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Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with Lipschitz boundary.
Consider the magnetic Schrödinger operator,

LA,q(x ,D) =
n∑

j=1

(Dj + Aj(x))2 + q(x),

where Dj = i−1∂xj , A = (A1, . . . ,An) ∈ L∞(Ω,Cn) is the magnetic
potential, and q ∈ L∞(Ω,C) is the electric potential.

Let u ∈ C∞0 (Ω) and let us write

LA,qu = −∆u + A · Du + D · (Au) + (A2 + q)u.

Since Au ∈ L∞(Ω) ∩ E ′(Ω) ⊂ L2(Rn) ∩ E ′(Ω), we see that

LA,q : C∞0 (Ω)→ H−1(Rn) ∩ E ′(Ω)

is a bounded operator. Here

E ′(Ω) := {v ∈ D′(Ω) : supp(v) is compact}.
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Let u ∈ H1(Ω) be a solution to

LA,qu = 0 in Ω.

The set of the Cauchy data is given by

CA,q := {(u|∂Ω, (∂νu + i(A · ν)u)|∂Ω) : u ∈ H1(Ω) and LA,qu = 0 in Ω}.

Here u|∂Ω ∈ H1/2(∂Ω), and we set

〈∂νu+ i(A·ν)u, g〉∂Ω :=

∫
Ω

(∇u ·∇G + iA·(u∇G−G∇u)+(A2 +q)uG ) dx ,

where g ∈ H1/2(∂Ω) and G ∈ H1(Ω) is such that G |∂Ω = g .

It follows that (∂νu + i(A · ν)u)|∂Ω ∈ H−1/2(∂Ω).

Inverse boundary value problem : Determine A and q in Ω from the set of
the Cauchy data CA,q.
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Z. Sun (1993) : There is an obstruction to uniqueness.

Let ψ ∈W 1,∞(Ω). Then

e−iψLA,qe
iψ = LA+∇ψ,q,

and
e−iψ(∂ν + i(A · ν))e iψu = (∂ν + i(A +∇ψ) · ν)u on ∂Ω.

Thus, if ψ|∂Ω = 0, then
CA,q = CA+∇ψ,q.

Hence, given CA,q, we may only hope to recover the magnetic field dA in
Ω, which is defined by

dA =
∑

1≤j<k≤n

(∂xj Ak − ∂xk
Aj)dxj ∧ dxk .

Here A =
∑n

j=1 Ajdxj .

K. Krupchyk (University of Helsinki) 4 / 22



Indeed, CA,q determines dA and q in Ω under some regularity assumptions
on A and q.

Z. Sun (1993) :

A ∈W 2,∞ with ‖dA‖L∞ is small, and q ∈ L∞.

G. Nakamura, Z. Sun, G. Uhlmann (1995) :

A ∈ C∞ and q ∈ C∞ ;
A ∈ C 2 and q ∈ L∞.

C. Tolmasky (1998) :

A ∈ C 1 and q ∈ L∞.

A. Panchenko (2002) :

A ∈ L∞, with some additional assumptions, and in particular, a
smallness condition, and q ∈ L∞.

M. Salo (2004) :

A Dini continuous and q ∈ L∞.
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Theorem (K., Uhlmann, 2012). Let Ω ⊂ Rn, n ≥ 3, be a bounded open
set with Lipschitz boundary, and assume that A1,A2 ∈ L∞(Ω,Cn) and
q1, q2 ∈ L∞(Ω,C). If CA1,q1 = CA2,q2 , then dA1 = dA2 and q1 = q2 in Ω.
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Sketch of proof

Step 1. Construction of complex geometric optics solutions (CGO
solutions) to the equation LA,qu = 0 in Ω with A ∈ L∞ and q ∈ L∞.

The use of such solutions in inverse boundary value problems has a long
and distinguished tradition going back to the fundamental works of A.
Calderón (1980), J. Sylvester and G. Uhlmann (1987), ...

CGO solutions are solutions of the form,

u(x , ζ; h) = ex ·ζ/h(a(x , ζ; h) + r(x , ζ; h)),

where ζ ∈ Cn, ζ · ζ = 0, |ζ| ∼ 1, 0 < h ≤ h0, a is a smooth amplitude, and
r is a remainder, which tends to zero as h→ 0.
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Our approach to the construction of CGO solutions is based on the
method of Carleman estimates.

