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This talk is based on the joint work with
Habib Ammari (Ecole Normale Superieure), Josselin Garnier (Université Paris
VII), Vincent Jugnon (MIT), Hyeonbae Kang (Inha Univ.), Hyundae Lee (Inha
Univ.).
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Outline

• Cloaking and near cloaking

• Generalized Polarization Tensors (GPT)

• GPT vanishing structures and near cloaking

• Helmholtz Equation

• Scattering Coefficients vanishing structures
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Transformation of PDE

• Let Λ[σ] be the Dirichlet-to-Neumann map corresponding to the
conductivity distribution σ, i.e.,

Λ[σ](φ) = σ
∂u

∂ν

∣

∣

∣

∂Ω

where u is the solution to
{

∇ · σ∇u = 0, in Ω,

u = φ, on ∂Ω.

• If F is a diffeomorphism of Ω which is identity on ∂Ω, then

Λ[σ] = Λ[F∗σ]

where F∗σ is the push-forward of σ by F :

F∗σ(y) =
DF (x)σ(x)DF (x)t

det(DF (x))
, x = F

−1(y).

Mikyoung LIM(KAIST) Enhancement of near-cloaking using multilayer structures



Singular transformation

by Greenleaf-Lassas-Uhlmann (2003)

• Define F : {x : 0 < |x | < 2} → {x : 1 < |x | < 2} by

F (x) :=

(

1 +
|x |

2

)

x

|x |
.

• Then, Λ[1] = Λ[F∗1].

• Things inside {|x | < 1} are cloaked by the DtN map.

• Pendry et al (2006) used exactly the same transformation for
electromagnetic cloaking (transformation optics).

• Further development toward acoustic and electromagnetic cloaking:
Greenleaf-Kurylev-Lassas-Uhlmann (2009).

• F∗1 is singular on |x | = 1 (0 in the normal direction, ∞ in tangential
direction, 2D)
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Near cloaking

Blowing-up a small ball (Kohn-Shen-Vogelius-Weinstein (2008))

• For a small number ρ, let

σ =

{

γ if |x | < ρ,

1 if ρ ≤ |x | ≤ 2.

(γ can be 0 (the core is insulated) or ∞ (perfect conductor))

• Let

F (x) =















(

2− 2ρ

2− ρ
+

1

2− ρ
|x |

)

x

|x |
if ρ ≤ |x | ≤ 2,

x

ρ
if |x | ≤ ρ.

Then F maps B2 onto B2 and blows up Bρ onto B1.

Mikyoung LIM(KAIST) Enhancement of near-cloaking using multilayer structures



• Then,
‖Λ[F∗σ]− Λ[1]‖ ≤ Cρ2.

• Further development toward acoustic cloaking:
Kohn-Onofrei-Vogelius-Weinstein, Liu, Nguyen.
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• Λ[F∗σ] = Λ[σ] and

Λ[σ](φ)(x) = Λ[1](φ)(x) +∇U(0) ·M
∂

∂νx
∇yG(x , 0) + h.o.t, x ∈ ∂Ω,

where U is the solution to
{

∆U = 0 in Ω,

U = φ on ∂Ω,

M is the polarization tensor of Bρ, and G(x , y) is the Green function for
Ω.

• PT for a ball Bρ (with conductivity γ): M =
2(γ − 1)

γ + 1
|Bρ|I .
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• Is it possible to make PT vanish by taking a shape other than a circle? (If
so, we may achieve an enhanced near cloaking.)

• Not possible by simply connected shape with constant conductivity
because of Hashin-Shtrikman bounds for PT (proved by Lipton (93),
Capdeboscq-Vogelius (03)): Let M = M(γ,D) be the PT for D . Then

Tr(M) ≤ |D |(γ − 1)(1 +
1

γ
),

and

|D |Tr(M−1) ≤
1 + γ

γ − 1
.
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Neutral inclusion of Hashine
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Neutral inclusion does not perturb the uniform fields outside the inclusion.
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Generalized Polarization Tensors

Conductivity distribution:

σ = χ(Rd \ Ω) + γχ(Ω).

Suppose Ω is a single inclusion or multiple inclusions and consider

{

∇ · σ∇u = 0 in R
d ,

u(x)− a · x = O(|x |1−d ) as |x | → ∞.

