On support theorems for the X-Ray transform with incomplete data

Aleksander Denisiuk
University of Warmia and Mazury in Olsztyn, Poland
denisjuk@matman.uwm.edu.pl

Irvine, June 9, 2012
Introduction
Weighted X-ray Transform

- $X \subset \mathbb{R}^n$ is open
- $Y \subset \mathbb{G}_n$ is an immersed real-analytic n-dimensional submanifold of the set of lines—*line complex*
- $Z = \{ (x, l) \in X \times Y \mid x \in l \}$—the incidence relation
- $\mu(x, l) \in C^\infty(Z)$ is a weight function
- $l(a, \xi) = \{ x = a + \xi t \}$ is a line parameterization
- $R_\mu f(l) = R_\mu f(a, \xi) = \int_{l(a, \xi)} f(x) \mu(x, l(a, \xi)) \, dt$
Boman-Quinto support theorems [BQ]
Introduction
Boman-Quintosupport theorems [BQ]

Type I: Given a non-planar real analytic surface $W \subset \mathbb{R}^3$. Y is the set of all lines l, tangent to W, such that W has nonzero directional curvature along l at point of tangency.

Type II: Given a nonsingular real analytic curve $\gamma \in \mathbb{R}^3$. Y is the set of lines intersecting this curve non-tangentially.

Type III: Given a closed simple nonsingular real analytic curve of directions $\theta \subset S^2$. Y is the set of lines with directions on θ.
Theorem 1. Let Y be an open connected subset of type I complex defined by W. Assume that Y is an embedded submanifold of the set of all lines. In case there is a plane \mathcal{P} tangent to W at non-discrete set of points, assume that no line in Y is contained in \mathcal{P}.

Let X be an open set in \mathbb{R}^3 disjoint from W and let $\mu(x, l)$ be real analytic function on Z that is never zero. Let $f \in \mathcal{E}'(X)$. If $R_\mu f|_Y = 0$ and some line in Y is disjoint from $\text{supp } f$, then every line in Y is disjoint from $\text{supp } f$.
Theorem 2. Let Y be an open connected subset of type II complex defined by γ. Assume that Y is an embedded submanifold of the set of all lines. If γ is a plane curve, assume that no line in Y is contained in a plane containing γ. Let X be an open set in \mathbb{R}^3 disjoint from γ and let $\mu(x, l)$ be real analytic function on Z that is never zero. Let $f \in \mathcal{E}'(X)$. If $R_\mu f|_Y = 0$ and some line in Y is disjoint from $\text{supp } f$, then every line in Y is disjoint from $\text{supp } f$.
Theorem 3. Let Y be an open connected subset of type II complex defined by θ. Assume that θ is not a great circle of \mathbb{S}^2.

Let X be an open set in \mathbb{R}^3 disjoint from γ and let $\mu(x, l)$ be real analytic function on Z that is never zero. Let $f \in \mathcal{E}'(X)$. If $R_\mu f|_Y = 0$ and some line in Y is disjoint from $\text{supp } f$, then every line in Y is disjoint from $\text{supp } f$.
Theorem of Hörmander

Theorem 4. Let X be an open subset of \mathbb{R}^n, $f \in \mathcal{D}'(x)$, and x_0 a boundary point of the support of f, and assume that there is a C^2 function F such that $F(x_0) = 0$, $dF(x_0) \neq 0$, and $F(x) \leq 0$ on supp f. Then $(x_0, \pm dF(x_0)) \in WF_A(f)$.
Double fibration

- \(N^*(Z) \subset T^*X \setminus 0 \times T^*Y \setminus 0 \)
- \(p_X : Z \to X \) has surjective differential (\(Y \) is a regular line complex)
Admissible complexes

- cone $C_x = \bigcup_{Y} p_Y(p_X^{-1}(x)) \subset X$
- for non-critical x C_x is two-dimensional
- $l \in Y$ is non-critical, if not all of its points are critical.
- complex of lines is admissible, if \forall non-critical $x \in l C_x$ has the same tangent plane along l
Proposition 5 (cf. [GU]). Let Y be a regular real analytic admissible line complex. Let $l_0 \in Y$ and assume $f \in \mathcal{E}'(X)$ and $R_{\mu}f(l) = 0$ for all $l \in Y$ in a neighborhood of l_0. Let $x \in l_0 \cap X$ and let $\xi \in T^*_x(X)$ be conormal to l_0, but not conormal to the tangent plane to C_x along l_0. Then $(x, \xi) \notin WF_A(f)$.
Proof of the proposition

