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X-ray transform

I recall that the Radon transform makes from a function on R2 a function on
straight lines:

Rf (`) =

∫
`

f d ,

and the inverse problem is the problem of reconstructing f from Rf .
More generally, the geodesic X-ray transform on a Riemannian manifold makes
from a function on the manifold a function on the set of geodesics running
between boundary points. Clearly, this also makes sense for other families of
curves, for example, magnetics geodesics. A beautiful Mukhometov’s theorem
of 1975 solves this problem for an arbitrary regular family of curves on
subdomains of the Euclidean plane.
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Mukhometov’s theorem
I will not formulate Mukhometov’s theorem in exact form, but instead I
reformulate it in a way convenient for my further talk.

Theorem
Let M be a bounded simply connected set in R2 with smooth boundary ∂M.
Consider a family of curves Γ joining boundary points in M which satisfies the
following conditions:

1. For every interior point x ∈ M and every direction ξ, there is exactly one
curve of our family passing through x in the direction ξ (considering the
curves obtained by shift of a parameter to be the same curve).

2. Any two points (x , y) ∈ ∂M × ∂M are joint by exactly one curve of Γ,
which depends smoothly on x and y.

3. All curves in Γ are parametrized by arclength with respect to the
Euclidean metric.

If f ∈ C∞(M) has zero integrals over the curves in Γ,∫
γ

f (γ) ds = 0, γ ∈ Γ,

then f is itself zero.
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This theorem solves the scalar integral geometry problem for a regular family of
curves in subdomains of R2 with flat metric and these subdomains are convex
with respect to this family. A similar theorem was later proved by Anikonov for
one-forms instead of functions, a vector integral geometry problem or Doppler
transform.
No theorem of such generality is known in higher dimensions. Almost all results
concern geodesic, or magnetic geodesic, case, except for results of
Frigyik-Stefanov-Uhlmann and Holman-Stefanov where they consider the scalar
and vector integral geometry problems for a real analytic regular family of
curves.

At first glance, Mukhometov’s theorem has no no underlying geometric
structure for the family of cuves in question. Our aim is to reveal this structure
and, surely, to generalize it to curved sufaces rather than subdomains of the
Euclidean plane. We consider any two-dimensional manifold with boundary,
and we wish to eliminate the convexity condition.
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Regular family of curves

On any two-dimensional manifold M with boundary consider a family of curves
Γ joining boundary points in M which satisfies the following conditions:

1. For every interior point x ∈ M and every direction ξ, there is exactly one
curve of our family passing through x in the direction ξ (considering the
curves obtained by shift of a parameter to be the same curve).

2. Any two points (x , y) ∈ ∂M × ∂M are joint by at most one curve of Γ,
which depends smoothly on x and y .

If these conditions are satisfied Γ is called a regular family of curves.
The conjecture is that the both scalar and vector integral geometry problems
can be solved.
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X-ray transform over Γ

Since the integration of scalar function depends on parametrization we make
the assumption that all curves in Γ are parametrized by arclength with respect
to any Finsler metric F .

Theorem (A.-Dairbekov)
Let M be a two-dimensional manifold with boundary. Consider a regular family
of curves Γ on M and assume that all curves of Γ parametrized by arclength
with respect to any Finsler metric. Then a sum of function f ∈ C∞(M) and
smooth one-form β on M integrates to zero over the curves in Γ,∫

γ

f (γ) + βγ(γ̇) ds = 0, γ ∈ Γ,

if and only if f = 0 and β = dh for some h ∈ C∞(M) such that h|∂M = 0.
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X-ray transform over Γ

When we consider the purely vector problem we do not need any
parametrization. So, in this case the conjecture is true.