The dipolar asymptotic expansion at infinity:

u(x) = a · x −
1

ωd

〈a,Mx〉

|x |d
+ O(|x |−d), as |x | → ∞.

M = M(k ,Ω) = (mij ): the Polarization Tensor associated with Ω (or more
precisely σ).
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For a given entire harmonic function H, consider

{

∇ · σ∇u = 0 in R
d ,

u(x)− H(x) = O(|x |1−d ) as |x | → ∞.

Multipolar expansions:

u(x) = H(x) +
∑

α

∑

β

(−1)|β|

α!β!
∂α

H(0)mαβ∂
βΓ(x), |x | → ∞.

{mαβ} : Generalized Polarization Tensors (GPT).

(Γ(x): the fundamental solution for the Laplacian.)
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Equivalent ellipse

If γ is constant, then there is a canonical correspondence between the class of
ellipses (ellipsoids) and the class of PTs:

If Ω is an ellipse x2

a2
+ y2

b2
≤ 1, then

M(γ,Ω) = (γ − 1)|Ω|









a+ b

a+ γb
0

0
a + b

b + γa









.
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Equivalent ellipse (ellipsoid)= ellipse with the same PT:

−1 0 1

−1

0

1
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GPT and Imaging

by Ammari-Kang-L-Zribi

Aim: Make use of
∑

|α|+|β|≤K

aαbβmαβ for a fixed K ≥ 2 to image finer details

of the shape of the inclusion.

• If K = 2, it is imaging by PT (equivalent ellipse).

Optimization Problem: Let Ω be the target domain. Minimize over D

J[D] :=
1

2

∑

|α|+|β|≤K

w|α|+|β|

∣

∣

∣

∣

∣

∣

∑

α,β

aαbβmαβ(γ,D)−
∑

α,β

aαbβmαβ(γ,Ω)

∣

∣

∣

∣

∣

∣

2

.

• w|α|+|β| are binary weights: w|α|+|β| = 1(on) or 0(off).

• A good choice for the initial guess: the equivalent ellipse.
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Gradient Descent Method

To get a minimum of F : Rm → R, one starts with an initial guess x0 and
modify it as

xn+1 = xn − γn∇F (xn),

where γn is a positive real number.

Note that ∇F (x) =
∑m

j=1
d
dt
F (x + tej )

∣

∣

∣

t=0
ej .

To approximate the inclusion, modify D (0) (initial guess) as

∂D (n+1) = ∂D (n) − γn

(

∑

j

〈dSJ[D
(n)], ψj 〉ψj

)

ν,

where ν is the outward normal direction to ∂D (n) and dSJ is the shape

derivative.
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Figure: K = 6, 6 iterations.
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Figure: After 6 iterations
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Level-set framework

by Ammari-Garnier-Kang-L-Yu
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Harmonic Sums

Let u be the solution to
{

∇ · χ(Rd \ Ω)∇u = 0 in R
2,

u(x)− H(x) = O(|x |−1) as |x | → ∞.

Multipolar expansions:

(u − H)(x) =
∑

α

∑

β

(−1)|β|

α!β!
∂α

H(0)mαβ∂
βΓ(x), |x | → ∞.

• Harmonic sums:
∑

α,β aαbβmαβ(γ,Ω) with
∑

α aαx
α and

∑

β bβx
β are

harmonic polynomials.

• Denote the harmonic sums as Mcc
mn,M

cs
mn,M

sc
mn,M

ss
mn.

• As |x | → ∞,

(u − H)(x) = −
∞
∑

m,n=1

[

cosmθ

2πm|x |m
(Mcc

mna
c
n +M

cs
mna

s
n) +

sinmθ

2πm|x |m
(Msc

mna
c
n +M

ss
mna

s
n)

]

where H(x) = H(0) +
∑∞

n=1 |x |
n(acncos nθ + asn sin nθ).
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If γ is radial, then

• Because of the symmetry of the disc,

M
cs
mn[σ] = M

sc
mn[σ] = 0 for all m, n,

M
cc
mn[σ] = M

ss
mn[σ] = 0 if m 6= n,

and
M

cc
nn [σ] = M

ss
nn[σ] for all n.

• Let Mn = Mcc
nn(= Mss

nn), n = 1, 2, . . ..
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Two important lemmas: Let

σ =











γ0 (const), |x | < 1,

γ 1 ≤ |x | < 2,

1 2 ≤ |x |.

where γ is radial.