- Let $\Lambda_0 \subset \Lambda$ be a set of (x, ξ, l, η) such that ξ is not conormal to C_x along l.
- R_μ as a Fourier integral operator with Lagrangian manifold Λ
- Λ_0 is a local canonical graph
- R_μ is analytic elliptic, when microlocally restricted to Λ_0
- $R_\mu f = 0$ near $l_0 \Rightarrow (x, \xi) \notin WFA(f)$ for $(x, \xi, l_0, \eta) \in \Lambda_0$
Characteristic paths

Let \(x_0 \in \mathbb{RP}^n \). *Characteristic path* with pivot point \(x_0 \) is the smooth path in \(p_Y(p_X^{-1}(x_0)) \).

Proposition 6. Let the hypotheses of theorem Type I (Type II, Type III) hold. Let \(f \in \mathcal{E}'(X) \) and assume \(R_\mu f = 0 \) on \(Y \). Let \(l(s) : [a, b] \to Y \) be a characteristic path and assume \(l(a) \) does not meet \(\text{supp} \, f \) and the pivot point of the path is disjoint from \(\text{supp} \, f \). Then

\[
l(s) \cap \text{supp} \, f = \emptyset \text{ for } a \leq s \leq b
\]
Proof of proposition 6

- Reduce to the case of pivot point at infinity
- Construct a “wedge neighbourhood” of \(l(s) \) in \(X \):
 - \(D(s, \tau), D(s, 0) = l(s), (\tau = (\tau_1, \tau_2), \|\tau\| \leq \varepsilon) \)
 - \(D(a, \tau) \cap \text{supp } f = \emptyset \)
 - no conormal \(\bar{\xi} \) to \(\partial D(\bar{s}) \) at \(\bar{x} \) is conormal to \(C_{\bar{x}} \) along \(l(\bar{s}) \ni \bar{x} \)
- Let \(\bar{s} = \sup \{ s_1 \in [a, b] \mid D(s) \cap \text{supp } f = \emptyset \text{ for } a \leq s \leq s_1 \} \)
- \(D(\bar{s}) \) meets \(\text{supp } f \) at some point \(\bar{x} \in \partial D(\bar{s}), \bar{\xi} \perp \partial D(\bar{s}) \)
- Proposition 11 implies that \((\bar{x}, \bar{\xi}) \notin WF_A(f) \)
- Hörmander’s theorem implies that \(f = 0 \) near \(\bar{x} \)
- The only possibility is \(\bar{s} = b \). So, \(l(b) \cap \text{supp } f = \emptyset \)
Boman-Quinto support theorems—revised
Proposition—revised
Completeness condition

- Let Y be a n-dimensional complex of lines
- $x(t) = \xi(u)t + \beta(u)$ be a local parameterization
- $y_0 \in Y$, $\omega \in \mathbb{R}^{n^*}$, $\omega \neq 0$, $\omega \perp y_0$

Definition 7 (cf. [Pa]). Line y_0 satisfies a *weak completeness condition* for ω at $x_0 = x(t_0) \in y_0 = y(u_0)$, if a germ of the map $\Pi_\omega : Y \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}^n$, $\Pi_\omega : (u, t) \mapsto (\langle \omega, \dot{x} \rangle, x(t))$ is a diffeomorphism at (u_0, t_0).
\(\omega\)-critical points

- \(Y\) is an \(n\)-dimensional line complex, \(y \in Y, \omega \perp y\)

Definition 8. Point \(x(t) \in y\) is \(\omega\)-critical, if the weak completeness condition is not held at \(h\)

- Line \(y\) is \(\omega\)-critical, if all its point are \(\omega\)-critical

- The set of conormals \(\omega \perp y\) for which \(y\) is \(\omega\)-critical is called the set of critical conormals, and is denoted by \(\Omega_y\)
ω-critical lines

Lemma 9. Let \(y_0 = y(u_0) \in Y, \omega \perp y_0 \). A point \(x = x(u_0, t_0) \) is \(\omega \)-critical \iff \(P_\omega(t_0) = 0 \), where polynomial

\[
P_\omega(t) = \left\langle \omega, \sum_{k=1}^{n} \frac{\partial \xi}{\partial u_k} P_k(t) \right\rangle.
\]

Proof.