Theorem (A.-Dairbekov)
Let M be a two-dimensional manifold with boundary and consider a regular
family of curves Γ on M. Then a smooth one-form β on M integrates to zero
over the curves in Γ, ∫

γ

βγ(γ̇) ds = 0, γ ∈ Γ,

if and only if β = dh for some h ∈ C∞(M) such that h|∂M = 0.
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Thermostats

If the curves of regular family are parametrized by arclength of some Finsler
metric then Γ defines a flow on unit sphere bundle SM.
Indeed, any λ ∈ C∞(SM) defines the flow φ on SM by the following Newton’s
equation:

Dγ̇

dt
= λ(γ, γ̇)γ̇⊥ (1)

to be called the flow of the thermostat (M,F , λ).
Given a general family of curves Γ with curves parametrized by arclength of
Finsler metric, we define

λ(x , ξ, t) =
〈Dγ̇x,ξ(t)

dt
, γ̇⊥x,ξ(t)

〉
γ̇x,ξ(t)

.

Since there is at most one curve γ ∈ Γ, up to a shift of the parameter, passing
through x in the direction ξ for every point x ∈ M and every direction ξ,
function λ does not depend on t. Then Γ becomes a family of curves satisfying
(1).
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Elimination of convexity

The elimination of the convexity condition is possible due to the same
technique that was firstly introduced by Sharafutdinov. This is the second
crucial step in our argument.

Lemma
If a sum of function f ∈ C∞(M) and smooth one-form β on M integrates to
zero over the curves in Γ,∫

γ

f (γ) + βγ(γ̇) ds = 0, γ ∈ Γ,

then f (x) + βx(ξ) = 0 for all (x , ξ) ∈ S(∂M).

The lemma implies that f |∂M = 0.
We will use the following consequence of Sharafutdinov’s result, which shows
that a certain correction can be added to f (x) + βx(ξ) to make it vanish on
∂M.
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Elimination of convexity

Introduce the following notation w = f + β.

Lemma
Let g be a Riemannian metric on M. For every a smooth 1-form ω, there is
ϕ ∈ C∞0 (M) such that

dxϕ(ν) = βx(ν)

for all x ∈ ∂M and every vector ν ∈ TxM orthogonal to ∂M with respect to g.

Let ν(x) be an inward unit normal vector field to ∂M, i.e. ν ∈ TxM, x ∈ ∂M
such that gν(x)(ν(x), ξ) = 0 for all ξ ∈ Tx∂M.
We construct Riemannian metric in Lemma above as follows: restrict
fundamental tensor gij of Finsler metric F to any smooth vector field ν̃(x) on
M such that ν̃|∂M = ν.
Write

w̃(x , v) := f (x) + βx(ξ)− dxϕ(v).

Then w̃(x , ν) = 0 for x ∈ ∂M since f |∂M = 0.
We may henceforth assume that the field w itself vanishes on the boundary
w|∂M = 0.
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Elimination of convexity

Losing no generality, we assume that (M,F ) is a smooth subset of a compact
smooth Finsler surface U without boundary and extend F , Γ M to U.

Now, we extend w from M to all of U by zero, denoting it again by w which is
continuous on the whole U and contains in H1(SU).
Given (x , v) ∈ SM, let γx,v be the complete curve of Γ in U issuing from (x , v),
γ̇x,v (0) = ξ. Therefore, for any (x , v) there is a number lx,v such that
γx,v (lx,v ) /∈ M. We define a function u : SM → R to be

u(x , v) =

∫ 0

lx,v

w(γx,v (t), γ̇x,v (t)) dt.

Note that the value of u(x , v) is independent of the choice of lx,v .
Call a point (x , v) ∈ SM regular if the curve γx,v of Γ intersects ∂M
transversally from either side and the open segment of γx,v between the
basepoint x and the point of intersection lies entirely in M int. We denote by
RM ⊂ SM the set of all regular points. It is clear that RM is open in SM and
has full measure in SM.
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Short proof

Lemma (A.-Dairbekov)
The function u has the following properties:

1. u|S(U\M) = 0.

2. u ∈ H1(SU) ∩ C(SU) ∩ C∞(RM).

3. u is C 1 smooth along the lifts of curves of Γ to SM and satifies

Fu(x , v) = w(x , v) on SM.

