η : BG δ → BG .

Conjecture (Isomorphism conjecture)

For a any Lie group G with finitely many connected components,
the map η : BG δ → BG induces isomorphisms in homology and
cohomology with mod p coefficients.

I Milnor proved the isomorphism conjecture for solvable Lie
groups.

I We can ask a similar question for other topological group
G = Diff(M),Homeo(M),Symp(M, ω),Ham(M, ω), . . . .
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Theorem (Milnor)

For any Lie group with finitely many connected components, the
induced maps

H∗(BG ;Fp)→ H∗(BG δ;Fp),

H∗(BG ;Z)→ H∗(BG δ;Z),

are injective.

Idea of the proof.

Becker-Gottlieb transfer for the map BN → BG where N is the
normalizer of the maximal torus.

With R-coefficients, this map in many cases is not interesting
because of the Chern-Weil theory!
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Stable result for Lie groups

Suslin proved the isomorphism conjecture for GLn(C) where , in
the stable range:

Theorem (Suslin)

The natural map
BGLn(C)δ → BGLn(C)

induces isomorphisms

Hi (BGLn(C)δ;Fp)
∼−→ Hi (BGLn(C);Fp).

for i ≤ n.

Question
Does the map η : BDiffδ(M)→ BDiff(M) induce an injective map
in cohomology? Is there a “range” depending on M that η induces
an injective map on cohomology or surjective map in homology?
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The peculiar case of the low regularity!

Theorem (Thurston 1975)

The map η : BHomeoδ(M)→ BHomeo(M) induces a homology
isomorphism for any manifold M.

Theorem (Tsuboi 1985)

The map η : BDiff1δ(M)→ BDiff1(M) induces a homology
isomorphism for any manifold M.
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A geometric enhancement of these peculiar cases

Theorem (Freedman 2020)

Let N be a 3-manifold. Any fiber bundle M → E → N whose
structure group is Homeo0(M) is semi-s-cobordant to a bundle
M → E ′ → N ′ which is flat.

semi-s-cobordism W between N and N ′ means that there is a
simple deformation retraction W → N.

Conjecture (Freedman)

Consider the Hopf fibration S3 → S7 → S4. There is a homology
4-sphere H and a degree one map f : H → S4 such that the pull
back of the Hopf fibration along f gives a flat bundle.
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What is so different about G = Diff(M)?

For a manifold M, the group of diffeomorphisms Diffδ(M) contains
“the information” of two very different groups

1→ Diff0(M)→ Diff(M)→ MCG(M)→ 1

I The group Diff0(M) is an interesting object from dynamical
system and foliation point of view.

I The group MCG(M) is an interesting object from geometric
topology point of view.



M = S1

η : BDiffδ(S1)→ BDiff(S1) ' CP∞

Theorem (Herman, ’71)

H1(Diffδ(S1);Z) = 0

Theorem (Thurston, ’72)

There is a surjective map

H2(Diffδ(S1);Z)→ Z⊕ R.

Question
Does there exist family of nontrivial central extensions of Diff(M)
when dim(M) > 1?
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A lost theorem of Thurston

Let Diffω(S1) denote the analytic diffeomorphisms of the circle.
Thurston claimed that for all flat analytic S1-bundle on 6-manifolds
the cube of the Euler class is zero. This means that the map

H6(CP∞;Q)→ H6(BDiffω,δ(S1);Q)

is zero. However, I observed that

H6(CP∞;Z)→ H6(BDiffω,δ(S1);Z)

is not zero!



M = surface

Let Σg ,k denote a surface of genus g and k boundary components.
We consider the following cases:

BDiffδ(Σg ,k , ∂)→ BDiff(Σg ,k , ∂)

BSympδ(Σg ,k , ∂)→ BSymp(Σg ,k , ∂)

BDiffδ(D2 − n points, ∂)→ BDiff(D2 − n points, ∂)

Remark

BDiff(Σg ,k , ∂) ' BMCG(Σg ,k) Earle-Eells Theorem

BDiff(Σg ,k , ∂) ' BSymp(Σg ,k , ∂) Moser’s Theorem

BDiff(D2 − n points, ∂) ' BBrn

.
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Main theorems

Theorem (N)

The induced maps on cohomology

H∗(BDiff(Σg ,k , ∂);Fp)→ H∗(BDiffδ(Σg ,k , ∂);Fp)

H∗(BSymp(Σg ,k , ∂);Fp)→ H∗(BSympδ(Σg ,k , ∂);Fp)

are injective for ∗ ≤ (2g − 2)/3.

