Intoduction 00 Reconstruction

Literature 00

Nonlinear Integral Equations for the Inverse Problem in Corrosion Detection from Partial Cauchy Data

Fioralba Cakoni

Department of Mathematical Sciences, University of Delaware email: cakoni@math.udel.edu

Jointly with R. Kress and C. Schuft

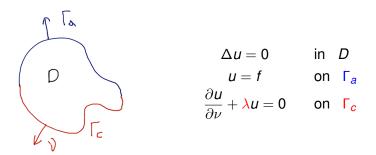
Research supported by grants from AFOSR and NSF

UNIVERSITY of DELAWARE

Reconstruction

Literature 00

Formulation of the Problem



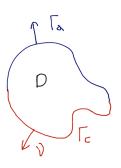
We assume that *D* has Lipshitz boundary ∂D such that $\partial D = \overline{\Gamma_a} \cup \overline{\Gamma_c}$ and $\lambda(x) \ge 0$ is in $L^{\infty}(\Gamma_c)$.

If $f \in H^{1/2}(\Gamma_a)$ this problem has a unique solution $u \in H^1(D)$

Reconstruction

Literature 00

The Inverse Problem



The inverse problem is: given the Dirichlet data $f \in H^{1/2}(\Gamma_a)$ and the (measured) Neumann data

$$g:=rac{\partial u}{\partial
u}$$
 on Γ_a $g\in H^{-1/2}(\Gamma_a)$

determine the shape of the portion Γ_c of the boundary and the impedance function $\lambda(x)$.

In particular, $\lambda = 0$ corresponds to homogeneous Neumann boundary condition on Γ_c and $\lambda = \infty$ corresponds to homogeneous Dirichlet boundary condition on Γ_c .

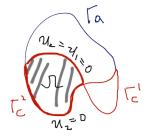
Literature

Uniqueness of the Inverse Problem

Does one pair of Cauchy data $u|_{\Gamma_a} = f \in H^{1/2}(\Gamma_a)$ and $\frac{\partial u}{\partial \nu}\Big|_{\Gamma_a} = g \in H^{-1/2}(\Gamma_a)$ uniquely determine Γ_c ?

Consider first the Dirichlet case, i.e. $\lambda = \infty$

Let D_1 , D_2 be such that $\partial D_1 = \overline{\Gamma_a} \cup \overline{\Gamma_c^1}$ and $\partial D_2 = \overline{\Gamma_a} \cup \overline{\Gamma_c^2}$



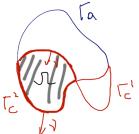
- $\Delta u_i = 0$ in D_i , i = 1, 2
- $u_i = 0$ on Γ_c^i , $u_1 = u_2 = f$ and $\partial u_1 / \partial \nu = \partial u_2 / \partial \nu = g$ on Γ_a .
- Holmgren's theorem $\implies u_1 = u_2$ in $D_1 \cap D_2$.
- $\Delta u_2 = 0$ in Ω and $u_2 = 0$ on $\partial \Omega \Longrightarrow$ $u_2 = 0$ and thus f = 0.

Literature

Uniqueness of the Inverse Problem

This idea does not work in the case of impedance boundary condition.

Indeed by the same reasoning we arrive at the following problem for $w := u_2$ in Ω



$$\Delta w = 0$$
 in Ω

$$\frac{\partial w}{\partial \nu} + \lambda_2 w = 0 \quad \text{on} \quad \partial \Omega_2$$
$$\frac{\partial w}{\partial \nu} - \lambda_1 w = 0 \quad \text{on} \quad \partial \Omega_1$$

where ν is the normal outward to Ω .

This is not a coercive problem!

Intodu	uction

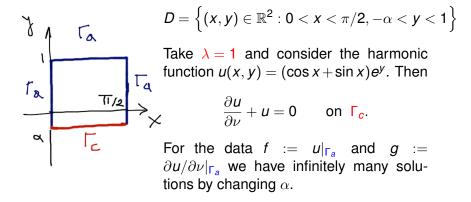
Reconstruction

Literature

Examples of Non-Uniqueness

One pair of Cauchy data does not uniquely determine Γ_c in the case of impedance boundary condition even for known impedance λ .

