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Surface plasmon

Let

ǫ =

{

1 in {(x , y) : y ≥ 0},
−1 in {(x , y) : y < 0}.

Consider
∇ · ǫ∇u = 0 in R

2.

Then one solution is

u =

{

e−y+ix in {(x , y) : y ≥ 0},
ey+ix in {(x , y) : y < 0}.
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Let Ω be a smooth domain in R
2 and let D ⊂ Ω. The permittivity distribution

in R
2 is given by

ǫδ =











1 in R
2 \ Ω,

−1 + iδ in Ω \ D,

1 in D .

1 −1 + iδ

1

f
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Problem

For a given function f compactly supported in R
2 satisfying

∫

R2

fdx = 0,

we consider the following equation:

∇ · ǫδ∇Vδ = f in R
2,

with decaying condition Vδ(x) → 0 as |x | → ∞.

Since the equation degenerates as δ → 0, we can expect some singular behavior
of the solution, depending on the source term f .
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Milton-Nicorovici(2006)
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Figure: Anomalous resonance, Milton et al (2006).

• Energy concentration near interfaces, depending on the location of source.

• Associated with the cloaking effect of polarizable dipole.

• Generalized to a small inclusion with a specific boundary condition by
Bouchitté and B. Schweizer(2010).
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Numerical simulation by Bruno-Linter(2007).

• There is some cloaking effect even in the presence of a small dielectric
inclusion, not perfect.

• Blow-up may not depend on the location of the source in a layer of
general shape.
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A fundamental problem is to find a region Ω∗ containing Ω such that if f is
supported in Ω∗ \ Ω, then

∫

Ω\D

δ|∇Vδ|2dx → ∞ as δ → 0.

• Such a region Ω∗ \Ω is called the anomalous resonance region or cloaking
region. The quantity

∫

Ω\D
δ|∇Vδ |2dx is a part of the absorbed energy.

• The blow-up of the energy may or may not occur depending on f . So the
problem is not only finding the anomalous resonance region Ω∗ \ Ω but
also characterizing those source terms f which actually make the
anomalous resonance happen.
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Relation to cloaking

Suppose f is a polarizable dipole at x0, i.e.,

Vδ(x) = Uδ(x) + Aδ · ∇G(x − x0), Aδ = k∇Uδ(x0),

for some given coefficient k .

If ALR happens, then we should have

Aδ → 0 as δ → 0.

Otherwise
∫

Ω\D
δ|∇Vδ|2dx blows up, which is not physical.
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Let F be the Newtonian potential of f , i.e.,

F (x) =

∫

R2

G(x − y)f (y)dy , x ∈ R
2.

Then F satisfies ∆F = f in R
2, and the solution Vδ may be represented as

Vδ(x) = F (x) + SΓi [ϕi ](x) + SΓe [ϕe ](x)

for some functions ϕi ∈ L2
0(Γi) and ϕe ∈ L2

0(Γe) (L
2
0 is the collection of all

square integrable functions with the integral zero).

The transmission conditions along the interfaces Γe and Γi satisfied by Vδ read

(−1 + iδ)
∂Vδ

∂ν

∣

∣

∣

+
=

∂Vδ

∂ν

∣

∣

∣

−
on Γi

∂Vδ

∂ν

∣

∣

∣

+
= (−1 + iδ)

∂Vδ

∂ν

∣

∣

∣

−
on Γe .
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Using the jump formula for the normal derivative of the single layer potentials,
the pair of potentials (ϕi , ϕe) is the solution to







zδI −K∗
Γi − ∂

∂νi
SΓe

∂

∂νe
SΓi zδ I +K∗

Γe







[

ϕi

ϕe

]

=







∂F

∂νi

− ∂F

∂νe






.

on L2
0(Γi )× L2

0(Γe), where we set

zδ =
iδ

2(2− iδ)
.

Note that the operator can be viewed as a compact perturbation of the operator
[

zδ I −K∗
Γi 0

0 zδ I +K∗
Γe

]

.
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• We now recall Kellogg’s result on the spectrums of K∗
Γi

and K∗
Γe . The

eigenvalues of K∗
Γi

and K∗
Γe lie in the interval ]− 1

2
, 1
2
].

• Observe that zδ → 0 as δ → 0 and that there are sequences of eigenvalues
of K∗

Γi
and K∗

Γe approaching to 0 since K∗
Γi

and K∗
Γe are compact. So 0 is

the essential singularity of the operator valued meromorphic function

λ ∈ C 7→ (λI +K∗
Γe )

−1.