\[
P_\omega(t) = \det \begin{vmatrix}
\left\langle \omega, \frac{\partial \xi}{\partial u^1} \right\rangle & \left\langle \omega, \frac{\partial \xi}{\partial u^2} \right\rangle & \ldots & \left\langle \omega, \frac{\partial \xi}{\partial u^n} \right\rangle & 0 \\
\frac{\partial \xi^1}{\partial u^1} t + \frac{\partial \beta^1}{\partial u^1} & \frac{\partial \xi^1}{\partial u^2} t + \frac{\partial \beta^1}{\partial u^2} & \ldots & \frac{\partial \xi^1}{\partial u^n} t + \frac{\partial \beta^1}{\partial u^n} & \xi^1 \\
\frac{\partial \xi^2}{\partial u^1} t + \frac{\partial \beta^2}{\partial u^1} & \frac{\partial \xi^2}{\partial u^2} t + \frac{\partial \beta^2}{\partial u^2} & \ldots & \frac{\partial \xi^2}{\partial u^n} t + \frac{\partial \beta^2}{\partial u^n} & \xi^2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\partial \xi^n}{\partial u^1} t + \frac{\partial \beta^n}{\partial u^1} & \frac{\partial \xi^n}{\partial u^2} t + \frac{\partial \beta^n}{\partial u^2} & \ldots & \frac{\partial \xi^n}{\partial u^n} t + \frac{\partial \beta^n}{\partial u^n} & \xi^n
\end{vmatrix}
\]
Theorem 10. Let Y be an n-dimensional line complex in \mathbb{R}^n. The following properties are equivalent:

1. Y is admissible

2. For all non-critical line $y \in K$, for all $\omega \in \mathbb{R}^{n^*}$, $\omega \perp y$, either y is ω-critical, or all its ω-critical points are critical.

3. For all non-critical $y \in Y$ $\dim \Omega_y = n - 2$.

Admissible complexes and critical normals
Proof of the theorem 10

- **Tangent plane to** C_{x_0} **is spanned on vectors** ξ **and**
 \[
 \sum_{k=1}^{n} \left(\frac{\partial \xi}{\partial u^k} t + \frac{\partial \beta}{\partial u^k} \right) P_k(t_0) = \\
 \left(\sum_{k=1}^{n} \frac{\partial \xi}{\partial u^k} P_k(t) \right) (t - t_0) - P_0(t) \xi,
 \]

- **So,** $\Omega_y = \left\{ \omega \in \mathbb{R}^{n*} \mid \langle \omega, \xi \rangle = 0, P_\omega(t) \equiv 0 \right\} = \\
 \bigcap_{t \in \mathbb{R}} \left\{ \omega \in \mathbb{R}^{n*} \mid \omega \perp \xi, \omega \perp \sum_{k=1}^{n} \frac{\partial \xi}{\partial u^k} P_k(t) \right\} = \\
 \bigcap_{t \in \mathbb{R} \setminus \text{Crit}_y} \left\{ \omega \in \mathbb{R}^{n*} \mid \omega \perp TC_{x(t)} \right\} = \\
 \bigcap_{t \in \mathbb{R} \setminus \text{Crit}_y} (TC_{x(t)})^\perp = \left(\bigcup_{t \in \mathbb{R} \setminus \text{Crit}_y} TC_{x(t)} \right)^\perp
Proposition 11. Let Y be a real analytic n-dimensional line complex in \mathbb{R}^n. Let $l_0 \in Y$ and assume $f \in \mathcal{E}'(X)$ and $R_{\mu}f(l) = 0$ for all $l \in Y$ in a neighborhood of l_0. Let $x_0 \in l_0 \cap X$ and let $\xi \in T^*_{x_0}(X)$ be conormal to l_0, and such that x_0 is not ξ-critical point for l_0. Then $(x_0, \xi) \notin WF_A(f)$.
Proof of the revised proposition

- Let $\Lambda_0 \subset \Lambda$ be a set of (x, ξ, l, η) such that x is not ξ-critical for l.
- R_μ as a Fourier integral operator with Lagrangian manifold Λ
- Λ_0 is a local canonical graph
- R_μ is analytic elliptic, when microlocally restricted to Λ_0
- $R_\mu f = 0$ near $l_0 \Rightarrow (x, \xi) \notin WF_A(f)$ for $(x, \xi, l_0, \eta) \in \Lambda_0$
A common way to prove a support theorem