Example 1: Cakoni-Kress, Inverse Problems and Imaging (2007).



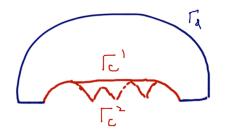
Intoduction 00 Uniqueness 000●00 Reconstruction

Literature

Examples of Non-Uniqueness

Example 2:

(2009)



Pagani-Pieroti, Inverse Problems

• Γ_c^1 consists of two arcs of the form $(x - c)^2 + y^2 = \frac{1}{\lambda^2}$ joined by $y = 1/\lambda$.

Γ²_c consists of arcs of the above form with different *c*.

$$u(x,y) = y, f := y|_{\Gamma_a}, g := \partial y / \partial \nu|_{\Gamma_a}$$

Examples of non-uniqueness for the case of impedance obstacle surrounded by the measurement surface are given in *Haddar-Kress, J. Inverse III-Posed Problems, (2006)* and *Rundell, Inverse Problems, (2008)*.

Intoduction	Uniqueness	Reconstruction	Literature
oo	ooooooo		00

Question: What is the optimal measurements that uniquely determine Γ_c ?

This was first answered in *Bacchelli, Inverse Problems, (2009)* with improvement in *Pagani-Pieroti, Inverse Problems (2009)*.

Theorem

Assume that Γ_c^i , i = 1, 2, are $C^{1,1}$ -smooth curves such that $\partial D^i := \Gamma_a \cup \Gamma_c^i$ are $C^{1,1}$ -curvilinear polygons and $\lambda^i \in L^{\infty}(\Gamma_c^i)$. Let $f^1, f^2 \in H^{3/2}(\Gamma_a)$ be such that f^1 and f^2 are linearly independent, and $f^1 > 0$ and u^i , i = 1, 2, be the harmonic functions in D^i corresponding to λ^i , f^i . If

$$\frac{\partial u^1}{\partial \nu} = \frac{\partial u^2}{\partial \nu}$$
 on some open arc of Γ_a

then $\Gamma_c^1 = \Gamma_c^2$ and $\lambda_1 = \lambda_2$.

Intoduction oo	Uniqueness ooooo●	Reconstruction	Literature
Remarks			

- The uniqueness result is valid in \mathbb{R}^2 or \mathbb{R}^3 .
- If Γ_c is known then one pair of Cauchy data uniquely determines λ ∈ L[∞](Γ_c). This is a simple consequence of Holmgren's Theorem.
- In the case of Neumann boundary condition (i.e. $\lambda = 0$) one pair of Cauchy data uniquely determines Γ_c . The proof follows the idea of the Dirichlet case with more care to handle irregular $\partial \Omega$ (could have cusps); in \mathbb{R}^2 one can use the conjugate harmonic of the solution.
- Logarithmic stability estimates for both Γ_c and λ with two Cauchy data pairs is proven in *Sincich, SIAM J. Math. Anal. (2010).*

Intoduction

Uniqueness

Reconstruction

Literature

Nonlinear Integral Equation

Cauchy Problem: Given the pair $f \in H^{1/2}(\Gamma_a)$ and $g \in H^{-1/2}(\Gamma_a)$ find $\alpha \in H^{1/2}(\Gamma_c)$ and $\beta \in H^{-1/2}(\Gamma_c)$ such that there exists a harmonic function $u \in H^1(D)$ satisfying

$$u|_{\Gamma_a} = f, \quad \frac{\partial u}{\partial \nu}\Big|_{\Gamma_a} = g, \quad u|_{\Gamma_c} = \alpha, \quad \frac{\partial u}{\partial \nu}\Big|_{\Gamma_c} = \beta.$$