Theorem (N)

In the case of punctured disk, we have

H∗(BDiff(D2− n points, ∂);Z)→ H∗(BDiffδ(D2− n points, ∂);Z)

is injective in all degrees.

The idea:
∐

n BBrn is a free E2-algebra!
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Idea of the proof

Step 1: We know that BDiff(Σg ,k , ∂) exhibits homological
stability (Harer). So we showed that BDiffδ(Σg ,k , ∂) is also
homologically stable (Morita’s problem).

Step 2: Let G = Diff(Σ∞,k , ∂),

BG δ BG

Ω∞0 MTSO(2)?

η

where the righthand vertical map is a homology isomorphism
(Madsen-Weiss Theorem). The Madsen-Tillmann spectrum
MTSO(2) is the Thom spectrum of of the virtual bundle −γ,
where γ is the tautological bundle over BGL+

2 (R).
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Haefliger spaces

Definition
Let Γ2 denote the topological groupoid whose objects are R2 and
whose morphisms are germs of orientation preserving
diffeomorphisms (with sheaf topology). The classifying space of
this groupoid is the Haefliger space of oriented codimension two
foliations.

There is a map
ν : BΓ2 → BGL+

2 (R).

Definition
Let MTν be the Thom spectrum of the virtual bundle ν∗(−γ).
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Idea of the proof continued

Theorem (N)

There is a map
BG δ → Ω∞0 MTν

which induces a homology isomorphism.
So we have

BGδ BG

Ω∞0 MTSO(2)Ω∞0 MTν

η

H∗ − isoH∗ − iso

Step 3: One can use maps of groupoids

S1δ → Γ2 → GL+
2 (R),

We showed that the natural map

Ω∞0 MTν → Ω∞0 MTSO(2)

has a section after p-completion.



MMM-classes

One can use the main theorem to show that the map

Z[κ1, κ2, . . . ]→ H∗(BG δ;Z)

is injective. However, Morita showed that κi in H∗(BG δ;Q) is zero
for i > 2. This implies that the natural map

H∗(BG δ;Z)⊗Q→ H∗(BG δ;Q)

has a huge kernel. Also for i > 2 one can use Cheeger-Simons
theory to define MMM-characters

κ̂i : H2i−1(BG δ;Z)→ R/Z

which maps to κi via the Bockstein map.



Some geometric consequences

I It is an open problem whether every surface bundle over a
surface is flat. Kotschick-Morita (2005) proved that all surface
bundles over surfaces are cobordant to a flat surface bundle.

Theorem (N)

For g > 5, every Σg -bundle over a three manifold is cobordant to
a flat surface bundle.

I Jonathan Bowden (2012) showed that H3(BG δ;Q) is a vector
space of uncountable dimension.

Theorem (N)

The map induced by embedding of the disk

H3(BDiffδ(D2, ∂);Q)→ H3(BG δ;Q)

is surjective.
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Fundamental diagram for principal G -bundles

H∗(g, k) H∗(BG δ;R)

H∗(BG ;R)I ∗(G )

H∗(BG ;R)H∗(g)

I If G is semi-simple, the map H∗(g, k)→ H∗(BG δ;R) is
injective (Borel-Harish-Chandra).

I Morita (’83) showed that similarly
H∗(Vect(S1), so(2))→ H∗(BDiffδ(S1);R) is injective.



Flux homomorphism
Recall that Flux : Symp0(Σg )→ H1(Σg ;R) for g > 1 is defined

by Flux(ψ) =
∫ 1

0 ιψ̇t
ωdt.

