Supplement 3

1. Below, h(x) stands for the Heaviside function defined by h(x) = 0 for x < 0; h(x) = 1 for $x \ge 0$. Which of the following functions is continuous on the indicated set? Do not prove your answer using the $\varepsilon - \delta$ definition, just explain it by paying special attention to the suspicious point(s).

- (a) f = 1/x on $\mathbf{R} \setminus \{0\}$,
- (b) h(x) on **R**,

(c) h(x) on $\mathbf{R} \setminus \{0\}$,

(d) $\sin(1/x)$ on $(0, \infty)$.

2. In each example below, answer whether it is possible to define f(0) in such a way so that the extended function f, originally defined on $\mathbf{R} \setminus \{0\}$, becomes continuous on \mathbf{R} . Prove your answer (whether it is yes or not) with the definition of a continuous function. Prove continuity/discontinuity at 0 only using that $\sin(x)$ is continuous and 2π periodic, and the definition

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + \dots$$

(a) $\sin x/x$. (b) $\sin(1/x)$. (c) $x \sin(1/x)$.

3. Prove that $f(x) = \sqrt{x}$ is continuous on $(0, \infty)$ using the definition.

4. Let $f : \mathbf{R} \to \mathbf{R}$ be a periodic continuous function $(\exists T > 0 \text{ such that } \forall x, f(x+T) = f(x))$. Prove that there exist minimal and maximal values of f on \mathbf{R} .

5. Show that if f is continuous and bounded on \mathbf{R} , and $K \subset \mathbf{R}$ is a closed set, then f may not have maximum (and minimum) value on K by giving a counter-example.

6. Find an explicit example of a continuous function on **R** that does not have the property that f maps any open set into an open set, i.e., find a continuous f and an open U such that f(U) is not open. Construct a similar example, if $f: (-1, 1) \to \mathbf{R}$.