Let us focus in \mathbb{R}^2 and make the ansatz

$$u(x) := (S\varphi)(x) = \int_{\partial} \Phi(x, y)\varphi(y) \, ds(y), \ x \in D, \ \varphi \in H^{-1/2}(\partial D)$$

where $\Phi(x, y) := 2\pi \ln |x - y|^{-1}$, and for $x \in \partial D$ define

$$(S\varphi)(x) := \int_{\partial D} \Phi(x, y)\varphi(y) \, ds(y)$$

 $(K'\varphi)(x) := \int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu(x)} \varphi(y) \, ds(y).$

Determination of λ

Inverse Impedance Problem: ∂D is known – determine λ from a knowledge of one pair of Cauchy data (f, g) on Γ_a .

This problem is related to completion of Cauchy data.

Theorem

 $\alpha := u|_{\Gamma_c}, \beta = \frac{\partial u}{\partial \nu}\Big|_{\Gamma_a}$ is a solution of the Cauchy if and only if $u := (S\varphi)(x)$ where $\varphi \in H^{-1/2}(\partial D)$ is a solution of the ill-posed equation

$$A arphi := \left(egin{array}{c} S arphi \ K' arphi + rac{arphi}{2} \end{array}
ight)_{\Gamma_a} = \left(egin{array}{c} f \ g \end{array}
ight).$$

Determination of λ

We can prove

Theorem

The operator $A : L^2(\partial D) \to L^2(\Gamma_a) \times L^2(\Gamma_a)$ is compact, injective and has dense range.

To reconstruct $\lambda(x) \in L^{\infty}(\Gamma_{c})$

- Solve $A\varphi = (f, g)$ for φ using Tikhonov regularization.
- Compute u, α and β .
- Find impedance $\lambda(x)$ as least square solution of

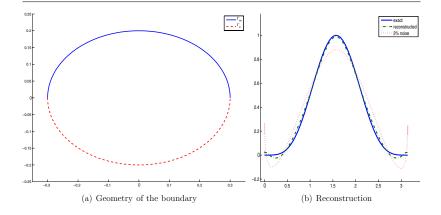
$$\alpha + \frac{\lambda}{\beta} = \mathbf{0}$$

Reconstruction

Literature

Example of Reconstruction of λ

D is the ellipse $z(t) = (0.3 \cos t, 0.2 \sin t), t \in [0, 2\pi]$ and $\lambda(t) = \sin^4 t, t \in [\pi, 2\pi]$.



Literature

Nonlinear Integral Equations

Inverse Shape and Impedance Problem: Determine both Γ_c and λ from a knowledge of two pairs of Cauchy data (f, g) on Γ_a .

Theorem

The inverse shape and impedance problem is equivalent to solving

$$Sarphi_i = f_i$$
 on Γ_a
 $\mathcal{K}' arphi_i + rac{arphi_i}{2} = g_i$ on Γ_a

and

$$\mathcal{K}' \varphi_i + rac{\varphi_i}{2} + \lambda S \varphi_i = 0$$
 on Γ_c

i = 1, 2, for Γ_c , φ_1 , φ_2 and λ .

Intoduction 00	Uniqueness 000000	Reconstruction	Literature
Remarks			

It is possible to obtain a different system of nonlinear integral equations equivalent to the inverse shape and impedance problem by staring with a different ansatz for u. In particular,

$$u(x) := \int_{\partial D} \left(\varphi(y) \frac{\partial \Phi(x, y)}{\partial \nu} - \psi(y) \Phi(x, y) \right) ds(y), \qquad x \in D$$

Here by Green's representation theorem

$$\varphi = \mathbf{u}|_{\partial D} \qquad \psi = \left. \frac{\partial \mathbf{u}}{\partial \nu} \right|_{\partial D}.$$

Cakoni, Kress and Schuft, Inverse Problems, (2010).

Reconstruction

Literature

Newton Iterative Method

Assume now that $\partial D := \{z(t) : 0 \le t \le 2\pi\}$, $\Gamma_a := \{z(t) : \pi \le t \le 2\pi\}$, $\Gamma_c := \{z(t) : 0 \le t \le \pi\}$.