Using smoothening techniques we show that the following integral identity
holds for u ∫

SM

(FVu)2 dµ−
∫
SM

K(Vu)2 dµ = 0, V := (v⊥)i
∂

∂v i

This implies that Vu ≡ 0 on RM. Then u independent of v almost everywhere.
Since u ∈ C(SM), then this holds everywhere. But in this case
Fu = dux(v) = w(x , v).
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Magnetic Flows

On a compact oriented Riemannian manifold (M, g) consider closed 2-form Ω
and magnetic flow φt on TM described by Newton’s law of motion

∇γ̇ γ̇ = Y (γ̇),

where ∇ is the Levy-Civita connection of g and Y : TM → TM is the Lorentz
force associated with Ω, i.e., the bundle map uniquely determined by

Ωx(ξ, η) = 〈Yx(ξ), η〉

for all x ∈ M and ξ, η ∈ TxM. Orbits of magnetic flow are referred to as
magnetic geodesic.

Magnetic flows were firstly considered by Anosov-Sinai and Arnold. It was
shown in that they are related to dynamical systems, symplectic geometry,
classical mechanics and mathematical physics.
In inverse problems magnetic flows were considered by
Dairbekov-Paternain-Stefanov-Uhlmann.
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Simple magnetic systems

We call (M, g ,Ω) a simple magnetic system if

• For any two points x , y ∈ ∂M there is unique magnetic geodesic
connecting x , y and depending smoothly on x , y .

• The boundary ∂M is strictly magnetic convex, that is
Λ(x , ξ) > 〈Y (ξ), ν(x)〉, (x , ξ) ∈ TM, where Λ is the second fundamental
form on ∂M and ν is the unit inward normal.

In this case, M is diffeomorphic to the unit ball of Rn and therefore Ω is exact
i.e., is of the form

Ω = dω

where is 1-form on M — magnetic potential. We call (M, g , ω) a simple
magnetic system on M. The notion of simplicity arises naturally in the context
of the boundary rigidity problem.
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Attenuated magnetic X-ray transform

Let h ∈ C∞(M) and α be a smooth 1-form on M. Consider an attenuation
coefficient a as a combination of h and α, i.e. a(x , ξ) = h(x) + αx(ξ) for
(x , ξ) ∈ SM. Let ψ : SM → R be a smooth function on SM. Define the
attenuated magnetic X-ray transform of ψ by

I aψ(x , ξ) :=

∫ τ(x,ξ)

0

ψ(φt(x , ξ)) exp
[∫ t

0

a(φs(x , ξ)) ds
]

dt, (x , ξ) ∈ ∂+SM

where ∂+SM denotes the set inward vectors and τ(x , ξ) is the time when the
magnetic geodesic γx,ξ(t) such that x = γx,ξ(0), ξ = γ̇x,ξ(0) exits is finite for
each (x , ξ) ∈ ∂+SM.

For k = 0, 1, 2, ... denote by C∞(SkM) the space of symmetric covariant tensor
fields on M of rank k, when k = 0, we abbreviate this to C∞(M).
For any m ≥ 0 we are interested in I a applied to the functions on SM of the
following type

ψ(x , ξ) =
m∑

k=0

f k
i1···ik (x)ξi1 · · · ξik , (2)

where f k ∈ C∞(SkM) for every 0 ≤ k ≤ m.