Principle 12. Let Y be an n-dimensional complex of lines in \mathbb{R}^n. Let $f \in \mathcal{E}'(X)$ and assume $R_{\mu}f = 0$ on Y. Let $l(s) : [a, b] \to Y$ be a path and assume $l(a)$ does not meet $\text{supp } f$. Suppose that there exists a “wedge neighbourhood” of $l(s)$ in X, such that

1. $D(s, \tau), D(s, 0) = l(s)$
2. $D(a, \tau) \cap \text{supp } f = \emptyset$
3. for no conormal $\bar{\xi}$ to $\partial D(\bar{s})$ at \bar{x}, line $l(\bar{s}) \ni \bar{x}$ is $\bar{\xi}$-critical

Then

$$l(s) \cap \text{supp } f = \emptyset \text{ for } a \leq s \leq b$$
Admissible complexes—characteristic paths

- \(\Omega_y = \left(\bigcup_{t \in \mathbb{R} \setminus \text{Crit}_y} TC_{x(t)} \right)^\perp \)
- \(\dim \Omega_y = n - 2 \)
- for each critical point \(x_j \in y \), \(\dim T_yY \cap T_yG_{x_j} = 1 + r_j \), where \(r_j \) is the multiplicity of \(x_j \), \(\sum r_j = n - 2 \)
Non-admissible complex

\[x = \begin{pmatrix} u_3 t + u_1 \\ u_1 t + u_2 \\ t \end{pmatrix} \]

\[P_\omega(t) = \omega_1 - t\omega_2 \]

- you can choose \(\varepsilon(s) \) such that it will be internal point of \(D(s, \tau) \).
Generalizations

- hyperbolic complexes of lines
- complex (\mathbb{C}) critical points
By a complex of lines we understand a submanifold $K \subset Y$, $\dim K \geq n - 1$

Definition 13. Let $y \in K \subset Y$ and $\dim K = n - 1 + r$. A point $x \in y$ is a *critical* for the complex K if

$$R(x) = \dim (T_yK \cap T_yY_x) > r.$$ A number $k(x) = R(x) - r$ is called the *multiplicity* of x.

Complexes of lines and critical points
Admissible complexes—revised [De]
Complexes of curves

- Let a smooth manifold X, $\dim X = n$ be given.
- Let Y be a family of curves on X:
 - $\forall L \subset T_x X$, $\dim L = 1$ there is exactly one curve $y \in Y$, such that $x \in y$ and $T_x y = L$.
 - then $\dim Y = 2n - 2$.
- Assume that $\pi_Y : N^* Z \rightarrow T^* Y \setminus 0$ is bijective immersion.
- $\Sigma = \text{Im} \pi_Y \subset T^* Y \setminus 0$ is the characteristic surface.
- Covector $\xi \in T^*_y Y$ is called characteristic, if $(y, \xi) \in \Sigma$.
- Let $Y_x = \{ y \in Y \mid y \ni x \} \subset Y$.
- $\Sigma = \bigcup_{x \in y} N^*_y Y_x$.

Introduction

Boman-Quinto support theorems [BQ]

Boman-Quinto support theorems—revised

Bibliography
Complexes of curves and critical points

- By a complex of curves we understand a submanifold $K \subset Y$, $\dim K \geq n - 1$

Definition 14. Let $y \in K \subset Y$ and $\dim K = n - 1 + r$. A point $x \in y$ is a critical for the complex K if $R(x) = \dim(T_yK \cap T_yY_x) > r$. A number $k(x) = R(x) - r$ is called the multiplicity of x
Critical points and characteristic covectors

Lemma 15 (cf. [Gu]). There is a critical point $x \in y \in K$ of multiplicity $k(x) = k$ if and only if there is subspace $L_x \subset N^*yK$ with $\dim L_x = k$ that consists of characteristic covectors.

Proof.

- $\dim K = n - 1 + r$, $\dim (T_yK \cap T_yY_x) = r + k$
- $(T_yK \cap T_yY_x)^\perp = (T_yK)^\perp \cup (T_yY_x)^\perp$
- $2n - 2 - r - k = (n - 1 - r) + (n - 1) - \dim (N^*yK \cap N^*Y_x)$
Definition 16. A complex of curves K is hyperbolic, if $\forall y \in K$ there exist critical points $x_1, \ldots, x_s \in y$ such that

$$N_y^* K = L_{x_1} \oplus \cdots \oplus L_{x_s},$$

where L_{x_j} is the characteristic subspace corresponding to x_j.