Setting $\psi(t) = |z(t)'|\varphi(z(t))$ we have

$$(\widetilde{S}\psi)(t) = \frac{1}{2\pi} \int_0^{2\pi} \ln \frac{1}{|z(t) - z(\tau)|} \psi(\tau) d\tau$$

and

$$(\widetilde{K}'\psi)(t) = -\frac{1}{2\pi|z'(t)|} \int_0^{2\pi} \frac{[z'(t)]^{\perp} \cdot [z(t) - z(\tau)]}{|z(t) - z(\tau)|^2} \psi(\tau) d\tau + \frac{\psi(t)}{2|z'(t)|}$$

for $t \in [0, 2\pi]$.

Intod	ucti	on

Reconstruction

Literature

Newton Iterative Method

Then the system of nonlinear integral equations we need to solve reads:

$$\widetilde{S}\psi_i = f_i$$
 on $[\pi, 2\pi],$
 $\widetilde{K}'\psi_i = g_i$ on $[\pi, 2\pi]$

and

$$\widetilde{K}'\psi_i + \lambda \widetilde{S}\psi_i = 0$$
 on $[0,\pi]$

for i = 1, 2, where $\lambda = \lambda \circ z$ on $[0, \pi]$, $f_i = f_i \circ z$ and $g_i = g_i \circ z$ on $[\pi, 2\pi]$.

We linearize the system with respect ψ_i , λ and $z_c(t)$, $t \in [0, \pi]$.

Reconstruction

Literature 00

Newton Iterative Method

 $\psi_i + \chi_i, \lambda + \mu, z_c + \zeta$ (w.l.o.g. we assume $\zeta = q[z']^{\perp}$)

$$\widetilde{S}(\psi_i, z) + \widetilde{S}(\chi_i, z) + d\widetilde{S}(\psi_i, z; \zeta) = f_i \text{ on } [\pi, 2\pi],$$

$$\widetilde{K}'(\psi_i, z) + \widetilde{K}'(\chi_i, z) + d\widetilde{K}'(\psi_i, z; \zeta) = g_i \text{ on } [\pi, 2\pi],$$

and

$$\widetilde{K}'(\psi_i, z) + \widetilde{K}'(\chi_i, z) + d\widetilde{K}'(\psi_i, z; \zeta) + \lambda \left\{ \widetilde{S}(\psi_i, z) + \widetilde{S}(\chi_i, z) + d\widetilde{S}(\psi_i, z; \zeta) \right\} + \mu \widetilde{S}(\psi_i, z) = 0 \quad \text{on } [0, \pi]$$

for *i* = 1, 2.

Here, the operators $d\widetilde{K}'$ and $d\widetilde{S}$ denote the Fréchet derivatives with respect to z in direction ζ of the operators \widetilde{K}' and \widetilde{S} , respectively.

Local Uniqueness

Theorem

Let $z_c \in C^2[0, \pi]$, $\psi_1, \psi_2 \in L^2[0, 2\pi]$, $\lambda \in C[0, \pi]$ be the solutions of the nonlinear system with exact data (f_1, g_1) and (f_2, g_2) , where $f_1 > 0$ and f_2 are linearly independent. Assume that $\zeta = q[z']^{\perp}$, $q \in C^2[0, \pi]$, $\chi_1, \chi_2 \in L^2[0, 2\pi]$ and $\mu \in C[0, \pi]$ solve the homogeneous system

$$\begin{split} \widetilde{S}(\chi_i, z) + d\widetilde{S}(\psi_i, z; \zeta) &= 0 \quad on \, [\pi, 2\pi], \\ \widetilde{K}'(\chi_i, z) + d\widetilde{K}'(\psi_i, z; \zeta) &= 0 \quad on \, [\pi, 2\pi] \\ \widetilde{K}'(\chi_i, z) + d\widetilde{K}'(\psi_i, z; \zeta) + \lambda \widetilde{S}(\chi_i, z) \\ &+ \lambda d\widetilde{S}(\psi_i, z; \zeta) + \mu \widetilde{S}(\psi_i, z) &= 0 \quad on \, [0, \pi]. \end{split}$$

Then $\chi_1 = \chi_2 = 0, \zeta = 0$ *and* $\mu = 0$.