To construct CGO solutions using this method, one wants the conjugated
operator

e−ϕ/hh2LA,qe
ϕ/h, ϕ(x) = x · Reζ,

to be solvable in Ω in the semiclassical sense.

The point of the Carleman estimate is exactly to provide us with the
appropriate tool for deducing semiclassical solvability of the conjugated
operator.

Our starting point : the Carleman estimate for −h2∆ due to M. Salo and
L. Tzou (2009), which is a generalization of the corresponding estimate of
C. Kenig, J. Sjöstrand, and G. Uhlmann (2007).
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Proposition. (Salo–Tzou, 2009). Let ϕ(x) = α · x , α ∈ Rn, |α| ∼ 1, and
let ϕε = ϕ+ h

2εϕ
2 be a convexification of ϕ. Then for 0 < h� ε� 1 and

s ∈ R, we have

h√
ε
‖u‖Hs+2

scl (Rn) ≤ C‖eϕε/h(−h2∆)e−ϕε/hu‖Hs
scl(Rn), C > 0, (1.1)

for all u ∈ C∞0 (Ω).

Here
‖u‖Hs

scl(Rn) = ‖〈hD〉su‖L2(Rn), 〈ξ〉 = (1 + |ξ|2)1/2,

is the natural semiclassical norm in the Sobolev space Hs(Rn), s ∈ R.

Recalling that
LA,q : C∞0 (Ω)→ H−1(Rn) ∩ E ′(Ω)

is a bounded operator, it will be natural to use (1.1) with s = −1 and
ε > 0 sufficiently small but fixed.

The estimate (1.1) can be perturbed by lower order terms, and we get
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Proposition. Let A ∈ L∞(Ω,Cn) and q ∈ L∞(Ω,C) and let ϕ(x) = α · x ,
α ∈ Rn, |α| ∼ 1. For 0 < h� 1, we have

h‖u‖H1
scl(Rn) ≤ C‖eϕ/h(h2LA,q)e−ϕ/hu‖H−1

scl (Rn), (1.2)

for all u ∈ C∞0 (Ω).

The formal L2 adjoint of the operator

Lϕ := eϕ/h(h2LA,q)e−ϕ/h

is of the form
L∗ϕ := e−ϕ/h(h2LA,q)eϕ/h,

and therefore, (1.2) holds for the adjoint.

Thus, the Carleman estimate (1.2) for L∗ϕ can be converted to the
following solvability result for Lϕ.
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Proposition. Let A ∈ L∞(Ω,Cn), q ∈ L∞(Ω,C), and let ϕ(x) = α · x ,
α ∈ Rn, |α| ∼ 1. If h > 0 is small enough, then for any v ∈ H−1(Ω), there
is a solution u ∈ H1(Ω) of the equation

eϕ/h(h2LA,q)e−ϕ/hu = v in Ω,

which satisfies

‖u‖H1
scl(Ω) ≤

C

h
‖v‖H−1

scl (Ω).

Here

‖u‖2
H1

scl(Ω) = ‖u‖2
L2(Ω) + ‖hDu‖2

L2(Ω), ‖v‖H−1
scl (Ω) = sup

06=ψ∈C∞0 (Ω)

|〈v , ψ〉Ω|
‖ψ‖H1

scl(Ω)

.
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The most singular term in

LA,qu = −∆u + A · Du + D · (Au) + (A2 + q)u, u ∈ C∞0 (Ω),

is given by D · (Au). Associated with this term, we introduce the bounded
operator,

mA : H1(Ω)→ H−1(Ω), mA(u) = D · (Au),

where the distribution mA(u) is given by

〈mA(u), v〉Ω = −
∫

Ω
Au · Dvdx , v ∈ C∞0 (Ω).

Conjugating the operator h2LA,q by ex ·ζ/h, we get

e−x ·ζ/h◦h2LA,q◦ex ·ζ/h = −h2∆−2ihζ·D+h2A·D−2hiζ·A+h2mA+h2(A2+q).

