MA-504, Spring 2025, Practice Problems for Test 1

Problem 1. Prove that if $a_n \to 0$, and b_n is bounded, then $a_n b_n \to 0$.

Problem 2.

(a) Show that 1/2 is a limit point of the sequence $a_n = \cos(n\pi/3 + 1/n)$. You can use the fact that $\cos a$ is a continuous function. Construct a subsequence a_{n_k} so that $a_{n_k} \to 1/2$.

(b) Find all limit points of a_n .

Problem 3. Construct a nested sequence $\{F_n\}$ (i.e., $F_{n+1} \subset F_n$, $\forall n$) of closed sets with an empty intersection $\bigcap_{i=1}^{\infty} F_n$.

Problem 4. Find the limit of $a_n = \sqrt{n+1} - \sqrt{n}$, and prove your answer using the definition.

Problem 5. Is every one of the following sets open/closed (both or neither could be true) in the metric space X with the usual distance?

- (a) (0,1) in $X = (0,\infty)$?
- (b) (0,1] in $X = (0,\infty)$?
- (c) $\{x \in \mathbf{R}^2; |x| < 1\} \setminus \{0\}$ in $X = \mathbf{R}^2$?
- (d) The plane x_1x_2 with the line $x_2 = 0$ removed, in $X = \mathbf{R}^2$?
- (e) The curve $\{(x, \sin x) | x \in \mathbf{R}\}$ in the plane?
- (f) The line segment $\{x_2 = 0, 0 < x_1 < 1\}$ in the plane?
- (g) The spiral $\{e^{-t}(\cos t, \sin t) | t \in \mathbf{R}\}$ in the plane?

Problem 6. Let $A \subset \mathbb{R}^n$, $B = \mathbb{R}^n \setminus A$, both assumed non-empty. Find $\inf\{\operatorname{dist}(x, y) | x \in A, y \in B\}$. Is it a minimum? Is that true in any metric space?

Problem 7. Prove that

$$\left||x| - |y|\right| \le |x - y|$$

in \mathbf{R}^n .