This causes a serious difficulty in dealing with (11).

• We emphasize that K∗
Γe is not self-adjoint in general. In fact, K∗

Γe is
self-adjoint only when Γe is a circle or a sphere.
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Properties of K∗

Let H = L2(Γi)× L2(Γe). Let the Neumann-Poincaré-type operator
K

∗ : H → H be defined by

K
∗ :=







−K∗
Γi − ∂

∂νi
SΓe

∂

∂νe
SΓi K∗

Γe






.

Then the integral equation can be written as

(zδI+K
∗)Φδ = g

and the L2-adjoint of K∗, K, is given by

K =

[

−KΓi DΓe

−DΓi KΓe

]

.

We may check that the spectrum of K∗ lies in the interval [−1/2, 1/2].
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Let S be given by

S =

[

SΓi SΓe

SΓi SΓe

]

.

• The operator −S is self-adjoint and −S ≥ 0 on H.

• The Calderón’s identity is generalized.

SK
∗ = KS,

i.e., SK∗ is self-adjoint.

• K
∗ ∈ C2(H), Schatten-von Neumann class of compact operators.
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We recall the result of Khavinson et al(2007)
Let M ∈ Cp(H). If there exists a strictly positive bounded operator R such that
R2M is self adjoint, then there is a bounded self-adjoint operator A ∈ Cp(H)
such that

AR = RM.

Theorem
There exists a bounded self-adjoint operator A ∈ C2(H) such that

A
√
−S =

√
−SK

∗.
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Limiting properties of the solution

• ALR occurs if and only if
∫

Ω\D

δ|∇Vδ |2dx ≈ δ

∫

Ω\D

∣

∣

∣
∇(SΓi [ϕ

δ
i ] + SΓe [ϕ

δ
e ])

∣

∣

∣

2

dx → ∞ as δ → ∞.

• One can use
A
√
−S =

√
−SK

∗

to obtain
∫

Ω\D

∣

∣

∣
∇(SΓi [ϕ

δ
i ] + SΓe [ϕ

δ
e ])

∣

∣

∣

2

dx = −1

2
〈Φδ , SΦδ〉+ 〈K∗Φδ , SΦδ〉

=
1

2
〈
√
−SΦδ,

√
−SΦδ〉 − 〈A

√
−SΦδ,

√
−SΦδ〉.
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Since A is self-adjoint, we have an orthogonal decomposition

H = KerA⊕ (KerA)⊥,

and (KerA)⊥ = RangeA. Let P and Q = I − P be the orthogonal projections
from H onto KerA and (KerA)⊥, respectively.

Let λ1, λ2, . . . with |λ1| ≥ |λ2| ≥ . . . be the nonzero eigenvalues of A and Ψn

be the corresponding (normalized) eigenfunctions. Since A ∈ C2(H), we have

∞
∑

n=1

λ2
n < ∞,

and

AΦ =
∞
∑

n=1

λn〈Φ,Ψn〉Ψn, Φ ∈ H
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We apply
√
−S to (zδI+K

∗)Φδ = g to obtain

(zδ
√
−S+

√
−SK

∗)Φδ =
√
−Sg .

Then
(zδI+ A)

√
−SΦδ =

√
−Sg .

Projecting onto KerA and (KerA)⊥, we have

P
√
−SΦδ =

1

zδ
P
√
−Sg ,

Q
√
−SΦδ =

∑

n

〈Q
√
−Sg ,Ψn〉

λn + zδ
Ψn.

We also get

A
√
−SΦδ =

∑

n

λn〈Q
√
−Sg ,Ψn〉

λn + zδ
Ψn.
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We have
∫

Ω\D

∣

∣

∣
∇(SΓi [ϕ

δ
i ] + SΓe [ϕ

δ
e ])

∣

∣

∣

2

dx =
1

2
〈
√
−SΦδ,

√
−SΦδ〉 − 〈A

√
−SΦδ,

√
−SΦδ〉

≈ 1

δ2
‖P

√
−Sg‖2 +

∑

n

|〈Q
√
−Sg ,Ψn〉|2

|λn|2 + δ2
.

Let Φn be the (normalized) eigenfunctions of K∗.