−2 0 2
−2

0

2

−2 0 2
−2

0

2

Figure: σ( 1
ρ
x) for |x | ≤ 1

• Then
(

Λ[σ(
1

ρ
x)]− Λ[1]

)

(f ) =
∞
∑

k=−∞

2|k |ρ2|k|M|k|[σ]

2π|k | − ρ2|k|M|k|[σ]
fke

ikθ.

• |Mk [σ]| ≤ 2πk22k for all k .
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Enhancement of near cloaking

GPT vanishing structure: σ (or γ) is called a GPT vanishing structure of order
N if Mk = 0 for k ≤ N.

Let γ be a GPT vanishing structure of order N.

• Using the transformation blowing up a small ball, we can get a
near-cloaking structure such that

‖Λ[σN ]− Λ[1] ‖ = ‖Λ[F∗σ
N ]− Λ[1] ‖ ≤ Cρ2N+2.
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Multiply layered structure

• For a positive integer N, let 1 = rN+1 < rN < . . . < r1 = 2 and define

Aj := {rj+1 < r ≤ rj}, j = 1, 2, . . . ,N.

• A0 = R
2 \ B2, AN+1 = B1.

• Set σj to be the conductivity of Aj for j = 1, 2, . . . ,N + 1, and σ0 = 1.
Let

σ = χ(A0) +

N
∑

j=1

σjχ(Aj ) + σN+1χ(AN+1).

(σN+1 may (or may not) be fixed: σN+1 is fixed to be 0 if the core is
insulated.)
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• The transmission conditions on the interface {r = rj}:

[

a
(k)
j

b
(k)
j

]

=
1

2σj

[

σj + σj−1 (σj − σj−1)r
−2k
j

(σj − σj−1)r
2k
j σj + σj−1

]

[

a
(k)
j−1

b
(k)
j−1

]

,

and hence
[

a
(k)
N+1

b
(k)
N+1

]

=

N+1
∏

j=1

1

2σj

[

σj + σj−1 (σj − σj−1)r
−2k
j

(σj − σj−1)r
2k
j σj + σj−1

]

[

a
(k)
0

b
(k)
0

]

=:

[

p
(k)
11 p

(k)
12

p
(k)
21 p

(k)
22

][

a
(k)
0

b
(k)
0

]

.

• Since b
(k)
N+1 = 0 (in the inner disk),

Mk = −2πk
b
(k)
0

a
(k)
0

= 2πk
p
(k)
21

p
(k)
22

.
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Optimization

• We fix N and rj = 2− j−1
N

. We iteratively modify σ
(i) = (σ

(i)
1 , . . . , σ

(i)
N+1)

as
σ

(i+1) = σ
(i) − A

†
i b

(i),

where A
†
i is the pseudoinverse of Ai :=

∂(M1,...,MN )
∂σ

∣

∣

∣

σ=σ
(i)
, and

b(i) = [M1 · · · MN ]
T |

σ=σ
(i) .
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M = 0 (GPT vanishing structure of order 1) = the neutral inclusion of Hashine
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Figure: The conductivity of the core is fixed to be 0. N = 3
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Figure: The conductivity of the core is fixed to be 0. N = 6
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Numerical Test

Compare Λ[F∗σ] for three cases

• (blue) Small hole (Kohn-Shen-Vogelius-Weinstein (2008))

• (red) Small hole + one-layer coating

• (green) Small hole + two-layer coating

FEM with Anisotropic Conductivity.

• ρ = 0.25

• ek = cos kθ

• p[σ](k) = ‖Λ[F∗σ](ek)− Λ[1](ek )‖∞
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Numerical Test
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Helmholtz equation

Consider the solution u to










∇ ·
1

µ
∇u + ω2ǫu = 0 in R

2,

(u − U) satisfies the outgoing condition.

where (ǫ, µ) is the pair of electromagnetic parameters (permittivity and
permeability) and U is an incident field.