I Kotschick and Morita (2005) extended this definition to a

crossed homomorphism F̃lux : Symp(Σg )→ H1(Σg ;R).

H̃am
δ
(Σg )→ Sympδ(Σg )→ H1(Σg ;R).

I Ωk
dR(Symp(Σg )/H̃am(Σg ))MCG(Σg ) ∼=

(
∧k H1(Σg ;R))MCG(Σg ).

I ωg is non-zero in
∧2g H1(Σg ;R) and is invariant under

MCG(Σg ).

Question
Is the image of ωg non-zero in H2g (BSympδ(Σg );R)?

I Kotschick and Morita proved that the image of ωk is non-zero
if 3k ≤ g .
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Kotschick-Morita classes

I Morita and Kotschick (2007) used the extended flux

[F̃lux ] ∈ H1(BSympδ(Σg );H1(Σg ;R))

to show that there is a surjective map

H2k(Sympδ(Σg );Q)→ Q⊕ S2R⊕ · · · ⊕ Sk(S2R).

for g ≥ 3k.



Stable results

Let Γvol
2 be the Haefliger groupoid of germs of volume preserving

diffeomorphisms of R2.

B̃Γvol
2

BΓvol
2 K (R, 2)

BSL2(R),

e + v

θ
β

Let γ be the tautological 2-plane bundle over BSL2(R).

Definition

MTθ := Thom spectrum of the bundle θ∗(−γ)

MTβ := Thom spectrum of the bundle β∗(−γ)
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There is a diagram

BH̃am
δ
(Σ, ∂)
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Ω∞• MTβ
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whose horizontal maps are homology isomorphisms in the stable
range.
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Theorem (N)

There is a diagram

BH̃am
δ
(Σ, ∂)

BSympδ(Σ, ∂)

Ω∞• MTβ

Ω∞• MTθ,

whose horizontal maps are homology isomorphisms in the stable
range.

Corollary

The geometric meaning of this theorem is that , up to torsion, any
codimension 2 foliation F with transverse volume form on a
4-manifold M is cobordant to a symplectic surface bundle if and
only if 〈p1(M)− p1(νF), [M]〉 = 0.



There is an action of BRδ on Ω∞• MTβ.

Theorem (N)

For a closed surface Σ, there is a homotopy commutative diagram

BH̃am
δ
(Σ, rel D2))

BH̃am
δ
(Σ)

Ω∞MTβ

BRδ\\Ω∞MTβ,

where the horizontal maps induce stable homology isomorphisms.

Extended hamiltonians do not have homological stability with
respect to the last boundary component.



MMM-classes

Theorem (N)

The map

R[κ1, κ2, . . . ]→ H∗(BH̃am
δ
(Σ, rel D2)),

is zero.

Theorem (N)

In the stable range, the fiber of the map

BH̃am
δ
(Σ)

κ1
4−4g(Σ)−−−−→ K (R, 2).

is homology isomorphic to BH̃am
δ
(Σ, rel D2).



KM-classes

θ × v : BΓvol
2 → BSL2(R)× K (R, 2),

Q
0

0
1

Q⊕ R
2

0
3

Q⊕ R⊕ S2
QR

4
0
5 p

01

0

02

R3

H4(BΓvol
2 )4

5

q

0 0 0 0 0

H2(BSympδ(Σ);Q) ∼= H4(BΓvol
2 ;Q)� Q⊕ S2

QR

0 R⊕ (R⊗ R)

0

0 0 0 0 0

d4

d2



KM-classes

θ × v : BΓvol
2 → BSL2(R)× K (R, 2),

Q
0

0
1

Q⊕ R
2

0
3

Q⊕ R⊕ S2
QR

4
0
5 p

01

0

02

R3

H4(BΓvol
2 )4

5

q

0 0 0 0 0

H2(BSympδ(Σ);Q) ∼= H4(BΓvol
2 ;Q)� Q⊕ S2

QR

0 R⊕ (R⊗ R)

0

0 0 0 0 0

d4

d2



Thank you!
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