MA 504 Spring 2025

 Instructor  Plamen Stefanov
 Office  MATH 728
 Email  stefanov@math.purdue.edu
 Meeting  TueThu 9:00 - 10:15 in SCHM 123
 Office Hours  TueThu 1:00-2:00
 Grader  Vicente Loccada
 Book  Walter Rudin, Principles of  Mathematical Analysis  (3rd Edition)

Homework

  • HW1: p.21-22: 2, 4, 5, 8. Due Jan. 26 (Sun)
  • HW2: p.43: 2, 3, 4, 5, S1 Due Feb. 2 (Sun)
  • HW3: p.43: 11, 12, 14, 16, 22, 29. Due Feb. 9 (Sun)
  • HW4: p.78: 1, 2, 3, 6, 7, 8, S2. Due March 2 (Sun)
  • HW5: p.78-82: 9, 16, 20. Due March. 9 (Sun)
  • HW6: p.98-102: 2, 3, 4, 7, 14, 15. Due March. 25 (Tue)

  • Exam 1: Thursday, Feb. 13, in class.

    Exam 2: Thursday, April 3, in class.

    Final exam: Thu 05/08, 3:30p - 5:30p, KRAN G018

    Course grade

    Your course grade will be determined using the following distribution: HW: 1/3; Midterm 1/6 each (1/3 total); Final: 1/3.


    Schedule 

    SCHEDULE (Tentative)

    Chapter 1: The Real and Complex Number System
        Real number system
        Extended real number system
        Euclidean space

    Chapter 2: Basic Topology
        Finite, Countable and Uncountable sets
        Metric spaces (a few examples)
        Compact sets

    Chapter 3: Numerical Sequences and Series
        Convergent sequences
        Subsequences
        Cauchy sequences
        lim-sup and lim-inf
        Series
        Absolute and conditional convergence
        Rearrangements

    Chapter 4: Continuity
        Limits of functions
        Continuous Functions
        Continuity and compactness
        Intermediate Value Theorem
        Monotone Functions (limits, discontinuities)

    Chapter 6: The Riemann-Stieltjes Integral
        Definition and Existence
        Properties
        Integration and Differentiation

    Chapter 7: Sequences and Series of Functions
        Uniform convergence
        Uniform convergence and Continuity
        Uniform convergence and Integration
        Uniform convergence and Differentiation
        Eigencontinuous families of functions
        Stone–Weierstrass Theorem