Definition 17. A complex of curves K is characteristic,

$$N^* K \subset \Sigma.$$

Lemma 18. K is characteristic $\iff \forall y \in K$ there exists critical point $x \in y$ of multiplicity $\text{codim } K$

Remark. The notion of hyperbolic complex of curves differs from the notion of admissible complex of curves.

For \mathbb{C}-complexes of lines notions coincide.
Regular non-splitting critical points

Definition 19. A critical point $x \in y$ is *non-singular*, if there is a neighborhood $W \subset K$ of a curve y such that $\forall \xi \in L_x \quad T_\xi(N^*W \cap \Sigma) = T_\xi(N^*W) \cap T_\xi(\Sigma)$

Definition 20. Let K be a hyperbolic complex, $y_0 \in K$. We say that y_0 has *non-splitting* critical points if there is a neighborhood $W \subset K$ of a curve y_0 such that for $y \in W$ there are s non-singular critical points $x_1, \ldots, x_s \in y$ smoothly dependent in y with constant multiplicities k_1, \ldots, k_s ($\sum k_i = \text{codim } K$) for which $N^*_y(W) = L_{x_1} \oplus \cdots \oplus L_{x_s}$
Theorem 21. Suppose that K is a hyperbolic complex, $y_0 \in K$ is a curve with non-splitting critical points. Then there exists s characteristic complexes W_j, such that $W = \cap W_j$ and $\forall y \in W$ the critical point $x_j \in y$ will be critical for exactly one complex W_j with the same multiplicity.

Conversely, suppose that $W = \cap W_j$, where the W_j are hyperbolic complexes, and $\dim W \geq n - 1$. Then W is hyperbolic, and any $y \in W$ will have as critical points all the critical points of all the W_j with corresponding multiplicity.
Proof of the theorem 21

- \(N^*W \cap \Sigma = \cap V_j \), where \(V_j \) is the bundle of characteristic covectors corresponding to the critical point \(x_j = x_j(y) \)
 - \(\dim V_j = 2n - 2 + k_j - k \)
 - \(V_j \) is isotropic submanifold in \(T^*Y \setminus 0 \)

- \(\Sigma \) is an involutary submanifold of \(T^*Y \setminus 0 \), \(\text{codim } \Sigma = n - 2 \)
 - Ideal \(J \) of functions vanishing on \(\Sigma \) corresponds to the Lie algebra \(\mathcal{V} \) of vector fields tangent to \(\Sigma \):
 - \(J \ni f \mapsto \text{sgrad } f \in \mathcal{V} \) (\(\text{sgrad } f \vee \omega = -df \))

- Act on \(V_j \) by the Hamiltonian flow corresponding to \(\mathcal{V} \)
- We obtain a Lagrange manifold \(\overline{W}_j = N^*W_j \)
Local structure of characteristic complexes

Theorem 22. Let K be a characteristic complex, codim $K = k$. Then in a neighborhood of non-singular curve K consists

1. for $k > 1$ of curves intersecting given submanifold $M \subset X$, codim $M = k + 1$
2. for $k = 1$ of either curves intersecting a given submanifold $M \subset X$, codim $M = 2$, or curves tangent to a given submanifold $M \subset X$, codim $M = 1$

Proof. Compute a rank of $\varphi : y \mapsto x(y)$, where $x(y)$ is a critical point of y. $M = \text{Im} \varphi$. \square
Theorem 23 (cf. [Ma]). Let K be a hyperbolic complex, codim $K = k$, and $y_0 \in K$ be a curve with non-splitting critical points. Then the critical points $x_j(y)$ circumscribe s manifolds $M_j \subset X$. Moreover, if $k_j > 1$ then codim $M_j = k_j + 1$ and curves in W intersects M_j transversally; if $k_j = 1$, then either codim $M_j = 2$ and curves in W intersect M_j transversally, or codim $Y = 1$ and curves in W are tangent to M_j.
Theorem 24 (cf. [Ma]). Conversely, let s submanifolds $M_j \subset X$ be given and let $k_j = \max \{ 1, \text{codim } M_j - 1 \}$; if $\sum k_j = k$ and the set of curves intersecting the submanifolds of codimension $k_j + 1$ and tangent to submanifolds of codimension 1 forms a submanifold in Y of codimension k, then this is a hyperbolic complex with critical points of multiplicities k_j lying on the M_j.