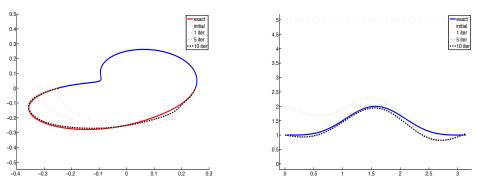
Newton Iterative Method

- 1. We make an initial guess for the non-accessible boundary part Γ_c , parameterized by z_c , and for the impedance function λ . Then we find the densities ψ_1 and ψ_2 for the two pairs of Cauchy data (f_1, g_1) and (f_2, g_2) by solving the first two equations of the nonlinear system.
- 2. Given an approximation for z_c , ψ_1 , ψ_2 and λ , the linearized system is solved for ζ , χ_1 , χ_2 and μ to obtain the update $z_c + \zeta$ for the parameterization, $\psi_1 + \chi_1$, $\psi_2 + \chi_2$ for the densities and $\lambda + \mu$ for the impedance.
- 3. The second step is repeated until a suitable stopping criterion is satisfied.

Reconstruction

Literature 00

Example of Reconstructions



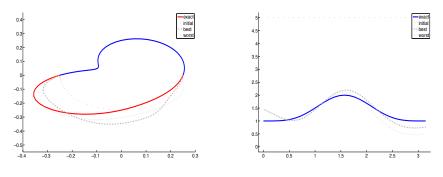
(c) Shape from potential approach

(d) Impedance from potential approach

FIG. 4.2. Reconstruction of shape (4.2) and impedance (4.1) with $\lambda_{\text{initial}} = 5$ $\lambda(t) = \sin^4 t + 1, t \in [0, \pi]$ Uniquenes: 000000 Reconstruction

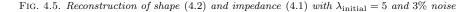
Literature 00

Example of Reconstructions



(c) Shape from potential approach

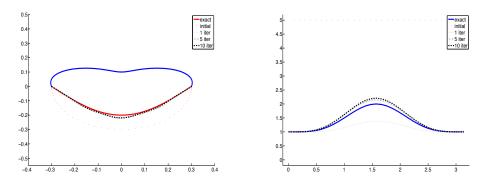
(d) Impedance from potential approach



Uniquenes: 000000 Reconstruction

Literature 00

Example of Reconstructions



(c) Shape from potential approach

(d) Impedance from potential approach

FIG. 4.3. Reconstruction of shape (4.4) and impedance (4.1) with $\lambda_{initial} = 5$

Literature

This discussion is based on

- F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data, *Inverse Probl. Imaging* 1 (2007), no. 2, 229-245.
- V. Bacchelli, Uniqueness for the determination of unknown boundary and impedance with the homogeneous Robin condition, *Inverse Problems* 25 (2009), no. 1, 015004.
- C.D. Pagani and D. Pierotti, Identifiability problems of defects with the Robin condition, *Inverse Problems* 25 (2009), no. 5, 055007.

Literature, cont.

- F. Cakoni, R. Kress and C. Schuft, Integral equations for shape and impedance reconstruction in corrosion detection, *Inverse Problems*, 26 (2010), no. 9.
- F. Cakoni, R. Kress and C. Schuft, Simultaneous reconstruction of shape and impedance in corrosion detection, *Methods Appl. Anal.* **17** (2010), no. 4, 357-377.
- E. Sincich, Stability for the determination of unknown boundary and impedance with a Robin boundary condition, *SIAM J. Math. Anal.* 42 (2010), no. 6, 2922-2943