• Let A∞[ǫ, µ] be the far-field pattern, i.e.,

(u−U)(x) = −ie
−πi

4
e ik0|x|

√

8πk0|x|
A∞[ǫ, µ, ω](θk , θx)+o(|x|−

1
2 ) as |x| → ∞.
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Let Sk
D [ϕ] be the single layer potential:

Sk
D [ϕ](x) =

∫

∂D

Γk(x− y)ϕ(y)dσ(y).

where

Γk(x) = −
i

4
H

(1)
0 (k |x|),

and H
(1)
0 is the Hankel function of the first kind of order zero.
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Scattering Coefficients of an inclusion











∇·
( 1

µ0
χ(R2 \ D̄) +

1

µ1
χ(D)

)

∇u + ω2
(

ǫ0χ(R
2 \ D̄) + ǫ1χ(D)

)

u = 0 in R
2,

(u − U) satisfies the outgoing condition.

• For U(x) = Jm(k0|x|)e
imθx ,

u(x) =

{

U(x) + Sk0
D [ψ](x), x ∈ R

2 \ D̄,

Sk
D [ϕ](x), x ∈ D ,

where (ϕ,ψ) ∈ L2(∂D)× L2(∂D) is the unique solution to














Sk
D [ϕ]− Sk0

D [ψ] = U

1

µ

∂(Sk
D [ϕ])

∂ν

∣

∣

∣

∣

−

−
1

µ0

∂(Sk0
D [ψ])

∂ν

∣

∣

∣

∣

∣

+

=
1

µ0

∂U

∂ν

on ∂D .

Define

Wnm = Wnm[ǫ, µ, ω] :=

∫

∂D

Jn(k0|y|)e
−inθyψm(y)dσ(y).
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• Since
e
ik·x =

∑

m∈Z

e
im( π

2
−θk)Jm(k |x|)e

imθx ,

where Jm is the bessel function of order m, we have

u(x)− e
ik·x = −

i

4

∑

n∈Z

H
(1)
n (k0|x|)e

inθx
∑

m∈Z

Wnme
im(π

2
−θk) as |x| → ∞.
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• Let θ and θ′ be respectively the incident and scattered direction. Then
we have

A∞[ǫ, µ, ω](θ, θ′) =
∑

n,m∈Z

(−i)nime inθ
′

Wnm[ǫ, µ, ω]e
−imθ.

•
A∞

[

µ ◦Ψ 1
ρ

, ǫ ◦Ψ 1
ρ

, ω
]

= A∞[µ, ǫ, ρω],

where

Ψ 1
ρ

(x) =
1

ρ
x, x ∈ R

2.
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S-vanishing structure of order N at low frequencies.

There is a constant C depending on (ǫ, µ, ω) and ρ0 such that

|Wnm[ǫ, µ, ρω]| ≤
C n+m

|n||n||m||m|
ρ|n|+|m| for all n,m ∈ Z.

for all ρ ≤ ρ0 where the constant C depends on (ǫ, µ, ω) but is independent of
ρ as long as ρ ≤ ρ0.

We look for a structure such that

Wn[µ, ǫ, ρω] = o(ρ2N) for all |n| ≤ N and ρ→ 0.
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Transformation: Blow up a small ball

Let the parameter distributions ǫ and µ associated to a S-vanishing structure of
order N. Let

(F )∗(µ ◦Ψ 1
ρ

) =
(DF )(µ ◦Ψ 1

ρ

)(DF )T

|det(DF )|
◦ F−1,

and

(F )∗(ǫ ◦Ψ 1
ρ

) =
(DF )(ǫ ◦Ψ 1

ρ

)(DF )T

|det(DF )|
◦ F−1.

For ρ small enough, we have

A∞

[

(F )∗(µ ◦Ψ 1
ρ

), (F )∗(ǫ ◦Ψ 1
ρ

), ω
]

(θ, θ′) = o(ρ2N).
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Multilayer structures

• For a positive integer N, let 1 = rN+1 < rN < . . . < r1 = 2 and define

Aj := {rj+1 < r ≤ rj}, j = 1, 2, . . . ,N.

• A0 = R
2 \ B2, AN+1 = B1.

• Set µ0 = 1 and ǫ0 = 1. Let

µ =

L+1
∑

j=0

µjχ(Aj) and ǫ =

L+1
∑

j=0

ǫjχ(Aj ).
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Scattering Coefficients

• We look for solutions un of the form

un(x) = a
(n)
j Jn(kj r)e

inθ + b
(n)
j H

(1)
n (kj r)e

inθ, x ∈ Aj , j = 0, . . . , L,

with a
(n)
0 = 1.