Yernat M. Assylbekov Integral geometry problems on Finsler and Riemannian surfaces



Attenuated magnetic X-ray transform

Let h ∈ C∞(M) and α be a smooth 1-form on M. Consider an attenuation
coefficient a as a combination of h and α, i.e. a(x , ξ) = h(x) + αx(ξ) for
(x , ξ) ∈ SM. Let ψ : SM → R be a smooth function on SM. Define the
attenuated magnetic X-ray transform of ψ by

I aψ(x , ξ) :=

∫ τ(x,ξ)

0

ψ(φt(x , ξ)) exp
[∫ t

0

a(φs(x , ξ)) ds
]

dt, (x , ξ) ∈ ∂+SM

where ∂+SM denotes the set inward vectors and τ(x , ξ) is the time when the
magnetic geodesic γx,ξ(t) such that x = γx,ξ(0), ξ = γ̇x,ξ(0) exits is finite for
each (x , ξ) ∈ ∂+SM.
For k = 0, 1, 2, ... denote by C∞(SkM) the space of symmetric covariant tensor
fields on M of rank k, when k = 0, we abbreviate this to C∞(M).

For any m ≥ 0 we are interested in I a applied to the functions on SM of the
following type

ψ(x , ξ) =
m∑

k=0

f k
i1···ik (x)ξi1 · · · ξik , (2)

where f k ∈ C∞(SkM) for every 0 ≤ k ≤ m.
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It is easy to see that I a has nontrivial kernel since

∫ τ(x,ξ)

0

(Gµ + σ ◦ a)

(
m−1∑
k=0

hk
i1···ik (γx,ξ(t))γ̇x,ξ(t)i1 · · · γ̇x,ξ(t)ik

)
·

· exp

[∫ t

0

a(γx,ξ(s), γ̇x,ξ(s)) ds

]
dt = 0

for hr ∈ C∞(S rM), 0 ≤ r ≤ m − 1, such that hr |∂M = 0. Here and futher σ
denotes the symmetrization.

I investigate if these are the only elements of the kernel.

Theorem (A.)
Let (M, g , ω) be a simple 2-dimensional magnetic system. Consider h and α to
be a smooth complex function and 1-form (resp.) on M, and denote a = h +α.
If ψ is a smooth function on SM of type (2) such that I aψ ≡ 0, then

(Gµ + σ ◦ a)

(
m−1∑
k=0

hk
i1···ik (x)ξi1 · · · ξik

)
=

m∑
k=0

f k
i1···ik (x)ξi1 · · · ξik

for some hr ∈ C∞(S rM) such that hr |∂M = 0, 0 ≤ r ≤ m − 1.

Proof follows the same scheme as in the papers of Paternain-Salo-Uhlmann.
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Holomorphic functions

Since M is assumed to be oriented, there is a circle action on the fibers of SM
with infinitesimal generator V called the vertical vector field.
The space L2(SM) decomposes orthogonally as a direct sum

L2(SM) =
⊕
k∈Z

Hk

where Hk is the eigenspace of −iV corresponding to the eigenvalue k. Any
function u ∈ C∞(SM) has a Fourier series expansion

u =
∞∑

k=−∞

uk ,

where uk ∈ Ωk := C∞(SM) ∩ Hk .
A function u on SM is called holomorphic if uk = 0 for all k < 0. Similarly, we
say that a function u on SM is called antiholomorphic if uk = 0 for all k > 0.
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Holomorphic integrating factors

By a (anti)holomorphic integrating factor we mean a complex function
w ∈ C∞(SM) which is (anti)holomorphic and such that

Gµw = −a in SM.

The main ingredient in the proof of main theorem will turn to be the existence
of holomorphic and antiholomorphic integrating factors.

Theorem (Ainsworth)
Let (M, g , ω) be a simple magnetized Riemannian surface and let a ∈ C∞(SM)
be the sum of a function on M and a 1-form on M. Then there exist a
holomorphic w ∈ C∞(SM) and antiholomorphic w̃ ∈ C∞(SM) such that
Gµw = Gµw̃ = −a.

Yernat M. Assylbekov Integral geometry problems on Finsler and Riemannian surfaces



Holomorphic integrating factors

By a (anti)holomorphic integrating factor we mean a complex function
w ∈ C∞(SM) which is (anti)holomorphic and such that

Gµw = −a in SM.

The main ingredient in the proof of main theorem will turn to be the existence
of holomorphic and antiholomorphic integrating factors.