Theorem
If P

√
−Sg 6= 0, then LR takes place. If Ker(K∗) = {0}, then ALR takes place

if and only if

δ
∑

n

|〈Sg ,Φn〉|2
λ2
n + δ2

→ ∞ as δ → 0.
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Anomalous resonance in annulus

The above theorem gives a necessary and sufficient condition on the source
term f for the blow up of the electromagnetic energy in Ω \ D. This condition
is in terms of the Newton potential of f .

We explicitly compute eigenvalues and eigenfunctions of A for the case of an
annulus configuration. We consider the anomalous resonance when domains Ω
and D are concentric disks. We calculate the explicit form of the limiting
solution. Throughout this section, we set Ω = Be = {|x | < re} and
D = Bi = {|x | < ri}, where re > ri .

Lemma
Let ρ := ri

re
. Then

KerK∗ = {0}
and the eigenvalues of A are {±ρ|n|}.

Analysis of the anomalous localized resonance
Hyundae Lee(Inha University, Korea) Joint work with Habib Ammari, Giulio Ciraolo, Hyeonbae Kang, Graeme Milton.



• Let ∂F
∂νe

=
∑

n 6=0 g
n
e e

inθ. There exists δ0 such that

Eδ :=

∫

Be\Bi

δ|∇Vδ |2 ≈
∑

n 6=0

δ|gn
e |2

|n|(δ2 + ρ2|n|)

uniformly in δ ≤ δ0.

• lim sup
|n|→∞

|gn
e |2

|n|ρ|n| = ∞ implies only lim sup
δ→0

Eδ = ∞

(pointed out by J. Lu and J. Jorgensen).
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GP : There exists a sequence {nk} with |n1| < |n2| < · · · such that

lim
k→∞

ρ|nk+1|−|nk | |gnk
e |2

|nk |ρ|nk |
= ∞.

Lemma
If {gn

e } satisfies the condition GP, then

lim
δ→0

Eδ = ∞.

• If limn→∞
|gne |

2

|n|ρ|n|
= ∞, then limδ→0 Eδ = ∞.
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Suppose that the source function is supported inside the radius r∗ =
√

r3e r
−1
i .

Then its Newtonian potential cannot be extended harmonically in |x | < r∗ in
general. So, if F is given by

F = c −
∑

n 6=0

anr
|n|
e
inθ, r < re ,

then the radius of convergence is less than r∗. Thus we have

lim sup
|n|→∞

|n||an |2r2|n|∗ = ∞,

and lim sup
|n|→∞

|gn
e |2

|n|ρ|n| = ∞ holds. The GP condition is equivalent to that there

exists {nk} with |n1| < |n2| < · · · such that

lim
k→∞

ρ|nk+1|−|nk ||nk ||ank |2r2|nk |∗ = ∞.
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The following is the main theorem.

Theorem
Let f be a source function supported in R

2 \ Be and F be the Newtonian

potential of f .

(i) If F does not extend as a harmonic function in Br∗ , then weak ALR

occurs, i.e.,

lim sup
δ→0

Eδ = ∞.

(ii) If the Fourier coefficients of F satisfy GP, then ALR occurs, i.e.,

lim
δ→0

Eδ = ∞.

(iii) If F extends as a harmonic function in a neighborhood of Br∗ , then ALR

does not occur, i.e.,

Eδ < C

for some C independent of δ.
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Examples

• If f is a dipole source in Br∗ \ Be , i.e., f (x) = a · ∇δy (x) for a vector a
and y ∈ Br∗ \ Be where δy is the Dirac delta function at y . Then
F (x) = a · ∇G(x − y) and the ALR takes place. This was found by
Milton et al.

• If f is a quadrapole, i.e., f (x) = A : ∇∇δy (x) =
∑2

i,j=1 aij
∂2

∂xi∂xj
δy (x) for

a 2× 2 matrix A = (aij) and y ∈ Br∗ \ Be . Then

F (x) =
∑2

i,j=1 aij
∂2G(x−y)
∂xi∂xj

. Thus the ALR takes place.
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If f is supported in R
2 \ B r∗ , then F is harmonic in a neighborhood of B r∗ , and

hence the ALR does not occur. In fact, we can say more about the behavior of
the solution Vδ as δ → 0.

Theorem
If f is supported in R

2 \ B r∗ , then

∫

Be\Bi

δ|∇Vδ |2 < C .

Moreover,

sup
|x|≥r∗

|Vδ(x)− F (x)| → 0 as δ → 0.
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Problems

• How can we describe the cloaking effect when some inclusion is
immersed?

• How can we analyze ALR explicitely in terms of the source term when the
given geometry is general?
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Thank you!
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