We would like to find a and r so that

e−x ·ζ/hh2LA,q(ex ·ζ/hr)

= −(−h2∆− 2ihζ · D + h2A · D − 2hiζ · A + h2mA + h2(A2 + q))a in Ω.

To obtain nice remainder estimates for our CGO solutions, we need to get
rid of terms of order h in RHS.
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We get the first transport equation,

ζ · Da + ζ · Aa = 0 in Rn.

Here A has been extended to Rn \ Ω by zero.

A ∈ L∞ =⇒ a ∈ L∞,

which is not acceptable. Indeed, when solving the equation for the
remainder r , we will encounter the term

−h2∆a,

which is too singular to apply our solvability result.

To cope with this difficulty, we shall replace A by its regularization.
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To this end, let Ψτ (x) = τ−nΨ(x/τ), τ > 0, be the usual mollifier with
Ψ ∈ C∞0 (Rn), 0 ≤ Ψ ≤ 1, and

∫
Ψdx = 1.

Then
A] = A ∗Ψτ ∈ C∞0 (Rn,Cn),

and
A = A] + (A− A]).

Since A ∈ (L∞ ∩ E ′)(Rn) ⊂ L2(Rn), we have

‖A− A]‖L2(Rn) → 0, τ → 0.

As A ∈ L∞(Rn), we get

‖∂αA]‖L∞(Rn) = O(τ−|α|), τ → 0, for all α, |α| ≥ 0.
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Now we require that a should satisfy the equation,

ζ · Da + ζ · A]a = 0 in Rn. (1.3)

As ζ · ζ = 0, and we shall choose ζ so that |Reζ| = |Imζ| = 1, the operator

Nζ := ζ · ∇

is the ∂̄ operator in the plane spanned by Reζ and Imζ.
We choose a solution of (1.3) in the form a = eΦ] with

Φ](x , ζ; τ) = N−1
ζ (−iζ · A]) ∈ C∞(Rn).

Here

(N−1
ζ f )(x) =

1

2π

∫
R2

f (x − y1Reζ − y2Imζ)

y1 + iy2
dy1dy2, f ∈ C0(Rn).

Using the mapping properties

N−1
ζ : W k,∞(Rn) ∩ E ′(Rn)→W k,∞(Rn), k ≥ 0,

we get
‖∂αΦ]‖L∞(Rn) ≤ Cατ

−|α|, for all α, |α| ≥ 0.
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Define
Φ(·, ζ) := N−1

ζ (−iζ · A) ∈ L∞(Rn).

Proposition. (J. Sylvester and G. Uhlmann (1987).) Let −1 < δ < 0 and
let f ∈ L2

δ+1(Rn). Then there exists a constant C > 0, independent of ζ,
such that

‖N−1
ζ f ‖L2

δ(Rn) ≤ C‖f ‖L2
δ+1(Rn).

Here

‖f ‖2
L2
δ(Rn) =

∫
Rn

(1 + |x |2)δ|f (x)|2dx .

Since
‖A− A]‖L2(Rn) → 0, τ → 0,

we have
Φ](·, ζ; τ)→ Φ(·, ζ)

in L2
loc(Rn) as τ → 0.
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Determination of the remainder r :

e−x ·ζ/hh2LA,qe
x ·ζ/hr = −h2LA,qa + 2hiζ · (A− A])a := g in Ω.

To apply the solvability result, we need to estimate the norm ‖g‖H−1
scl (Ω).

The most interesting term to estimate is ‖h2mA(a)‖H−1
scl (Ω). When

estimating this term, we argue by duality and consider, for
0 6= ψ ∈ C∞0 (Ω),

|〈h2mA(a),ψ〉Ω| =

∣∣∣∣ ∫
Ω

h2Aa · Dψdx

∣∣∣∣
≤
∣∣∣∣ ∫

Ω
h2A]a · Dψdx

∣∣∣∣+

∣∣∣∣ ∫
Ω

h2(A− A])a · Dψdx

∣∣∣∣
≤
∣∣∣∣ ∫

Ω
h2(D · (A]a))ψdx

∣∣∣∣+O(h)‖A− A]‖L2(Ω)‖hDψ‖L2(Ω)

≤ (O(h2/τ) +O(h)oτ→0(1))‖ψ‖H1
scl(Ω).