Theorem (Ainsworth)
Let (M, g , ω) be a simple magnetized Riemannian surface and let a ∈ C∞(SM)
be the sum of a function on M and a 1-form on M. Then there exist a
holomorphic w ∈ C∞(SM) and antiholomorphic w̃ ∈ C∞(SM) such that
Gµw = Gµw̃ = −a.

Yernat M. Assylbekov Integral geometry problems on Finsler and Riemannian surfaces



Holomorphic integrating factors

By a (anti)holomorphic integrating factor we mean a complex function
w ∈ C∞(SM) which is (anti)holomorphic and such that

Gµw = −a in SM.

The main ingredient in the proof of main theorem will turn to be the existence
of holomorphic and antiholomorphic integrating factors.

Theorem (Ainsworth)
Let (M, g , ω) be a simple magnetized Riemannian surface and let a ∈ C∞(SM)
be the sum of a function on M and a 1-form on M. Then there exist a
holomorphic w ∈ C∞(SM) and antiholomorphic w̃ ∈ C∞(SM) such that
Gµw = Gµw̃ = −a.

Yernat M. Assylbekov Integral geometry problems on Finsler and Riemannian surfaces



We say that f ∈ C∞(SM) has degree m if fk = 0 for |k| ≥ m + 1. The
identification between real-valued symmetric m-tensor fields and smooth real
valued functions on SM with degree m was shown by Paternain-Salo-Uhlmann.
This reduces Theorem A for the proof of the following

Lemma
Let (M, g , ω) be a simple 2-dimensional magnetic system, and assume that
u ∈ C∞(SM) satisfies Gµu + au = −ψ in SM with u|∂(SM) = 0.

(a) If m ≥ 0 and if ψ ∈ C∞(SM) is such that ψk = 0 for k ≤ −m − 1, then
uk = 0 for k ≤ −m.

(b) If m ≥ 0 and if ψ ∈ C∞(SM) is such that ψk = 0 for k ≥ m + 1, then
uk = 0 for k ≥ m.

We will only prove item (a) of the lemma, the proof of item (b) is completely
analogous. Suppose that u is a smooth solution of Gµu + au = −ψ in SM
where ψk = 0 for k ≤ −m − 1 and u|∂(SM) = 0. We choose a nonvanishing
function v ∈ Ωm and define the 1-form

A := −v−1Gµv .

Yernat M. Assylbekov Integral geometry problems on Finsler and Riemannian surfaces



Then vu solves the problem

(Gµ + a + A)(vu) = −vψ in SM, vu|∂(SM) = 0.

Note that vψ is a holomorphic function. There exists a holomorphic
w ∈ C∞(SM) with Gµw = a + A. The function ewvu then satisfies

Gµ(ewvu) = −ewvψ in SM, ewvu|∂(SM) = 0.

The right hand side ewvψ is holomorphic, then ewvu is also holomorphic and
(ewvu)0 = 0. Looking at Fourier coefficients shows that (vu)k = 0 for k ≤ 0,
and therefore uk = 0 for k ≤ −m as required.
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Let f and β be a symmetric m-tensor and m− 1-tensor field on M and suppose
that I a(f + β) = 0. We write

u(x , ξ) :=

∫ τ(x,ξ)

0

(
m∑

k=0

f k
i1···ik (γx,ξ(t))γ̇x,ξ(t)i1 · · · γ̇x,ξ(t)ik

)
·

· exp

[∫ t

0

a(γx,ξ(s), γ̇x,ξ(s)) ds

]
dt = 0, (x , ξ) ∈ SM.

Then u|∂(SM) = 0, and also u ∈ C∞(SM). Now

m∑
k=0

f k
i1···ik (x)ξi1 · · · ξik

has degree m, and u satisfies Gµu + au = −(f + β) in SM with u|∂(SM) = 0.
Then u has degree m − 1. We let p := −u. Now decompose p into its Fourier
components, and components in Ωi and Ω−i associate a symmetric i-tensor,
denoted by hi . This proves the theorem.
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