

MA-54600 Homework 1 Spring 2026

1. p.32, #1 from the book.
2. p.32, #3 from the book.
3. p.34, #27 from the book.
4. Find the norms of the following functionals on (the real) $C([a, b])$ with the norm $\|f\| = \max_{[a, b]} |f|$:
 - (a)
$$l(f) = \int_a^b f(t) dt;$$
 - (b)
$$l_g(f) = \int_a^b f(t)g(t) dt, \quad g \in C([a, b]) \text{ fixed};$$
 - (c)
$$L(f) = \sum_{i=1}^n \lambda_i f(t_i),$$
 where $\lambda_1, \lambda_2, \dots$ are fixed numbers and $a \leq t_1 < t_2 < \dots < t_n \leq b.$
5. True or false?
 - (a) One can define a scalar product (\cdot, \cdot) on $C([0, 1])$ with the norm as above, to get a Hilbert space so that this norm is generated by the scalar product, i.e., $\|f\|^2 = (f, f), \forall f \in C([0, 1]).$
 - (b) If a metric space is a linear (vector) space, then one can define a norm $\|\cdot\|$ so that the metric ρ is generated by the norm, i.e., $\rho(x, y) = \|x - y\|.$
6. Let $H^1[0, 1]$ be the (Sobolev) Hilbert space with norm $\|f\|_{H^1}^2 = \int_0^1 (|f|^2 + |f'(t)|^2) dt,$ more precisely, it is the completion of $C^\infty([0, 1])$ under that norm with the inner product $\int_0^1 (\bar{f}_1 f_2 + \bar{f}'_1 f'_2) dt.$
 - (a) Prove that $H^1[0, 1]$ can be naturally identified with a subspace of $L^2([0, 1]).$ Hint: Cauchy sequences in the H^1 norm are also Cauchy in $L^2.$
 - (b) Prove that $f \mapsto f(0)$ is a continuous linear functional on $H^1[0, 1]$ (this follows from the trace theorem in 1D but you have to prove this statement without using the trace theorem).
 - (c) Let $H_0^1[0, 1]$ be the subspace of all f with $f(0) = f(1) = 0.$ Prove that it is a closed subspace.
 - (d) Express (in an explicit way) any $f \in H^1[0, 1]$ as a sum $f = f_1 + f_2,$ where $f_1 \in H_0^1[0, 1],$ and $f_2 \perp H_0^1[0, 1].$
7. An exercise about the norm of a matrix as a linear operator.

- (a) Express the norm of an $m \times n$ matrix A as an operator $A : \mathbf{R}^n \rightarrow \mathbf{R}^m$ (the Euclidean space has its usual norm here) in terms of the eigenvalues of A^*A . Here, for $A = \{a_{ij}\}$, we set $A^* = \{\bar{a}_{ji}\}$.
- (b) Derive from here, that if $A = A^*$ (then A is square), we have $\|A\| = \max |\lambda_j|$, where the maximum is taken over all eigenvalues of A (which must be real).
- (c) What is the norm of $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and how does it compare to the eigenvalues of A ?