• From the transmission conditions,





Jn(kj rj ) H
(1)
n (kj rj )

√

ǫj
µj

J
′
n(kj rj )

√

ǫj
µj

(

H
(1)
n

)′

(kj rj )





[

a
(n)
j

b
(n)
j

]

=





Jn(kj−1rj ) H
(1)
n (kj−1rj )

√

ǫj−1

µj−1
J
′
n(kj−1rj )

√

ǫj−1

µj−1

(

H
(1)
n

)′

(kj−1rj )





[

a
(n)
j−1

b
(n)
j−1

]

.

• The Neumann condition ∂un
∂ν

|+ = 0 on |x| = rL+1 amounts to

[

0 0

J ′
n(kL)

(

H
(1)
n

)′

(kL)

][

a
(n)
L

b
(n)
L

]

=

[

0
0

]

.
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• We have
Wn = 4ib

(n)
0 .

•
[

0
0

]

= P
(n)[ǫ, µ, ω]

[

a
(n)
0

b
(n)
0

]

,

where

P
(n)[ǫ, µ, ω] :=

[

0 0

p
(n)
21 p

(n)
22

]

= (−
π

2
iω)L





L
∏

j=1

µj rj





[

0 0

J′

n(kL)
(

H (1)
n

)

′

(kL)

]

×

L
∏

j=1















√

ǫj

µj

(

H
(1)
n

)

′

(kj rj ) −H
(1)
n (kj rj )

−

√

ǫj

µj

J
′

n(kj rj ) Jn(kj rj )























Jn(kj−1rj ) H
(1)
n (kj−1rj )

√

ǫj−1

µj−1

J
′

n(kj−1rj )

√

ǫj−1

µj−1

(

H
(1)
n

)

′

(kj−1rj )









.
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Behavior of Wn[µ, ǫ, t], t = ρω, as ρ → 0

• Behavior of Bessel functions for small arguments:
As t → 0, we have

Jn(t) =
tn

2n

(

1

Γ(n+ 1)
−

1
4
t2

Γ(n + 2)
+

( 1
4
t2)2

2!Γ(n + 3)
−

( 1
4
t2)3

3!Γ(n + 4)
+ · · ·

)

,

Yn(t) = −
( 1
2
t)−n

π

n−1
∑

l=0

(n − l − 1)!

l!
(
1

4
t
2)l +

2

π
ln(

1

2
t)Jn(t)

−
( 1
2
t)n

π

∞
∑

l=0

(ψ(l + 1) + ψ(n+ l + 1))
(− 1

4
t2)l

l!(n + l)!
,

where ψ(1) = −γ and ψ(n) = −γ +
∑n−1

l=1 1/l for n ≥ 2 with γ being the
Euler constant.
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• For n ≥ 0, we have

Wn[µ, ǫ, t] = t
2n



W̃
0
n [µ, ǫ] +

(N−n)
∑

k=1

Mn,k
∑

j=0

W̃
k,j
n [µ, ǫ]t2k (ln t)j



+ o(t2N+1),

where Mn,k ∈ N and W̃ k,j
n [µ, ǫ] are independent of t.

• We look for (µ, ǫ) satisfying that

W̃
0
n [µ, ǫ] = 0 and W̃

k,j
n [µ, ǫ] = 0, for 0 ≤ n ≤ N.

Mikyoung LIM(KAIST) Enhancement of near-cloaking using multilayer structures



1 1.5 2
0

0.5

1

1.5

2

r

µ
1 1.5 2

0

0.5

1

1.5

2

r

ε

0 0 0 1 1 1 2

10
−20

10
−10

10
0

n

co
ef

fic
ie

nt
 o

f W
n

1 1.5 2
0

0.5

1

1.5

r

µ

1 1.5 2
0

0.5

1

1.5

2

r

ε

0 0 0 1 1 1 2

10
−20

10
−10

10
0

n

co
ef

fic
ie

nt
 o

f W
n

1 1.5 2
0

0.5

1

1.5

2

r

µ

1 1.5 2
0

0.5

1

1.5

2

r

ε

0 0 0 1 1 1 2

10
−20

10
−10

10
0

n

co
ef

fic
ie

nt
 o

f W
n

Figure: Graphs on the first and second column show the permeability
profile µ and the permittivity profile ǫ. The right column show the
components [t2, t4, t4 log t] of W0 and W1, and [t4] of W2.
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Happy Birthday!

Mikyoung LIM(KAIST) Enhancement of near-cloaking using multilayer structures


