HW #3

- (1) Prove that the equation $z^n = w$, with $\mathbb{C} \ni w \neq 0$ fixed, and n a positive integer, has exactly n distinctive solutions. This shows in particular, that $z^{1/n}$ has no unique meaning for any fixed $z \neq 0$.
- (2) Find all complex numbers that can be called $1^{1/3}$ in the context of the previous exercise.
- (3) One can define $a^z = e^{z \log a}$ for a > 0 fixed. Show that a^z is analytic in \mathbb{C} . When a = 1, we have $1^z = 1$ for every z. Then $1^{1/3} = 1$, and this is a unique value. Does that contradict the previous two exercises?
- (4) Define a branch of the square root function on $\Omega = \mathbb{C} \setminus \mathbb{R}_+$, called $\sqrt[n]{z}$, as an inverse of the square function so that $\sqrt[n]{-1} = i$.
 - (a) Prove that this is a correctly defined analytic function.
 - (b) Find its range.
 - (c) Compute $\tilde{\sqrt{i}}$, and $\sqrt{-i}$.
 - (d) Compare those two values with \sqrt{i} , and $\sqrt{-i}$ with \sqrt{z} defined as in the book (a cut along \mathbb{R}_{-}).

Note that neither (c) or (d) gives us the "right values" of \sqrt{i} , and $\sqrt{-i}$. In each case, there are two possible ones. Uniqueness comes from fixing a branch of a square root function.

- (5) We computed i^i as f(i) with $f(z) = e^{i \log z}$, where log is the branch defined in the book (and nothing says that this is the only way!). Now, interpret $w = \log z$ as any w for which $z = e^w$. Show that this equation has infinitely many solutions for w when $z \neq 0$ is fixed, and find all of them. They give us all possible values of $\log z$ (when the latter is considered as the inverse of the exponential function). Then find all values of i^i interpreted as f(i) in this sense.
- (6) Suggest a way to define 1^i and compute it. Is that value unique?
- (7) The printed version of the book: $\S1.5/\#5$.
- (8) The printed version of the book: $\S1.5/\#21$.
- (9) The printed version of the book: $\frac{1.5}{\#7}$. This problem requires more efforts than the rest.

1