Altogether we find

‖g‖H−1
scl (Ω) ≤ O(h2/τ2) +O(h)oτ→0(1).
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Choosing now τ = hσ with 0 < σ < 1/2, we get

‖g‖H−1
scl (Ω) = o(h) as h→ 0.

Thanks to the solvability result, for h > 0 small enough, there exists a
solution r ∈ H1(Ω) of the equation

e−x ·Reζ/hh2LA,qe
x ·Reζ/h(e ix ·Imζ/hr) = e ix ·Imζ/hg in Ω,

such that ‖r‖H1
scl(Ω) = o(1) as h→ 0.
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Summarizing, we obtain the following result.

Proposition. Let A ∈ L∞(Ω,Cn), q ∈ L∞(Ω,C), and let ζ ∈ Cn be such
that ζ · ζ = 0, |Reζ| = |Imζ| = 1. Then for all h > 0 small enough, there
exists a solution u(x , ζ; h) ∈ H1(Ω) to the magnetic Schrödinger equation
LA,qu = 0 in Ω, of the form

u(x , ζ; h) = ex ·ζ/h(eΦ](x ,ζ;h) + r(x , ζ; h)).

The function Φ](·, ζ; h) ∈ C∞(Rn) satisfies ‖∂αΦ]‖L∞(Rn) ≤ Cαh−σ|α|,

0 < σ < 1/2, for all α, |α| ≥ 0, and Φ](·, ζ; h) converges to
Φ(·, ζ) := N−1

ζ (−iζ · A) ∈ L∞(Rn) in L2
loc(Rn) as h→ 0. Here we have

extended A by zero to Rn \ Ω. The remainder r is such that
‖r‖H1

scl(Ω) = o(1) as h→ 0.
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Step 2. Converting CA1,q1 = CA2,q2 into the following integral identity,∫
Ω

i(A1 − A2) · (u1∇u2 − u2∇u1)dx +

∫
Ω

(A2
1 − A2

2 + q1 − q2)u1u2dx = 0,

which holds for any u1, u2 ∈ H1(Ω) satisfying LA1,q1u1 = 0 in Ω and
LA2,q2

u2 = 0 in Ω, respectively.

Step 3. Testing the integral identity against the following family of
CGO solutions,

u1(x , ζ1; h) = ex ·ζ1/h(eΦ]1(x ,µ1+iµ2;h) + r1(x , ζ1; h)),

u2(x , ζ2; h) = ex ·ζ2/h(eΦ]2(x ,−µ1+iµ2;h) + r2(x , ζ2; h)),

where

ζj · ζj = 0, j = 1, 2, (ζ1 + ζ2)/h = iξ,

ζ1 = µ1 + iµ2 +O(h), ζ2 = −µ1 + iµ2 +O(h), as h→ 0,

ξ, µ1, µ2 ∈ Rn, |µ1| = |µ2| = 1, µ1 · µ2 = µ1 · ξ = µ2 · ξ = 0.
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Step 4. Multiplying the integral identity by h and letting h→ 0, we
get

lim
h→0

(µ1 + iµ2) ·
∫

Ω
(A1 − A2)e ix ·ξeΦ]1+Φ]2dx = 0.

Since

Φ]
1(·, µ1 + iµ2; h)→ Φ1(·, µ1 + iµ2) := N−1

µ1+iµ2
(−i(µ1 + iµ2) · A1),

Φ]
2(·,−µ1 + iµ2; h)→ Φ2(·,−µ1 + iµ2) := N−1

−µ1+iµ2
(−i(−µ1 + iµ2) · A2),

in L2
loc(Rn) as h→ 0, and ‖Φ]

j‖L∞ = O(1), we see that

(µ1 + iµ2) ·
∫

Rn

(A1 − A2)e ix ·ξeΦ1+Φ2dx = 0.

Step 5. Conclude that

(µ1 + iµ2) ·
∫

Rn

(A1 − A2)e ix ·ξdx = 0.

(G. Eskin, J. Ralston (1995) for Aj smooth ; it can be extended to
Aj ∈ (L∞ ∩ E ′)(Rn) by regularization)
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The conclusion that dA1 = dA2 in Ω and q1 = q2 in Ω now follows easily.
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